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Abstract. Peanut is one of the most important legume commodities in Indonesia. In its implementation, a lot of 

research has been done related to this plant. However, in studies conducted by growth models, it is very rarely studied. 

Therefore, researchers are interested in modeling the growth of peanuts. One of the models that can be used is a 

multilevel regression model for the case of repeated measurement data. Multilevel regression was chosen because it 

is considered to provide more information than other regression models. On the other hand, the nonlinear model was 

chosen based on the tendency of the initial plot of the data obtained. The research method used is a case study in the 

study of peanut growth. This study aims to build the best model based on the tested model. The Restricted Estimator 

Maximum Likelihood (REML) parameter estimation method was chosen because it is considered to have unbiased 

parameter estimates. The best model is based on the lowest Akaike Information Criterion (AIC) generated from a 

predetermined model. The results obtained indicate that the multilevel parabolic regression model is the model with 

the best AIC size. In addition, it was found that there was an Interclass Correlation (ICC) of 81.19% which indicated 

a difference in variability between levels. 
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1. INTRODUCTION 

The rapid development of science in the last few decades is no doubt the result of human curiosity 

about the universe. Along with scientific developments, the need for analytical data also plays a role in 

analyzing every existing scientific study. Data analysis seems to play a fundamental role in research in various 

sciences, both scientific and social. One way to create superior research is to conduct research collaborations. 

This is very important to produce innovative researches by giving each other different scientific contributions 

in research. It is understandable that the development of statistics itself could not have been born without the 

problems that arise in relation to data analysis. Research collaboration seems to provide the key in developing 

problem-based statistics in other scientific fields. One of the scientific fields in question is in the field of 

agriculture. In agriculture, especially mathematics and statistics, it has important functions and roles, 

including as a communication tool for data producers and data lovers, as a tool or method for describing 

agricultural data, both with regression, correlation, and comparison methods [1]. The role of statistics in 

agriculture is very basic in order to produce compatible data analysis. In agriculture there are many things 

that can be studied, one of the interesting study materials is plant growth modeling. 

Peanuts or in Latin Arachis hypogaea L., is one of the second most important legume commodities 

after soybeans in Indonesia [2]. Peanut is a staple commodity that is very valuable in Indonesia. Peanuts are 

a commodity that is rich in nutritional content of protein, fat, iron, vitamin E, vitamin B, vitamin A, vitamin 

K, phosphorus, lecithin, choline, and calcium. In his study, it was stated that peanut seeds contain 40–48% 

oil elements, 25% protein, and 18% carbohydrates and B complex vitamins [3]. In the field of agriculture 

itself has been found related to the analysis of production or agricultural products of peanuts. However, 

studies on growth or better known as growth models are still rarely carried out. It could be because of the 

economic factors from the results of growth modeling that are less attractive to researchers or in the 

implementation of models in the field that are rarely used. However, every problem about data becomes 

interesting to be discussed in statistical modeling. In some literacy, the growth model is generally carried out 

using a linear regression model approach, either simple or embellished by taking into account the factors that 

influence growth. However, the development of the complexity of the data structure directly becomes one of 

the interesting studies in the selection of the model to be used. The complexity in question is the discovery 

of a hierarchical or multilevel data structure, where each object under study basically has a growth model of 

each. Therefore, one of the analyzes that can be used is multilevel regression model analysis. Multilevel 

regression is characterized by a nested data structure. The data are characterized by nested membership 

relationships among observation units [4]. Thus the growth data for each collection of individual objects 

observed in the growth study can be modeled in a multilevel regression model. 

Multilevel regression analysis is considered very full power. Multilevel regression methodological 

approach, researchers can analyze the relationships between variables on or at least two different levels of 

analysis [5]. In general, the equation in a multilevel regression model can be partitioned in two parts. The 

partition in question is better known as the fix effect (fixed effect) and random effect (random effect). The 

fixed effects section in the multilevel regression model includes multilevel regression coefficients and 

predictor variables, while the random effects section includes random parameters that include errors at each 

level formed. The two parts that make up the regression model equation are known as mix models. In line 

with this [6]. In an ordinary one-level regression model, the assumption is that all individuals, even if from 

different centres, belong to one common population. In a multilevel model, we consider that there may be 

genuine differences between center populations which are themselves a sample from a superpopulation [7]. 

In relation to mixed models related to regression models, an analytical model known as Generalized Linear 

Mixed Models (GLMMs) was also developed. The development of GLMMs contributed to the analysis 

carried out. The development of GLMMs gave birth to several estimation methods for further analysis, 

namely Gauss Hermite quadratur, Laplace Approximation, and Penalized Quasi-Likelihood (PQL).  

The Penalized Quasi-Likelihood estimation method is very helpful in estimating the parameters in the 

multilevel regression equation model. The PQL method has developed theoretically until now it can be used. 

Penalized Quasi-Likelihood aims to obtain values that are useful for approaching parameter inference and 

the realization of random effects in multilevel models [8]. Along with scientific developments, the PQL 

method that is widely known today is a numerical procedure. In line with this, the procedures applied in the 

PQL method [9]. The first procedure is Iterative Generalized Least Square (IGLS) which in its development 

is considered to be biased towards the estimation of the variance value. To obtain an unbiased estimate of the 

variance value, the Resticted (residual) Maximum Likelihood (REML) estimation method is used. The REML 

method can at least greatly reduce the bias and even completely eliminate it in some situations [10]. Therefore, 



BAREKENG: J. Math. & App., vol. 16(3), pp. 861- 868, September, 2022     863 

 

Goldstein offers a new iterative procedure known as the Restricted (residual) Iterative Generalized Least 

Square (RIGLS) which is unbiased in the estimation of the variance value. 

Based on the things that have been written, peanut growth is an event that can be approached using a 

multilevel regression model for repeated measurement data. This can be seen from the data structure where 

if each plant is measured repeatedly, the plant measurement is at level-1 and the plant that is measured 

repeatedly is at level-2. The estimation method used is the REML method because this method is unbiased 

with respect to the estimated variance parameter. On the other hand, in the initial study of the growth model, 

it was found that the model to be estimated was non-linear. Therefore, the model approach is both quadratic, 

cubic, and logarithmic considering that the estimation procedure used is still based on the procedure in the 

estimation of the linear model. Thus, more and more models will be formed so that it is hoped that a much 

better model estimate will be obtained. Furthermore, the modeling procedure used using the forward selection 

method by taking into account the Akaike Information Criteria (AIC) value was chosen as the benchmark for 

selecting the best model formed. In addition, to see whether there is a correlation between treatment classes 

or what is commonly called Interclass Correlation (ICC). The intraclass correlation coefficient (ICC) is 

recommended for the assessment of the reliability of the measurement scale [11]. Correlation between classes 

refers to the variability within each level that is formed. 

 

 

 

2. RESEARCH METHODS 

In this research, the method used is a case study with a literature method approach. The method chosen 

was based on the context used, namely the acquisition of data on the growth of peanuts. The literature 

approach was chosen considering the context of multilevel regression modeling which is still rarely used, 

especially in non-linear multilevel regressions, namely polynomials and powers. The main focus in this 

research is the growth of peanuts. The number of samples used in this study were 125 plants and were taken 

randomly. The data used is primary data with the initial aim of knowing the impact of weeding and non-

weeding from the treatment given. Peanut seeds in the plantation laboratory of Mercu Buana Yogyakarta 

University with initial observations starting on October 10, 2019 and ending on November 19, 2019. 

Observations on the growth of peanut plants were carried out every week by taking into account the variables 

of height, number of branches, and day of planting (DAT). The results of observations of peanut growth were 

then analyzed using the R program package. The R program was chosen considering the advantages of open-

source and free programs. The determination of the non-linear model is obtained by looking at the tendency 

of the scatterplot which is formed based on the multilevel data held as follows: 

 

Picture 1. Scatter plot of repeated measurement multilevel on peanut 

 

The analytical method used is the forward selection method. The forward selection method was chosen 

with the aim of testing each model formed and obtaining the best model based on the variables used. Forward 

selection starts with no predictors and then builds the model by adding predictors one at a time, backward 
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stepwise selection begins with a model with all k predictors and then removes them [12]. Furthermore, the 

selection of the best model is carried out by taking into account the lowest Akaike Information Criterion 

(AIC) value for each model. According to the theory of generalized linear regression modeling, relative 

goodness-of-fit of several models may be compared based on a number of criteria, including the Akaike 

information criterion [13]. The application of the AIC value itself is a method used mainly in selecting the 

best regression model with the aim of forecasting (forcasting), which can explain the suitability of the model 

with existing data (in-sample forecasting) and values that will occur in the future (out of sample casting) [14]. 

The initial modeling concept used is 1-level linear regression modeling, this aims to see the adequacy of 

statistics in building level-2. 

 

2.1 Modeling Procedure 

Suppose i=(1,2,...,n) with h=(1,2,…,m) each describes the index of measurement or observation at the 

i-th time nesting in the h-th plant. Suppose r=(1,2,3) denotes the polynomial form constructed in the model 

with r=1 indicating simple or multiple linear regression, r=2 indicating a parabolic regression model, and r=3 

indicating a cubic regression model such that the building blocks of the model are used is formed as follows: 

𝑦𝑖ℎ  is the response variable in this case is the observation of peanut height at time i-th which is 

measured on h-th plant 

𝑥1𝑖ℎ
𝑟  is a predictor variable in this case is the observation of the number of peanut branches at the 

i-th time measured on the h-th plant 

𝑥2𝑖ℎ
𝑟   is a predictor variable in this case is the age of the i-th plant measured on the h-th plant 

𝛽0ℎ  is random intercept on h-th plant 

𝛽1ℎ  is random slope number of peanut branches of h-th plant 

𝛽2ℎ  is random slope age of h-th plant 

𝑢0ℎ  is the h-th random intercept  

𝑢1ℎ  is an error in random slope number of peanut branches of h-th plant 

𝑢2ℎ  is an error in random slope age of h-th plant 

𝑒𝑖ℎ  is random error of the i-th plant measured on the h-th plant 

𝛽0    is parameter intercept in 2-level regression model 

𝛽1    is parameter slope of number of peanut branches in 2-level regression model 

𝛽2    is parameter slope of number of peanut age in 2-level regression model 

𝜎0ℎ
2   is variance in parameter intercept model 2-level 

𝜎1ℎ
2   is variance in parameter slope of branches model 2-level 

𝜎2ℎ
2   is variance in parameter slope of age model 2-level 

The equations of the model to be built are generally limited and classified into four, namely: 

1. Equation of linear regression model 

2. Equation of multilevel linear regression model, both random intercept and random slope models 

3. Equation of multilevel parabolic regression model, both random intercept and random slope models 

4. Equation of multilevel cubic regression model, both random intercept and random slope models 

The five models in general can be solved in a linear iterative procedure. The general equation used in 

the context of GLLMs can be formed in a general matrix structure as follows: 

𝐘 = 𝐗𝛃 + 𝐙𝐮 + 𝐞                                                   (1) 

where: 

𝐲  is vector 𝑛 × 1 

𝛃  is vector (𝑝 + 1) × 1 

𝐗  is matrix 𝑛 × (𝑝 + 1) 

𝐙  is explanatory matrix 𝑛 × 𝑛  

𝐮  is vector of random effect in level-2 

𝐞  is vector of random effect in level-1 

The estimation procedure is carried out using the Restricted Iterative Generalized Least Square 

(RIGLS) iteration procedure to obtain the parameter estimation results using the REML method which is 

unbiased on variance. The REML estimator in the iteration procedure in obtaining parameters can be done in 

the following way: 
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�̂�(𝑡) = (𝐗′𝐕−𝟏𝐗)
−1

𝐗′𝐕−𝟏𝒚                                                 (2)                                               

�̂�(𝑡) = (𝐙∗𝐓𝐕∗−𝟏
𝐙∗)

−𝟏
𝐙∗𝐓𝐕∗−𝟏

𝐲                              (3) 

dengan  

𝑡     is n-th iteration; n=0,1,2, 

�̂�(𝑡) is t-th iteration of fix parameter estimation 

�̂�(𝑡) is t-th iteration of random parameter estimation 

𝐕     is diagonal block matrix 𝑛 × 𝑛 

𝐙∗   is explanatory matrix 𝑛 × 𝑛  

For each model using a forward study design approach, the Akaike Information Criteria (AIC) value 

will be measured as a reference in determining the best model formed. The model with the lowest AIC value 

is the model chosen to represent peanut growth. In addition, Interclass Correlation (ICC) is also a concern. In 

multilevel repeated measurements, where the observations are nested in the corresponding individuals, the 

intraclass correlation can be interpreted as the dependence of the observations nested in the corresponding 

individuals. This can be interpreted as the value used to determine how much influence the individual can 

explain the observations made. Intraclass correlation can explain the proportion of the variable values 

between observations nested in the specified object [15]. In addition, in this case multilevel regression can be 

performed if the value of the ICC is above 20%. The relationship between levels in the case of 2-level 

multilevel regression can be calculated using the following formula: 

𝐼𝐶𝐶 =
𝑣𝑎𝑟(𝜇ℎ)

𝑣𝑎𝑟(𝜇ℎ)+𝑣𝑎𝑟(𝑒𝑖ℎ)
                           (4)  

In equation (4) it can be understood that 𝑣𝑎𝑟(𝜇ℎ) is the individual or unit variance at level-2 and 

𝑣𝑎𝑟(𝑒𝑖ℎ)is the variance of each nested observation on the corresponding individual at level-1. 

 

 

 

3. RESULTS AND DISCUSSION 

The best model selection method used in this research is forward study design. Therefore, the diwali 

analysis by modeling each predictor variable is used, starting from a simple linear regression model with one 

variable to a more complex model structure. The parameter estimation method used is the REML method 

with an iterative procedure, namely RIGLS. Based on the results of the data analysis carried out, as many as 

25 possible model equations were selected to be formed. The results obtained are presented as follows: 

Table 1. Parameter Estimation of linear regression model 

Parameter 
                                        Linear model 

Model 1 Model 2 Model 3 

Fix    

𝜷𝟎 -4.690 3.291 -2.542 

𝜷𝟏 0.437  0.690 

𝜷𝟐  1.268 -1.466 

Random     

Level 1    

𝝈𝒆𝟎
𝟐  4.057 6.100 3.627 

AIC 713.817 808.777 688.097 

 
Model 3 is a model for multiple linear regression equations with two variables. Based on the table, it 

can be seen that the AIC value is 688,097. The parabolic and cubic regression models are presented in Table 

2. As follows: 
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Table 2. Parameter estimation of parabolic dan cubic regression   

Parameter 
                  Parabolic                   Cubic  

Model 4 Model 5 Model 6 Model 7 

Fix     

𝜷𝟎 1.460 0.032 0.000 0.009 

𝜷𝟏 0.009  3.543  

𝜷𝟐  5.274  8.015 

Random      

Level 1     

𝝈𝒆𝟎
𝟐  15.361 4.140 15.273 39.801 

AIC 713.694 549.949 720.346 828.082 

Based on Table 2. it can be seen that the best equation model by taking into account the lowest AIC 

value is Model 5. Equation 5 is a parabolic or quadratic equation model with an AIC value of 549,694. Based 

on Table 2. the comparison of the very high spike in model variability occurred in Model 7 with a variance 

value of 39,801. This is possible because the variable used is the third power of the predictor variable, namely 

the age of the plant. This results in increased model variability. The estimation of the multilevel linear 

regression equation in either the random intercept or the random slope model is presented as follows: 

 
Table 3. Random intersep dan slope model of multilevel linear regression 

Parameter 
             Random Intercept                   Random Slope 

Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 

Fix       

𝜷𝟎 0.150 -4.690 -2.710 -2.119 -4.670 -3.488 

𝜷𝟏 1.904  -1.352 2.481  -0.691 

𝜷𝟐  0.508 0.676  0.509 0.579 

Random       

Level-2       

𝝈𝟎𝒉
𝟐  12.681 8.152 6.426 0.000 5.006 0.445 

𝝈𝟏𝒉
𝟐     0.906  0.806 

𝝈𝟐𝒉
𝟐      0.035 0.053 

Level-1       

𝝈𝒆𝟎
𝟐  26.142 8.507 6.894 22.472 4.260 3.726 

AIC 798.599 676.786 652.344 797.962 619.624 616.260 

Based on the parameter estimation results presented in Table 3. It can be seen that the best model 

equation that can be formed is Model 13 with the lowest AIC value of 616,260. However, it is also necessary 

to pay attention to another regression model, namely multilevel parabolic regression which is presented as 

follows: 
Table 4. Random intersep dan slope model of multilevel parabolic regression 

Parameter 
             Random Intercept                   Random Slope 

Model 14 Model 15 Model 16 Model 17 Model 18 Model 19 

Fix       

𝜷𝟎 0.163 1.459 2.820 4.374 1.46 2.992 

𝜷𝟏 2.003  0.021 0.045  0.027 

𝜷𝟐  0.009 0.004  0.009 0.004 

Random       

Level-2       

𝝈𝟎𝒉
𝟐  11.467  1.442 1.048 2.706 3.864 

𝝈𝟏𝒉
𝟐   8.425  0.000  0.000 

𝝈𝟐𝒉
𝟐      0.000 0.000 

Level-1       

𝝈𝒆𝟎
𝟐  4.14 7.142 0.909 1.660 2.133 0.568 

AIC 551.949 667.537 433.789 487.938 584.605 428.445 

Based on Table 4. it can be seen that the model with the lowest AIC is Model 19 with an AIC value of 

428,445. In this case, it was found that there was a significant decrease in the AIC values in other models. 

However, it is also necessary to pay attention to the estimation of the multilevel cubic regression model as 

follows: 
 

Table 5. Random intersep dan slope model of multilevel cubic regression 
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Parameter 
             Random Intercept                   Random Slope 

Model 20 Model 21 Model 22 Model 23 Model 24 Model 25 

Fix       

𝜷𝟎 6.966 3.543 4.007 3.615 3.543 3.044 

𝜷𝟏 0.015  -0.008 0.057  0.007 

𝜷𝟐  0.000 0.000  0.000 0.000 

Random       

Level-2       

𝝈𝟎𝒉
𝟐  10.581 8.447 6.923 0.000 6.682 0.622 

𝝈𝟏𝒉
𝟐     0.003 0.000 0.000 

𝝈𝟐𝒉
𝟐      0.000 0.000 

Level-1       

𝒆𝒊𝒉 30.682 7.032 6.507 20.905 1.643 1.230 

AIC 821.875 673.674 673.177 828.316 592.406 589.724 

 

Based on Table 5. it can be seen that the model with the lowest AIC value is Model 25, which is 

589,724. In general, it is found that the best model that can be formed is a multilevel parabolic model with 

the lowest AIC value of 428,445, namely in Model 19. This can be a study that peanut growth can be modeled 

in the form of multilevel parabolic regression. In addition, it can also be determined that the ICC value is 

0.8719 or 87.19% which shows very high variability at each level. However, further studies showed that there 

was a very significant difference in the growth of peanuts. On the other hand, the high ICC value is possible 

due to differences in treatment in the experiments carried out at the time of the study. Therefore, it is necessary 

to carry out further analysis regarding this assumption. Either by modeling with a higher level based on 

clustering the treatment or other statistical analysis. Furthermore, it should be realized that in the context of 

multilevel regression modeling, the study or use of various models certainly provides many alternatives for 

selecting the best model. This is in line with the expression of George W. Box, an expert in mathematical 

modeling who stated "All Models are wrong, but some are usefull". 

 

 

 

4. CONCLUSIONS 

Based on the results of the analysis that has been done, it can be concluded that one of the best models 

is obtained based on multilevel regression analysis. Multilevel regression would be an alternative 

development of regression modeling. Based on the results of the parameter estimates carried out, the best 

model is obtained, namely the multilevel random slope model, precisely the 15th model with the following 

equation: 

�̂�𝑖𝑗 = −2.992 + 0.027𝑥1𝑖𝑗
2 + 0.003𝑥2𝑖𝑗

2          (5) 

The model equation was chosen based on the lowest AIC value formed from the 25 models tested. The AIC 

value obtained is 428,445. In addition, it is known that the ICC value is 87.18% which can be interpreted as 

the high variability between the levels used. This is possible due to the experimental treatment given, namely 

with weeding and without weeding. For this reason, it is necessary to carry out further analysis to explain the 

impact. 
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