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Abstract. Inverse Gaussian Regression (IGR) is a suitable model for modeling positively skewed response data, which 
follows the inverse Gaussian distribution. The IGR model was formed from the Generalized Linear Models (GLM). 

This study aims to model the IGR with applied to model the factors influencing the infant mortality cases of provinces 

in Indonesia. Estimation of the IGR model parameters was employed by the Maximum Likelihood Estimation (MLE) 

and Fisher scoring methods. The Likelihood Ratio Test (LRT) and Wald test were used for hypothesis testing of 
significance parameters. The IGR model was applied to the infant mortality cases of provinces in Indonesia in 2020. 

The data for modeling infant mortality cases using IGR were obtained from the Ministry of Health of the Republic of 

Indonesia and the Central Bureau of Statistics. The result shows that the factors influencing the infant mortality cases 

of provinces in Indonesia based on the IGR model were: the percentage of pregnant women who received blood-
boosting tablets, the percentage of low birth weight, the percentage of complete neonatal visits (KN3), the percentage 

of toddlers who received early initiation of breastfeeding, the percentage of toddlers who are exclusively 

breastfeeding, the percentage of toddlers who received complete primary immunization, the percentage of households 

with access to adequate drinking water, and the percentage of households with access to appropriate sanitation. 

Keywords: Fisher scoring, IGR, GLM, LRT, MLE, neonatal mortality, positively skewed data, Wald test. 
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1. INTRODUCTION 

Linear Regression (LR) is commonly used in regression modeling. The LR model applies only if the 

dependent variable follows the normal distribution. In the other condition, this assumption is not met when 

the dependent variable data is positively skewed [1]. The Inverse Gaussian Regression (IGR) model is 

applicable when the dependent variable has an inverse Gaussian (IG) distribution. The IGR model is similar 

to the gamma regression model except for more considerable skewness and high pitch [2].  

Recently, research on IGR is still minimal and continues to be developed. A standardized version of 

the empirical moment generating function’s logarithm to construct plots for assessing the appropriateness of 

the IG distribution was used [3]. [4] proposed a unified procedure for simultaneously parameter estimation 

and variable selection for joint mean and dispersion models of the IG distribution. Hypothesis testing of fit 

for IG distributions was developed [5], [6] and applied in R software [7]. [8] designed Generalized Linear 

Models (GLM)-based control charts when the dependent variable follows the inverse Gaussian distribution. 

Handling the multicollinearity cases in the IGR model was employed by [9], [10], [11], and [12]. 

The IGR in this research applies to the public health data, namely modeling neonatal mortality cases 

in Indonesia in 2020. Infant mortality is still Indonesia’s most significant health problem, where 63% of 

deaths are caused during the neonatal period. The trend of neonatal mortality rate in Indonesia from 2017 

until 2018 has decreased from 15 to 13 deaths per 1,000 live births, but this is not following the sustainable 

development goals target [13], [14], [15]. Neonatal mortality is death in the first month of life (0–28 days of 

age). This first month is the most crucial period for the child’s survival because the risk of neonatal mortality 

is up to 15 times greater in countries with the highest mortality compared to countries with low mortality 

[16]. 

Most of the previous research discussed handling multicollinearity problems in the IGR model using 

simulation and actual data. This research is limited to discussing the IGR model without multicollinearity 

problems and its application to actual data. The objectives of this study are: to obtain an IGR model using the 

Maximum Likelihood Estimation (MLE) and Fisher scoring methods; to test the significance of the 

parameters of the IGR model using the Likelihood Ratio Test (LRT) and Wald test methods; and to obtain 

the factors that significant effect on neonatal mortality cases in Indonesia, in 2020 based on the IGR model.  

 

 

 

2. RESEARCH METHODS 

2.1 Data and Research Variables 

The data for research variables in this research is secondary data obtained from the Ministry of Health 

of the Republic of Indonesia [17]. The research variables are displayed in Table 1. 

 

Table 1. Research variables 

Symbol Variable Variable Type 

𝑌 The neonatal mortality cases Discrete 

𝑋1 The percentage of antenatal care (K4) Continue 

𝑋2 The percentage of pregnant women who received blood-boosting tablets Continue 

𝑋3 The percentage of low birth weight Continue 

𝑋4 The percentage of complete neonatal visits (KN3) Continue 

𝑋5 The percentage of toddlers who received early initiation of breastfeeding Continue 

𝑋6 The percentage of toddlers who are exclusively breastfeeding Continue 

𝑋7 The percentage of toddlers who received complete primary 

immunization 

Continue 

𝑋8 The percentage of households with access to adequate drinking water Continue 

𝑋9 The percentage of households with access to appropriate sanitation Continue 

𝑋10 The percentage of districts/cities that implement the policy of the healthy 

living community movement (GERMAS) 

Continue 

Data source: Ministry of Health of the Republic of Indonesia. 
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2.2  Inverse Gaussian Regression Model 

Inverse Gaussian Regression (IGR) is a regression model developed from GLM [18]. The dependent 

variable (𝑌) of the IGR model is a random variable with an Inverse Gaussian (IG) distribution with the 

probability density function defined as follows [9]: 

𝑃(𝑌 = 𝑦|𝜇, 𝜁) = 𝑓(𝑦, 𝜇, 𝜁) =
1

√2𝜋𝑦3𝜁
exp [−

1

2𝑦
(
𝑦 − 𝜇

𝜇√𝜁
)] , 𝑦 > 0, 𝜇 > 0, 𝜁 > 0 (1) 

where 𝑦 is the value of random variable 𝑌, 𝜇 is the average of  𝑌, and  𝜁 is the dispersion parameter. 

If there are 𝑚 independent variables, namely 𝑋1, 𝑋2, …, 𝑋𝑚, then the IGR model can be written as 
follows: 

𝜇 = exp(𝒙𝑖
𝑇𝝃) , 𝑖 = 1,2,… , 𝑛 (2) 

where 𝒙𝑖
𝑇 = [1 𝑋1𝑖 𝑋2𝑖 ⋯ 𝑋𝑚𝑖] is a vector of independent variables for the 𝑖-th observation, and                 𝝃 =

[𝜉0 𝜉1 𝜉2 ⋯ 𝜉𝑚]
𝑇 is a parameter vector. 

 
2.3  Estimation of the IGR Model Parameters 

The estimated parameters of the IGR model in Equation (2) can be obtained using the MLE method 

[2], [9]. The parameter estimation of the IGR model using the MLE method begins with determining the 

likelihood function and the log-likelihood function as follows: 

ℒ(𝝃) =∏

{
 

 
1

√2𝜋𝑦𝑖
3𝜁

exp [−
1

2𝑦𝑖
(
𝑦𝑖 − exp(𝒙𝑖

𝑇𝝃)

exp(𝒙𝑖
𝑇𝝃)√𝜁

)

2

]

}
 

 𝑛

𝑖=1

 (3) 

ℓ(𝝃) = log ℒ(𝝃) =∏
1

2
{log(2𝜋𝑦𝑖

3𝜁)
1

𝜁
exp [−

𝑦𝑖

(exp(𝒙𝑖
𝑇𝝃))

2 −
2

exp(𝒙𝑖
𝑇𝝃)

+
1

𝑦𝑖
]}

𝑛

𝑖=1

 (4) 

 

It furthermore, maximizes the log-likelihood function by determining the first partial derivative of the 

log-likelihood function with respect to the estimated parameter and then equating it with zero, 

𝜕ℓ(𝝃)

𝜕𝝃
=∑{−

1

𝜁
[

𝒙𝑖
𝑇

exp(𝒙𝑖
𝑇𝝃)

] [1 +
𝑦𝑖

(exp(𝒙𝑖
𝑇𝝃))

2]}

𝑛

𝑖=1

= 𝟎. (5) 

Based on Equation (5), the result of the first partial derivative of the log-likelihood function with 

respect to the estimated parameters produces a not closed-form function. Therefore, a numerical approach is 

needed to obtain the ML estimator of the IGR model parameters. One numerical approach is the Fisher 

scoring method  [19]. This method requires the second partial derivative of the log-likelihood function with 

respect to the estimated parameters as follows: 

𝜕2ℓ(𝝃)

𝜕𝝃𝜕𝝃𝑇
=∑{−

1

𝜁
[

𝒙𝑖𝒙𝑖
𝑇

exp(𝒙𝑖
𝑇𝝃)

] [1 +
𝑦𝑖

(exp(𝒙𝑖
𝑇𝝃))

2 −
2

(exp(𝒙𝑖
𝑇𝝃))

3]}

𝑛

𝑖=1

. (6) 

The formula used to obtain the ML parameter estimator of the IGR model using the Fisher scoring 

method is  [19]: 

�̂�(𝑞+1) = �̂�(𝑞) + [𝑰(�̂�(𝑞))]
−1
𝒈(�̂�(𝑞)), 𝑞 = 1,2,… (7) 

where �̂� is the ML estimator of the IGR model parameters, namely �̂� = [𝜉0 𝜉1 𝜉2 ⋯ 𝜉𝑚]
𝑇. [𝑰(�̂�(𝑞))]

−1
 

is the inverse of the Fisher information matrix defined by 

[𝑰(�̂�(𝑞))]
−1
= −𝐸 [

𝜕2ℓ(𝝃)

𝜕𝝃𝜕𝝃𝑇
] (8) 
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where 𝐸 [
𝜕2ℓ(𝝃)

𝜕𝝃𝜕𝝃𝑇
] is the expected value of the second partial derivative of the log likelihood function of the 

estimated parameter and 
𝜕2ℓ(𝝃)

𝜕𝝃𝜕𝝃𝑇
 as in Equation (6). 𝒈(�̂�) is a gradient vector whose elements are the first partial 

derivative of the likelihood function with respect to the estimated parameter,  𝒈(�̂�) = [
𝜕ℓ(𝝃)

𝜕𝝃
]
𝑇
 with 

𝜕ℓ(𝝃)

𝜕𝝃
, as in Equation 

(5). The Fisher scoring iteration process to get the ML estimator of the IGR model parameters in Equation (7) stops if 

the convergence condition is met, namely ‖�̂�(𝑞+1) − �̂�(𝑞)‖ ≤ 𝛿, where 𝛿 is a number very small positive. The ML 

estimator of the IGR model parameters obtained is �̂�(𝑞+1) at the last iteration. Meanwhile, the estimate for the variance-

covariance matrix of parameter is 𝝃, namely 𝐶𝑜𝑣(�̂�) = [𝑰(�̂�)]
−1

 [19].      

 

2.4 Hypothesis Testing of the IGR Model 

After assessing the parameters of the IGR model, it is followed by testing the parameter hypotheses. 

This test includes a simultaneous test and a partial test. The hypothesis of the simultaneous test is formulated 

as follows: 

𝐻0: 𝜉1 = 𝜉2 = ⋯ = 𝜉𝑚 = 0 

𝐻1: at least one of 𝜉𝑙 ≠ 0, 𝑙 = 1,2,… ,𝑚. 
(9) 

The test statistics for the simultaneous test can be obtained by the LRT method [20]. The first step to 

getting test statistics using the LRT method is to determine the set of model parameters under the null 

hypothesis (𝐻0), denoted by 𝜔 = {𝜉0}. The next step, form the likelihood function and the log-likelihood as follows: 

ℒ(𝜔) =∏

{
 

 
1

√2𝜋𝑦𝑖
3𝜁

exp [−
1

2𝑦𝑖
(
𝑦𝑖 − exp(𝜉0)

exp(𝜉0)√𝜁
)

2

]

}
 

 𝑛

𝑖=1

. (10) 

ℓ(𝜔) = log[ℒ(𝜔)] =∑
1

2

𝑛

𝑖=1

{log(2𝜋𝑦𝑖
3𝜁) +

1

𝜁
[

𝑦𝑖
(exp(𝜉0))

2 −
2

exp(𝜉0)
+
1

𝑦𝑖
]}. (11) 

After obtaining the log-likelihood function, determine the maximum value of the log-likelihood 

function under the null hypothesis 

𝐿0 = maxℓ(𝜔) =∑
1

2

𝑛

𝑖=1

{log(2𝜋𝑦𝑖
3𝜁) +

1

𝜁
[

𝑦𝑖

(exp(𝜉0))
2 −

2

exp(𝜉0)
+
1

𝑦𝑖
]}. (12) 

where 𝜁 and 𝜉0 are obtained from the Fisher scoring iteration in Equation (7). 

Furthermore, determining the set of model parameters under the population, denoted by                 Ω =
{𝜉0, 𝜉1, 𝜉2, … , 𝜉𝑚}, and the likelihood function under the population is: 

ℒ(Ω) =∏

{
 

 
1

√2𝜋𝑦𝑖
3𝜁

exp [−
1

2𝑦𝑖
(
𝑦𝑖 − exp(𝒙𝑖

𝑇𝝃)

exp(𝒙𝑖
𝑇𝝃)√𝜁

)

2

]

}
 

 𝑛

𝑖=1

. (13) 

Based on Equation (13), the log-likelihood function under the population is formed as follows: 

ℓ(Ω) = log[ℒ(Ω)] =∑
1

2

𝑛

𝑖=1

{log(2𝜋𝑦𝑖
3𝜁) +

1

𝜁
[

𝑦𝑖

(exp(𝒙𝑖
𝑇𝝃))

2 −
2

exp(𝒙𝑖
𝑇𝝃)

+
1

𝑦𝑖
]}. (14) 

Then determine the maximum value of the log-likelihood function under the population, 

𝐿1 = maxℓ(Ω) =∑
1

2

𝑛

𝑖=1

{log(2𝜋𝑦𝑖
3𝜁) +

1

𝜁
[

𝑦𝑖

(exp(𝒙𝑖
𝑇�̂�))

2 −
2

exp(𝒙𝑖
𝑇�̂�)

+
1

𝑦𝑖
]}. (15) 

Following Equation (12) and Equation (15), the statistical test is defined as follows: 
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𝐺 = −2(𝐿0 − 𝐿1). (16) 

The test statistic in Equation (16) follows the chi-square distribution [20]. Therefore, the null 

hypothesis in Equation (9) is rejected when the 𝐺 statistic value is greater than the 𝜒(𝛼;𝑣)
2  value (i.e.,  𝐺 > 𝜒(𝛼;𝑣)

2 ) 

or 𝑝-value is less than the significance level (𝛼), where 𝑣 = 𝑚 is the degrees of freedom.    

In addition to the simultaneous test, a partial test was carried out using the following hypotheses: 

𝐻0: 𝜉𝑙 = 0 

𝐻1: 𝜉𝑙 ≠ 0, 𝑙 = 1,2,… ,𝑚. 
(17) 

The test statistic used to test the hypothesis in Equation (17) is the Wald test statistic which is 

formulated as follows [20]: 

𝑊 =
𝜉𝑙

𝑆�̂�(𝜉𝑙)
 (18) 

where 𝜉𝑙 and 𝑆�̂�(𝜉𝑙) are estimators of ML parameters and standard error of estimators of ML parameters of the IGR 

model are obtained by the Fisher scoring iteration in Equation (7). 

The test statistic in Equation (18) has a normal distribution [20]. Thus, the null hypothesis in Equation 

(18) is rejected when the |𝑊| statistic value greater than the 𝑍𝛼/2 value (i.e., |𝑊| > 𝑍𝛼/2) or        𝑝-value is 

less than 𝛼. 

 

2.5 Procedures of Data Analysis 

The procedures of data analysis in this research are as follows: 

1. Analyzing the descriptive statistics of research variables. 

2. Fitting the distribution of the dependent variable. 

3. Detecting the multicollinearity problem of independent variables. 

4. Modeling the neonatal mortality cases using the IGR model. 

5. Getting the factors that influence neonatal mortality cases. 

6. Interpreting the IGR model of neonatal mortality cases. 

7. Getting the conclusions. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1 Descriptive Statistical Analysis of Research Variables  

Modeling the neonatal mortality cases in Indonesia in 2020 using the IGR model begins with a 

descriptive statistical analysis of research variables. The results are presented in Table 1. 
 

Table 1. Summary statistical values of research variables   

Variable Minimum Maximum Mean Standard Deviation 

𝑌 40 3,031 596 718 

𝑋1 27.50 98.90 77.40 19.40 

𝑋2 25.30 99.30 77.72 17.34 

𝑋3 0.80 6.90 3.37 1.60 

𝑋4 33.30 100 82.77 18.03 

𝑋5 52.10 96.10 79.04 10.85 

𝑋6 34.00 87.30 64.21 13.06 

𝑋7 41.80 99.40 78.55 14.49 

𝑋8 62.50 99.80 85.42 9.59 

𝑋9 40.30 97.00 79.82 9.96 

𝑋10 0.00 100.00 33.82 33.24 
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Table 1 shows that Indonesia's average neonatal mortality cases in 2020 were 596, with a standard 

deviation of 718. The highest and lowest, 3,031 and 40, were found in Central Java Province and North 

Sulawesi Province, respectively. The average antenatal care (K4) percentage was 77.4 percent, with a 

standard deviation of 19.4 percent. The highest and lowest, 98.9 percent and 27.5 percent, were found in DKI 

Jakarta Province and Papua Province, respectively. The average percentage of pregnant women who received 

blood-boosting tablets was 77.72 percent, with a standard deviation was 17.34 percent. The highest and 

lowest, 99.3 percent and 25.3 percent, were found in DKI Jakarta Province and Papua Province, respectively. 

The average percentage of low birth weight was 3.37 percent, with a standard deviation was 1.6 percent. The 

highest and lowest, 6.9 percent and 0.8 percent, were found in East Nusa Tenggara Province and Riau 

Province, respectively. The average number of complete neonatal visits (KN3) was 82.77 percent, with a 

standard deviation of 18.03 percent. The highest and lowest, 100 percent and 33.3 percent, were found in 

North Kalimantan Province and West Papua Province, respectively.  

Meanwhile, the average percentage of toddlers who received early breastfeeding initiation was 79.04 

percent, with a standard deviation of 10.85 percent. The highest and lowest, 96.1 percent and 52.1 percent, 

were found in DKI Jakarta Province and Maluku Province, respectively. Furthermore, the average percentage 

of breastfeeding toddlers was 64.21 percent, with a standard deviation of 13.06 percent. The highest and 

lowest, 87.3 percent and 34 percent, were found in West Nusa Tenggara Province and West Papua Province, 

respectively. The average percentage of toddlers receiving complete primary immunization was 78.55 

percent, with a standard deviation of 14.49 percent. The highest and lowest, 99.4 percent and 41.8 percent, 

were found in Bali Province and Aceh Province, respectively. 

Furthermore, the average percentage of households with access to adequate drinking water was 85.42 

percent, with a standard deviation was 9.59 percent. The highest and lowest, 99.8 percent and 62.5 percent, 

were found in DKI Jakarta Province and Bengkulu Province, respectively. The average percentage of 

households with access to appropriate sanitation was 79.82 percent, with a standard deviation was 9.96 

percent. The highest and lowest, 97 percent and 40.3 percent, were found in DI Yogyakarta Province and 

Papua Province, respectively. The average percentage of districts/cities implementing the healthy living 

community movement (GERMAS) policy was 33.82 percent, with a standard deviation of 33.24 percent. The 

highest and lowest, 100 percent and 0 percent, respectively. The highest was in West Java Province and South 

Kalimantan Province, whereas the lowest was in Papua, West Papua, Maluku, North Sulawesi, West 

Kalimantan, Riau, North Sumatera, and Banten Provinces.    

 

3.2 Fitting the Distribution of Dependent Variable  

This section discusses the detection and testing of data for the dependent variable with an IG 

distribution. This detection uses a density plot via the ggplot2 package [21] in R software, and the results are 

shown in Figure 1. The pattern of neonatal mortality cases data (𝑌) in Figure 1 is positively skewed. These 

results indicate that the data on neonatal mortality cases has an IG distribution. 

 

Figure 1. The density plot of the neonatal mortality cases in Indonesia, in 2020 
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Furthermore, hypothesis testing was to test the neonatal mortality cases (𝑌) following an IG 

distribution. Adopting [5], [6], and [7], the hypotheses used for this test are: 

𝐻0: 𝑌1 = 𝑌2 = ⋯ = 𝑌𝑛~𝐼𝐺(𝜇, 𝜁) 

      (𝑌𝑖 does follow an IG distribution) 

𝐻1: 𝑌𝑖 does not follow an IG distribution, for 𝑖 = 1,2,… , 𝑛. 

 

Based on the calculations using the goft package [7] in R software, the 𝑇1 statistic value was 

0.3534 less than the 𝑍𝛼/2 value of 1.6445, where the 𝛼 value used in this research was 0.1.  Meanwhile, 

the 𝑝-value was 0.7238 greater than 𝛼. Therefore, the null hypothesis is not rejected, concluding that 

the neonatal mortality cases follow an IG distribution. Thus, the data on neonatal mortality cases 
(𝑌) is feasible for the IGR model.  

 
3.3 Detecting the Multicollinearity  

This section discusses the detection of collinearity among the independent variables, namely 

multicollinearity. Multicollinearity detection uses the Variance Inflation Factor (VIF) [22]. The IGR model 

has a multicollinearity problem when the VIF value of independent variables is greater than 10. The VIF 

value of all independent variables is presented in Table 2. 

Table 2. VIF value of independent variables   

Variable VIF Values 

𝑋1 6.1214 

𝑋2 6.7242 

𝑋3 1.3500 

𝑋4 6.4206 

𝑋5 1.2866 

𝑋6 1.9894 

𝑋7 1.7120 

𝑋8 1.5421 

𝑋9 2.0869 

𝑋10 1.4694 

 

Table 2 shows that all covariates have a VIF value of less than 10. These results indicate that there is no 

multicollinearity. Therefore, all of independent variables are appropriate for the IGR model.  

3.3 Modeling of Neonatal Mortality Cases Using IGR  

The results of modeling the neonatal mortality cases in Indonesia in 2020 using the IGR model are 

shown in Table 3. 
  Table 3. Parameter estimates and the value of partial test statistic   

Parameter Estimation Standard Error 𝑾 𝒑-value 

𝜉0 3.6159 1.4601 2.4765 0.0211* 

𝜉
1
 0.0096 0.0109 0.8807 0.3876 

𝜉
2
 -0.0747 0.0121 -6.1736 2.6809×10-6* 

𝜉
3
 -0.0919 0.0507 -1.8126 0.0830* 

𝜉
4
 0.0373 0.0086 4.3372 0.0002* 

𝜉
5
 0.0327 0.0077 4.2468 0.0003* 

𝜉
6
 0.0621 0.0106 5.8585 5.7005×10-6* 

𝜉
7
 0.0186 0.0070 2.6571 0.0141* 

𝜉
8
 0.0479 0.0099 4.8384 6.9672×10-5* 

𝜉
9
 -0.0874 0.0140 -6.2429 2.2743×10-6* 

𝜉
10

 0.0004 0.0032 0.1250 0.9016 

                                   *) Significant at the level of significance, 𝛼 = 0.1. 
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After obtaining the ML estimator of the IGR model parameters in Table 3, simultaneous and partial 

tests were carried out on the IGR model parameters. The hypotheses for the simultaneous test are: 

𝐻0: 𝜉1 = 𝜉2 = ⋯ = 𝜉10 = 0 

𝐻1: at least one of 𝜉𝑙 ≠ 0, 𝑙 = 1,2,… ,10. 

The statistical test (𝐺) value was 30.7230 and the 𝑝-value was 0.0007. Furthermore, the 𝜒(𝛼,𝑣)
2  value 

was 15.9872. Since the 𝐺 value is greater than the 𝜒(𝛼,𝑣)
2  value and the 𝑝-value is less than 𝛼, then the null 

hypothesis (𝐻0) is rejected. So, it can be concluded that the percentage of antenatal care (K4), the percentage 

of pregnant women who received blood-boosting tablets, the percentage of low birth weight, the percentage 

of complete neonatal visits (KN3), the percentage of toddlers who received early initiation of breastfeeding, 

the percentage of toddlers who are exclusively breastfeeding, the percentage of toddlers who received 

complete primary immunization, the percentage of households with access to adequate drinking water, and 

the percentage of households with access to appropriate sanitation, and the percentage of districts/cities that 

implement the policy of the healthy living community movement (GERMAS) have a simultaneously 

significant effect on neonatal mortality cases in Indonesia, in 2020. 

To obtain an independent variable that has a partially significant effect on the dependent variable, a partial 

test was carried out. The hypotheses for the partial test are: 

𝐻0: 𝜉𝑙 = 0 

𝐻1: 𝜉𝑙 ≠ 0, 𝑙 = 1,2,… ,10. 

Based on Table 3, there are two parameters, 𝜉1 and 𝜉10, which have a 𝑊 statistic value less than the 

𝑍𝛼/2 value and a 𝑝-value greater than 𝛼, so it fails to reject. Therefore, it can be concluded that the percentage 

of antenatal care (K4) and the percentage of districts and cities that implement the policy of the healthy living 

community movement (GERMAS) have not a partially significant effect on neonatal mortality cases in 

Indonesia in 2020. Meanwhile, the percentage of pregnant women who received blood-boosting tablets, the 

percentage of low birth weight, the percentage of complete neonatal visits (KN3), the percentage of toddlers 

who received early initiation of breastfeeding, the percentage of toddlers who are exclusively breastfeeding, 

the percentage of toddlers who received complete primary immunization, the percentage of households with 

access to adequate drinking water, and the percentage of households with access to appropriate sanitation 

have a partially significant effect on the neonatal mortality cases in Indonesia, in 2020. 

Finally, the IGR model for modeling the neonatal mortality cases in Indonesia in 2020 based on 

Equation (2) and Table 3 can be written as follows: 

�̂� = exp(3.6159 + 0.0096𝑋1 − 0.0747𝑋2 − 0.0919𝑋3 + 0.0373𝑋4 + 0.0327𝑋5 

               +0.0621𝑋6 + 0.0186𝑋7 + 0.0479𝑋8 − 0.0874𝑋9 + 0.0004𝑋10). 
(19) 

To interpret the IGR model in Equation (19), as an example, one of the independent variables that 

significantly affect the dependent variable is the percentage of pregnant women who received blood-boosting 

tablets (𝑋2). If the percentage of pregnant women who received blood-boosting tablets (𝑋2) increases by 

1%, then the average of neonatal mortality cases (𝐸(𝑌)) will decrease by exp(-0.0747) or 0.928 times, where 

the other independent variables are fixed. 

 

 

 

4. CONCLUSIONS 

IGR is an accurate regression technique for modeling positively skewed data based on the GLM 

framework. The MLE and Fisher scoring methods can obtain the IGR model. Meanwhile, the LRT and Wald 

test methods can be used to obtain simultaneous and partial statistical tests, respectively. The statistical test 

of the simultaneous test follows the Chi-square distribution, whereas the statistical test of the partial test 

follows the normal distribution. The IGR model in this research was applied to model the factors significantly 

affecting neonatal mortality cases in Indonesia in 2020. Based on the IGR model, the factors that significantly 

affect the neonatal mortality cases in Indonesia in 2020 were: the percentage of pregnant women who received 

blood-boosting tablets, the percentage of low birth weight, the percentage of complete neonatal visits (KN3), 
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the percentage of toddlers who received early initiation of breastfeeding, the percentage of toddlers who are 

exclusively breastfeeding, the percentage of toddlers who received complete primary immunization, the 

percentage of households with access to adequate drinking water, and the percentage of households with 

access to appropriate sanitation. However, this research still needs to be continued by adding other factors 

thought to influence neonatal mortality cases as independent variables. In addition, the different numerical 

approaches for obtaining the ML estimator of the IGR model parameters, such as the Newton-Raphson or 

quasi-Newton methods, are recommended for future research. 
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