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Abstract. The development of methods in statistics, one of which is used for prediction, is overgrowing. So it requires 

further analysis related to the goodness of the method. One of the comparisons made to the goodness of this model 

can be seen by applying it to actual cases around us. The real case still being faced by people worldwide, including 

in Indonesia, is Covid-19. Therefore, research comparing the autoregressive integrated moving average (ARIMA) 

and the Gegenbauer autoregressive moving average (GARMA) method in positive confirmed cases of Covid-19 in 

Indonesia is essential. Based on the results of this research analysis, it was found that the best model with the Aikake's 

Information Criterion measure of goodness that was used to predict positive confirmed cases of Covid-19 in Indonesia 

was the Gegenbauer autoregressive moving average (GARMA) model. 
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1. INTRODUCTION 

The development of statistical science is used for future data analysis to determine policy, one of which 

aims to assist in determining policy [1]. Analysis of future data is one of the most critical factors. Namely, 

the data used depends on past data that influence it, usually called forecasting. Forecasting is processing past 

data to get estimates of future data [2]. Some methods used to predict time series data are the autoregressive 

integrated moving average (ARIMA) [3] and the Gegenbauer autoregressive moving average (GARMA) [4]. 

The autoregressive integrated moving average (ARIMA) method is a univariate time series analysis 

method in which the model structure consists of Autoregressive (AR) and Moving Average (MA). 

Autoregressive (AR) models the autocorrelation of time series variables that depend linearly on the values of 

the previous variables [5]. Moving Average (MA) models the autocorrelation of previous errors in the time 

series [6]. While the Gegenbauer autoregressive moving average (GARMA) is a generalized model of the 

generalized ARFIMA model [4], which this model was introduced by Granger, Joyeux amd Jonathan Hosking 

in 1981. This model also provides good accuracy in forecasting data [7]. 

The ARIMA and GARMA methods are used to analyze various fields, some of which are in the fields 

of [8], climate and weather [9], health [10], etc. In the health sector, one of these methods is used to analyze 

global urgency, namely predicting positive cases of Covid-19. Covid-19 is caused by the acute respiratory 

syndrome coronavirus-2 and is classified as an infectious disease [11]. This disease was first reported in 

Wuhan, China, and spread worldwide, including in Indonesia. The first time this disease entered Indonesia 

was until 27 May 2022. This disease has infected more than six million Indonesians. 

Therefore, this study aims to compare the best time series forecasting methods between the 

autoregressive integrated moving average (ARIMA) and the Gegenbauer autoregressive moving average 

(GARMA) with a case study of the number of COVID-19 cases in Indonesia. 

 

 

 

2. RESEARCH METHODS 

2.1 Autoregressive (AR) 

The autoregressive model is a model which states that the data in the previous period affects the data 
for the current period. The model is often referred to as a model that processes the regression results by itself. 
If 𝜙1, 𝜙2, . . , 𝜙𝑝 is an autoregressive parameter coefficient with the order 𝑝, then mathematically, the 𝐴𝑅(𝑝) 

equation can be written [12]: 
𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜙2𝑋𝑡−2 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝                                                                              (1) 

 

2.2 Moving Average (MA) 

The moving average model is a model which states that the data in the t-t period has a dependency 
relationship with the error values up to the t-q period. If 𝜃1, 𝜃2, . . , 𝜃𝑞 is a moving average parameter 

coefficient with the order 𝑞, then mathematically, the equation 𝑀𝐴(𝑞) can be written [12]: 
𝑋𝑡 = 𝜇 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞                                                                  (2) 

 

2.3 Autoregressive Integrated Moving Average (ARIMA) 

The autoregressive integrated moving average model is a combined model between the autoregressive 
(AR) and moving average (MA) models assuming that the resulting time-series data is not stationary, so there 
is a differencing process. Data that is stationary on a time series has two possibilities. Namely, it is not 
stationary concerning the mean so that a differencing process can handle it. Meanwhile, if the data is not 
stationary, the variance can be handled by performing data transformations [13]. If 𝑋𝑡 is the value in the 𝑡-th 
observation, 𝜙𝑝 is an autoregressive parameter of order 𝑝, 𝐵 is the backshift operator, 𝑑 is the differencing 

value, 𝜇 is a constant, 𝜃𝑞 is a moving average parameter of order 𝑞, 𝑒𝑡 and is a residual. So, mathematically 

the 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) equation can be written [14]: 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜇 + 𝜃𝑞(𝐵)𝑒𝑡                                                                    (3) 
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2.4 Gegenbauer Autoregressive Moving Average (GARMA) 

Gegenbauer Autoregressive Moving Average (GARMA) is one of the statistical forecasting methods 
introduced by Granger Joyeux and Hosking in 1980 and 1981 [15]. Based on previous research, this method 
is claimed to be able to predict with good results because it can capture the stochastic properties of the data. 
It was Complicated by fractional differentiation. If 𝜙𝑝(𝐵) is the coefficient of the autoregressive parameter 

of order 𝑝, (1 − 2𝑢𝐵 + 𝐵2)𝑑h is the Gegenbauer component, 𝜃𝑞(𝐵) is the coefficient of the parameter of 

order 𝑞, 𝑒𝑡 is the residual of hhg. So, mathematically the equation 𝐺𝐴𝑅𝑀𝐴(𝑝, 𝑑, 𝑢, 𝑞) can be written [16], 
[17]: 

𝜙𝑝(𝐵)(1 − 2𝑢𝐵 + 𝐵2)𝑑𝑋𝑡 = 𝜇 + 𝜃𝑞(𝐵)𝑒𝑡                                                       (4) 

 

2.5 Accuracy 

1. Aikake's information criterion 

Aikake's information criterion is one method of measuring goodness in model selection. This model 

has calculated the model's goodness based on the maximum likelihood estimation method, where the model 

with the smallest Aikake's information criterion value is the best model that can be continued for analysis. If 

𝑘 is the model parameter and 𝐿 is the estimated value of the maximum likelihood estimation method. Then 

mathematically, the AIC equation can be written [18]: 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿)                                                                   (5) 

 

2. Root Mean Square Error (RMSE) 

Root mean square error is a method of measuring the accuracy of forecasting results, where this method 

measures the level of error from the results of analytical calculations and actual data. Forecasting results are 

good accuracy if the resulting RMSE value is getting smaller. If 𝑋𝑡 is actual data and �̂�𝑡 is analysis result 

data. Then mathematically, the RMSE equation can be written [19]: 

𝑅𝑀𝑆𝐸 = √∑ (𝑋𝑡 − �̂�𝑡)
2𝑛

𝑡=1                                                                     (6) 

 

3. Mean Absolute Percentage Error (MAPE) 

Mean absolute percentage error is a method of measuring the accuracy of forecasting results, where 

this method measures the relative level of error from the results of analytical calculations with actual data. 

This accuracy value provides information on the percentage of an error where if the value is lower, the 

forecasting results have good accuracy. If 𝑋𝑡 is actual data and �̂�𝑡 is analysis result data. Then mathematically, 

the MAPE equation can be written [20]: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑋𝑡−�̂�𝑡

𝑋𝑡
|𝑛

𝑡=1 × 100%                                                                  (7) 

 

2.6 Data and Analysis Method 

This study uses data on positive cases of Covid-19 in Indonesia. This data was taken from the official 

website of the Task Force for the Acceleration of Handling COVID-19 (Peta Sebaran | Covid19.go.id), where 

data was taken from positive cases of Covid-19 in Indonesia from March 2, 2020, to May 27, 2022. The data 

is then divided into two, namely, data training and data testing. The training data used to model the Covid-19 

positive case data is 80% of the total data, while the testing data uses 20%. 

In general, this study has two stages of modelling, namely the autoregressive integrated moving 

average (ARIMA) and gegenbauer autoregressive moving average (GARMA), namely: preprocessing data, 

testing data stability, identifying temporary models, estimating model parameters, diagnostic tests residual 

model, model selection, calculation of the best model forecasting accuracy. 

 

 

 

 

 

https://covid19.go.id/peta-sebaran
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3. RESULTS AND DISCUSSION 

This study analyzes positive cases of Covid-19 in Indonesia using the autoregressive integrated moving 

average and generalized autoregressive moving average methods. Data on positive cases of Covid-19 in 

Indonesia is time-series data visually presented in Figure 1 and descriptively presented in Table 1. 

 
Figure 1. Time-series plot of data on positive cases of Covid-19 in Indonesia 

 

Tabel 1. Descriptive statistics of the data on positive cases of Covid-19 in Indonesia   

Min 
First 

Quartile 
Median 

Third 

Quartile 
Max Mean 

Standard 

Deviation 
Variance 

0 837 3924 7514 61361 7390 10645 113337033 

Data source: R software Output, results of descriptive statistics of the data on positive 

cases of Covid-19 in Indonesia 

 

Modeling and predicting using the autoregressive integrated moving average model and generalized 

autoregressive moving average models for the first stage is splitting was carried out with 90% of the data 

used as training data and 10% of the data used as testing data. Furthermore, based on the time series plot in 

Figure 1, the data on positive cases of Covid-19 in Indonesia is a time-series data containing a trend pattern 

so that a stationary check will be carried out on the training data with the Augmented Dickey-Fuller test. 
 

The Augmented Dickey-Fuller test carried out in this study used a significance level of 5%, and it was 

concluded that the data on positive cases of Covid-19 in Indonesia with a one-time differencing process 

concluded that the data on positive cases of Covid-19 was stationary, so that further it could be continued 

with the determination of candidates. The model based on the ACF and PACF plots is presented in Figure 2. 

 
Figure 2. ACF and PACF plot of first difference training data on positive cases of Covid-19 in Indonesia 
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The candidates for the autoregressive integrated moving average model from data on positive cases of 

Covid-19 in Indonesia are presented in Table 2. 

Tabel 2. Candidates models of ARIMA model 

Candidates Model Cefficient of parameter AIC 

ARIMA(0,1,1) 
𝜃1=0.30 

𝜇=65.33 
13400.34 

ARIMA(2,1,0) 

𝜙1=-0.27 

𝜙2=-0.13 

𝜇=65.46 

13401.66 

ARIMA(2,1,1) 

𝜙1=0.18 

𝜙2=-0.02 

𝜃1=0.46 

𝜇=64.46 

13399.19 

ARIMA(0,1,2) 

𝜃1=0.28 

𝜃2=0.08 

𝜇=64.48 

13396.78 

Data source: R software Output, results of ARIMA Model of the 

data on positive cases of Covid-19 in Indonesia  

 

The best ARIMA model chosen to be continued in the analysis based on Table 2 is ARIMA(0,1,2) with 

the smallest AIC value. This best model is then continued with an analysis of the residuals with a diagnostic 

test of residuals, and the remainders meet the white noise assumption. So that the best model formed 

mathematically can be written as follows: 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜇 + 𝜃𝑞(𝐵)𝑒𝑡 

𝑌𝑡 = 64.48 + 𝑌𝑡−1 + 𝑒𝑡 + 0.28𝑒𝑡−1 + 0.08𝑒𝑡−2 
 

The ARIMA model is compared with the generalized autoregressive moving average in forecasting 

accuracy to determine the suitability of the data with the method used. The data is modeled using the 

generalized autoregressive moving average, the candidate model is determined based on the ACF and PACF 

plots, and the generalized autoregressive moving average model candidate is shown in Table 3. 
 

Tabel 3. Candidates models of GARMA model   

Candidates Model Cefficient of parameter AIC 

GARMA(0,1,1,1) 
𝜃1=0.30 

𝜇=65.19 
13400.24 

GARMA(2,1,10) 

𝜙1=-0.27 

𝜙2=-0.13 

𝜇=65.18 

13401.57 

GARMA(2,1,1,1) 

𝜙1=0.18 

𝜙2=-0.02 

𝜃1=0.46 

𝜇=64.18 

13399.08 

GARMA(0,1,1,2) 

𝜃1=0.28 

𝜃2=0.08 

𝜇=64.48 

13397.13 

Data source: R software Output, results of GARMA Model of 

the data on positive cases of Covid-19 in Indonesia  

 

The best generalized autoregressive moving average model for further research is the GARMA(0,1,1,2) 

model. This model has a diagnostic test on the remainder and fulfills the assumption of white noise. So that 

the best GARMA model formed mathematically can be written as follows: 
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𝜙𝑝(𝐵)(1 − 2𝑢𝐵 + 𝐵2)𝑑𝑋𝑡 = 𝜇 + 𝜃𝑞(𝐵)𝑒𝑡 

𝑋𝑡 = 64.48 + 2𝑋𝑡−1 − 𝑋𝑡−2 + 𝑒𝑡 − 0.28𝑒𝑡−1 − 0.08𝑒𝑡−2 

 

Based on the two best models, ARIMA(0,1,2) and GARMA(0,1,1,2), which compare their accuracy 

and goodness in modeling positive cases of Covid-19 in Indonesia, we will compare their accuracy in 

predicting positive cases of Covid-19 in Indonesia. The results of the prediction accuracy of the two best 

models are presented in Table 4. 

Tabel 4. Accuracy models between ARIMA and GARMA model 

Accuracy ARIMA(0,1,2) GARMA(0,1,1,2) 

MAE 9482.94 9381.69 

MASE 3.77 3.73 

RMSE 15976.03 15850.72 

MAPE 0.93 0.85 

Data source: R software Output, results of accuracy 

Model of ARIMA and GARMA models 

 

Based on the results of the accuracy of the ARIMA(0,1,2) and GARMA(0,1,1,2) models in predicting 

positive cases of Covid-19 in Indonesia, it can be obtained that the GARMA(0,2) model has accuracy in 

predicting data on positive cases of Covid-19 in Indonesia, which is better than the ARIMA(0,1,2) model. 

This can be seen based on the MAE, MASE, RMSE, and MAPE values of the GARMA(0,1,1,2) model, 

which are smaller than the ARIMA(0,1,2) model. 

 

 

 

4. CONCLUSIONS 

This study provides several results based on the analysis using the autoregressive integrated moving 

average (ARIMA) and the Gegenbauer autoregressive moving average (GARMA) that has been carried out 

above. The best model for predicting positive cases of Covid-19 in Indonesia is the GARMA(0,1,1,2) model. 

Where the GARMA(0,1,1,2) model has better accuracy than ARIMA, these results are seen based on MAE, 

MASE, RMSE, and MAPE values. This analysis of the comparison of the autoregressive integrated moving 

average (ARIMA) and the Gegenbauer autoregressive moving average (GARMA) model can be used to select 

the best forecasting method. For further research, it is hoped that this best method can be compared with 

methods that have recently emerged, such as using deep learning. 
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