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Abstract. Outliers are observations that differ significantly from others that can affect the estimation results in the 

model and reduce the estimator's accuracy. To deal with outliers is to remove outliers from the data. However, 

sometimes important information is contained in the outlier, so eliminating outliers is a misinterpretation. There are 

two types of outliers in the time series model, Innovative Outlier (IO) and Additive Outlier (AO). In the GSTAR model, 

outliers and spatial and time correlations can also be detected. We introduce an iterative procedure for detecting 

outliers in the GSTAR model. The first step is to form a GSTAR model without outlier factors. Furthermore, the 

detection of outliers from the model's residuals. If an outlier is detected, add an outlier factor into the initial model 

and estimate the parameters so that a new GSTAR model and residuals are obtained from the model. The process is 

repeated by detecting outliers and adding them to the model until a GSTAR model is obtained with no outliers 

detected. As a result, outliers are not removed or ignored but add an outlier factor to the GSTAR model. This paper 

presents case studies about Dengue Hemorrhagic Fever cases in five locations in West Kalimantan Province. These 

are the subject of the GSTAR model with adding outlier factors. The result of this paper is that using an iterative 

procedure to detect outliers based on the GSTAR residual model provides better accuracy than the regular GSTAR 

model (without adding outliers to the model). It can be solved without removing outliers from the data by adding 

outlier factors to the model. This way, the critical information in the outlier id is not lost, and an accurate ore model 

is obtained. 

Keywords: additive, GSTAR, innovative, outliers. 

 

 

 

 

 

 

 

 

 

 

 

 
Article info: 

Submitted: 27th June 2022   Accepted: 20th August 2022  
 

How to cite this article: 

N. M. Huda, U. Mukhaiyar and N. Imro’ah, “AN ITERATIVE PROCEDURE FOR OUTLIER DETECTION IN GSTAR(1;1) MODEL”, 

BAREKENG: J. Math. & App., vol. 16, iss. 3, pp. 975-984, September, 2022. 

 
 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 
Copyright © 2022 Author(s) 
 

https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:nurfitriimroah@math.untan.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


976  Huda, et. al.     An Iterative Procedure For Outlier Detection in Gstar.…  

1. INTRODUCTION 

Unexpected extraordinary observations that look different from most observations in the data set are 

often encountered in various kinds of data analysis. Outliers are observations that differ significantly from 

others. Its presence is unexpected because there are so many factors that can cause its presence. Commonly, 

outliers are removed. In this paper, outliers were not released, but the way to deal with outliers is by adding 

an outlier factor to the model. In the time series model, Auto-regressive Integrated Moving Average 

(ARIMA). Chang et al. have developed the iterative procedure for detecting the outliers and overcoming the 

presence of outliers by adding the outliers factor to the ARIMA model. 

Space-time analysis is no exception, for outliers can be detected. In this paper, we proposed the iterative 

procedure for detecting the outliers in the space-time model, the generalized Space-Time Autoregressive 

(GSTAR) model. The GSTAR model is a space-time model used to model and forecast spatial time series 

data. Nowadays, the GSTAR model is growing in Indonesia. Some development of the GSTAR(1;1) model 

has been done by some researchers, such as making a new procedure for Generalized STAR modeling using 

Inverse Auto-covariance Matrix (IAcM) approach [1]. In terms of weighting on the GSTAR model. GSTAR 

has been modeled using the weighted average of fuzz sets concept approach and applied that model to oil 

palm production [2]. Yundari et al. (2017) researched error assumptions in the GSTAR model [3]. Recently, 

Yundari et al. (2018) did the research on spatial weight determination of the GSTAR(1;1) model by using the 

Kernel function [4]. In application, the GSTAR model is rapidly used to forecast Gross Domestic Product 

(GDP) in West European [5], chili price in Bandung’s market [6], and criminality [7]. A combination of 

GSTAR modeling and variogram of spatial analysis was conducted [8]. However, spatial analysis is an older 

science than space-time analysis, the development of spatial models is still ongoing with several applications. 

The bootstrap approach estimated the parameters of the isotropic semivariogram [9]. Moreover, the effect of 

spatial aggregation on the space-time model was investigated [10]. 

Dengue fever is transmitted through the Aedes Aegypti mosquitos. Aedes Aegypti is one of the dengue 

mosquitoes that likes a warm climate. The case study in this paper is the cases of dengue fever sufferers in 

six districts in West Kalimantan. Climate change has occurred significantly. This significant increase can 

indicate outliers detection in the GSTAR model. 

This paper proposes the iterative procedure for outlier detection in the GSTAR model and applies it to 

the study case. This paper is divided into six sections. Section two briefly explains the GSTAR model. The 

definition and types of outliers are discussed in section three. Then the iterative procedure for outlier detection 

is discussed in section four. The application of the GSTAR model by adding an outlier factor is discussed in 

section five. Conclusions and remarks are put forward in section six.   

 

 

 

2. RESEARCH METHOD 

2.1  GSTAR Model 

GSTAR model is the development of the STAR model. In the STAR model, all locations have the 
same autoregressive parameters, so the locations used are assumed homogenous. It causes that this model 
only can be used for uniform locations. In reality, we have a heterogeneous location, so a model that can 
solve this problem is needed. The GSTAR model enables capturing a phenomenon with heterogeneous 
characteristics locations, and the parameters for each location are different from each other. Consider a 

random variable 𝒀𝑡 = (𝑌1,𝑡, 𝑌2,𝑡 , … , 𝑌𝑛,𝑡), 𝒀𝑡 follows the GSTAR(𝑝; 𝜆1, 𝜆2, … , 𝜆𝑝) model. It can be stated as 

[11] 

𝒀𝑡 = (∑ ∑Φ𝑘𝑙𝑾
(𝒍)𝒀𝑡−𝑘

𝜆𝑘

𝑙=0

𝑝

𝑘=1

) + 𝒆𝑡 

where Φ𝑘𝑙 is the diagonal matrix of parameters in GSTAR model, 𝑾𝑙 is weight matrix, 𝒆𝑡 = (𝑒1,𝑡, 𝑒2,𝑡 , … , 𝑒𝑛,𝑡) is 

the matrix residuals in GSTAR model, and 𝒆𝑡~𝑁(0, 𝜎𝑒
2). 

For example, the GSTAR model with both autoregressive’s order and spatial’s order are 1, GSTAR(1;1), could be 

written as 
𝒀𝑡 = Φ0𝒀𝑡−1 + Φ1𝑾𝒀𝑡−1 + 𝒆𝑡 

The model in Eq. (1) is called as the GSTAR(1;1) model without outlier factor. 
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The uniqueness of the GSTAR model is the weight matrix. The weight is defined based on the correlation between the 

location to one location and another. The following are the weight of the GSTAR model [4] 

1. Uniform Weight gives the same weight for each location. Therefore, this weight is often used on homogenous 

data or has the exact distance between locations. This formulation calculates the values of the uniform location 

weights 

𝑤𝑖𝑗
(𝑙)

=
1

𝑛𝑖
(𝑙)

 

where 𝑤𝑖𝑗
(𝑙)

 is the weight between locations 𝑖 and 𝑗, 𝑛𝑖
(𝑙)

 is the number of locations adjacent to the 𝑖 − location 

in spatial lag 𝑙. 
2. Binary Weight only has zero and one value. The correlation between two geographically adjacent cities is 

defined by 𝑤𝑖𝑗 = 1. Whereas if geographically far apart is defined 𝑤𝑖𝑗 = 0. 

3. Inverse Distance Weight is based on the actual distance between locations. The weight calculation is obtained 

from the normalization of the actual inverse distance results. The first step is calculating the actual distance 

between locations, 𝑫, i.e. 

𝑫 = [𝑑𝑖𝑗] = [

0 𝑑12 … 𝑑1𝑁

𝑑21 0 … 𝑑2𝑁

⋮ ⋮ ⋱ ⋮
𝑑𝑁1 𝑑𝑁2 … 0

] 

where 𝑑𝑖𝑗 is the distance between locations 𝑖 and 𝑗. 𝑫 is a symmetrical matrix. 

Then the 𝑫 matrix is standardized in 𝑾 form with ∑ 𝑤𝑖𝑗
(𝑙)𝑁

𝑗=1 = 1 where 𝑖 ≠ 𝑗. Generally the inverse weight of 

distance for each location is stated by 

𝑤𝑖𝑗 =

1

𝑑𝑖𝑗

∑
1

𝑑𝑖𝑗

𝑁
𝑗=1

 

where 𝑖 ≠ 𝑗, ∑ 𝑤𝑖𝑗
(𝑙)𝑁

𝑗=1 = 1, and ∑ ∑ 𝑤𝑖𝑗
(𝑙)𝑁

𝑗=1
𝑁
𝑖=1 = 𝑁. 

The diagonal matrix of inverse weight 𝑤𝑖𝑗 is zero, because a location has no distance with itself. The inverse 

weight distance 𝑾 is not a symmetrical matrix. 
 

2.2  ARIMA(1,0,0) and GSTAR(1;1) Model 

Let 𝑌𝑡 is the sequence of random variables and follows the ARIMA(1,0,0) model, then 𝑌𝑡 can be defined 

as 

𝑌𝑡 = 𝜙𝑌𝑡−1 + 𝑒𝑡 

where 𝜙 is an autoregressive parameter and 𝑒𝑡 is error term at time 𝑡. 
Then if we have 𝒀𝑡 where 𝒀𝑡 is 𝑌1,𝑡 , 𝑌2,𝑡 , … , 𝑌𝑛,𝑡 are the sequence of random variables, then we can define 

[

𝑌1,𝑡

𝑌2,𝑡

⋮
𝑌𝑛,𝑡

] = [

𝜙1 0 … 0
0 𝜙2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜙𝑛

] [

𝑌1,𝑡−1

𝑌2,𝑡−1

⋮
𝑌𝑛,𝑡−1

] + [

𝑒1,𝑡

𝑒2,𝑡

⋮
𝑒𝑛,𝑡

] 

This model is VAR(1) model. Further, if we add the spatial factor to VAR(1) model, then we get the 

GSTAR(1;1) model (see Eq. 1). The GSTAR(1;1) model can be stated as VAR(1) model with 

Φ = Φ0 + Φ1𝑾 

It can conclude that the structure of AR(1) model is not much different with GSTAR(1;1). 

 

2.3 Outlier 

Outliers are inconsistent observation data due to unforeseen events such as turbulent political or 

economic crises [12]. Outliers can cause unreliable and invalid estimators, so outlier detection needs to be 

done. Outlier detection was firstly introduced by Fox (1972) [13]. Outliers consist of two types 
 

1. Additive Outlier (AO) is an event that affects to time series data at a time. The definition of additive 

outlier model as follows [13]: 

𝑌𝑡 = {
𝑢𝑡 , 𝑡 ≠ 𝑇

𝑢𝑡 + 𝜔 , 𝑡 = 𝑇
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or 

𝑌𝑡 = 𝑢𝑡 + 𝜔𝐼𝑡
(𝑇)

 

=
𝜃(𝐵)

𝜙(𝐵)
𝑎𝑡 + 𝜔𝐼𝑡

(𝑇)
 

where 𝑢𝑡 is ARIMA model without outlier factor, 𝐵 is the backshift operator such that  

𝐵𝑘𝑌𝑡 = 𝑌𝑡−𝑘 

and 𝐼𝑡
(𝑇)

 is indicator outlier variable at time 𝑇, such that 

𝐼𝑡
(𝑇)

= {
1 , 𝑡 ≠ 𝑇
0 , 𝑡 = 𝑇

 

2. Innovative Outlier (IO) gives a more complicated effect compared to the other three types of outliers. 

The definition of innovative outlier model as follows [13]: 

𝑌𝑡 = 𝑢𝑡 +
𝜃(𝐵)

𝜙(𝐵)
𝜔𝐼𝑡

(𝑇)
=

𝜃(𝐵)

𝜙(𝐵)
(𝑎𝑡 + 𝜔𝐼𝑡

(𝑇)
 

If the outlier is AO, the effect given only occurs at the time of the 𝑇 observation. But if the outlier is 

IO, the effect given at the entire observation 𝑌𝑇 , 𝑌𝑇+1, … 

Generally, time series data can contain several different types of outliers. The outlier model in general as 

follows [12]: 

𝑌𝑡 = ∑ 𝜔ℎ𝑣ℎ(𝐵)𝐼𝑡
(𝑇)

𝐻

ℎ=1

+ 𝑢𝑡 

where 𝑢𝑡 is ARIMA model without outlier factor such that 𝑢𝑡 =
𝜃(𝐵)

𝜙(𝐵)
𝑎𝑡 and 𝑣ℎ(𝐵) = {

1 , 𝐴𝑂
𝜃(𝐵)

𝜙(𝐵)
, 𝐼𝑂

 

After getting the time series model with the outliers factor, start the iterative procedure for outliers 

detection based on the time series model with an outliers factor. If no outliers are found, then stop the iterative 

procedure. Otherwise, the estimation stage is repeated, with the newly identified outliers incorporated into 

the model (Eq. 2), until no more outliers can be found and all the outlier effects have been simultaneously 

estimated with the time series parameters. 

This paper adopts the types of outliers, iterative procedures of outliers detection, and the GSTAR model 

with outlier factors from the time series model. In that case, these observations develop into several locations 

and have spatial correlations among locations. Therefore, outliers may also be detected in the GSTAR model 

and correlate locations (spatial correlation). 

 

2.4 An Iterative Procedure for Outlier Detection in GSTAR Model 

This procedure is developed by an outlier’s iterative procedure for ARIMA model. The procedure 

begins with modelling the original series 𝑍𝑡 by supposing that there is no outlier—estimated parameters of 

the GSTAR model without outlier assumptions. Let 𝑍𝑡 be a stochastic process following an GSTAR(1,1) 

model, i.e. 

𝒁𝑡 = Φ0𝒁𝑡−1 + Φ1𝑾𝒁𝑡−1 + 𝒆𝑡 

Φ(𝐵)𝒁𝑡 = 𝒆𝑡 

where Φ(𝐵) = 𝑰 − Φ0𝐵 − Φ1𝑾𝐵, 𝐵 is the backshift operator such that 

𝐵𝑘𝒁𝑡 = 𝒁𝑡−𝑘 

The following is an iterative procedure for outlier detection in GSTAR(1;1) model 

1. Compute the residual �̂�𝑡 , where �̂�𝑡 = (𝑒1,𝑡 , 𝑒2,𝑡 , … , 𝑒𝑁,𝑡) and let �̂�𝑒
2 be the estimate of variance residual 

�̂�𝑒
2, such that 

�̂�𝑡 = �̂�𝑡 − 𝒁𝑡 

�̂�𝑒
2 =

1

𝑚
∑�̂�𝑡

𝑚

𝑡=1

 

2. Compute �̂�1,𝑖,𝑇 and �̂�2,𝑖,𝑇, where 

�̂�1,𝑖,𝑇 =
�̂�𝐼

�̂�𝑒
=

�̂�𝑇

�̂�𝑒
= (�̂�𝑒)

−1�̂�𝑇 

and 
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�̂�2,𝑖,𝑇 =
�̂�𝐴

�̂��̂�𝑒
=

�̂�2(𝑰 − Π̂1𝐹 − ⋯− Π̂𝑁−𝑇𝐹𝑁−𝑇)�̂�𝑇

�̂��̂�𝑒
 

where �̂�2 = (𝑰 + Π̂1
2 + ⋯+ Π̂𝑁−𝑇

2 )
−1

, Π̂1 = Φ0 + Φ1𝑾 and Π̂2, Π̂3, … = 𝟎. 

The �̂�1,𝑖,𝑇 and �̂�2,𝑖,𝑇 are used for classifying the type of outliers at the next step. 

3. Define  

𝜂(𝑡) = max{|�̂�1,𝑖,𝑇|, |�̂�2,𝑖,𝑇|} 

for 𝑡 = 1,2,… ,𝑚. 

If max 𝜂(𝑡) = |�̂�1,𝑖,𝑇| > 𝐶 then the IO is detected at time 𝑇. The impact of IO at time 𝑇, �̂�𝑖𝐼𝑇 , can be 

stated as 

�̂�𝑖𝐼𝑇 = �̂�𝑇 

where 𝑖 is location, 𝑖 = 1,… , 𝑁. 

While if max 𝜂(𝑡) = |�̂�2,𝑖,𝑇| > 𝐶 then the type of outliers detected is AO. The impact of AO at time 

𝑇, �̂�𝑖𝐴𝑇, can be defined as 

�̂�𝑖𝐴𝑇 = �̂�2Π̂(𝐹)�̂�𝑇 

Then eliminate the effect by defining a modified residual at time 𝑇, �̌�𝑇. Due to the two types of outliers, 

there were also two ways to compute the new residual. For IO, the change is just affected at time 𝑇, so 

that 

�̌�𝑇 = {
�̂�𝑇 − �̂�𝑖𝐼𝑇 , 𝑡 = 𝑇

�̂�𝑡 , otherwise
 

While for AO, the change is NOT just affected at time 𝑇, so that 

�̌�𝑇 = {
�̂�𝑇 − �̂�𝑖𝐴𝑇Π̂(𝐵)𝑰𝑡

(𝑇)
, 𝑡 ≥ 𝑇

�̂�𝑡 , 1 ≤ 𝑡 ≤ 𝑇
 

A new estimator �̌�𝑖𝑒
2 , is computed from the modified residuals, i.e. 

�̌�𝑖𝑒
2 =

1

𝑛
∑�̌�𝑖,𝑡

2

𝑛

𝑡=1

 

4. If an AO/IO is identified on previous step, recompute �̂�1,𝑖,𝑇 and �̂�2,𝑖,𝑇 based on the same initial estimates 

of the parameters, but using the modified residuals �̌�𝑇 and �̌�𝑖𝑒
2 . 

5. Repeat the third – the fourth step and stop the iteration until no further outlier candidates can be 

identified 

The following flowchart in Fig. 1 illustrates an iterative outlier detection procedure in GSTAR(1,1) 

model. This output of this procedure is the time when outliers are detected. Generally, space-time data can 

contain several different types of outliers. To overcome the main problem in this paper, so we need to add 

the outlier factor, 𝜔ℎ𝒗ℎ(𝐵)𝑰𝑡
(𝑇ℎ)

 for ℎ is number of outliers and 𝑇ℎ is the time 𝑇 when outliers are detected 

for index h, to the GSTAR(1,1) model. The GSTAR model with outlier factors, in general, is as follows: 

𝒀𝑡 = ∑ 𝜔ℎ𝒗ℎ(𝐵)𝑰𝑡
(𝑇ℎ)

𝐻

ℎ=1

+ 𝒖𝑡 

where 𝒖𝑡 =
Θ∗(𝐵)

Φ∗(𝐵)
𝒆𝑡 is the GSTAR model, Φ∗(𝐵) = 𝑰 − Φ0

∗𝐵 − Φ1
∗𝑾𝐵, 𝑰𝑡

(𝑇)
= {

𝑰 𝑡 ≠ 𝑇
𝟎 𝑡 = 𝑇

 is indicator 

outlier variable at time 𝑇 and 𝒗ℎ(𝐵) = {
𝑰 𝐴𝑂

Θ∗(𝐵)

Φ∗(𝐵)
𝐼𝑂 . 

After getting the GSTAR model with the outliers factor, restart the iterative procedure for outlier 

detection based on the GSTAR model with an outlier factor. If no outliers are found, then stop the iterative 

procedure. Otherwise, the estimation stage is repeated, with the newly identified outliers incorporated into 

the model (Eq. 5), until no more outliers can be found and all the outlier effects have been simultaneously 

estimated with the time series parameters. The model (Eq. 5) is called GSTAR(1; 1) with an outliers factor. 
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3. RESULT AND DISCUSSION 

3.1  Descriptive Analysis 

The data used in this paper are secondary, i.e., dengue fever cases in Kalimantan Barat. This paper uses 

five locations, namely A, B, C, D, and E city. Data on dengue fever cases were obtained from the Health 

Office of West Kalimantan Province from January 2015 to June 2018 (42 data)[14]. Fig. 2 shows time series 

plot data in each location. Those plots show that in the presence of outliers in DF cases. The red bullets are 

the outliers detected based on the boxplot. The descriptive statistic, such as mean, first, second, and the third 

quartile, is also shown in the boxplot. Visually, the possibility of detecting outliers several times in each 

location can be seen. More outliers were detected from the beginning of 2018 until mid-2018; this case 

becomes interesting to analyze. One of the assumptions of space-time analysis is the correlation of events 

between locations. Table 1 shows the correlation of dengue fever cases between locations. The GSTAR model 

with outlier factors in general is as follows: 

 
Figure 1. An Iterative Procedure for Outlier Detection in GSTAR(1;1) Model 
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Figure 2. Dengue Fever (DF) Cases Plot. Boxplot of DF Cases (Orange) 

Tabel 1. Correlation of Dengue Fever Cases and Distance among Locations, written as “Corr.(Dist.)”. 

 A B C D E 

A 1.00 (0) 0.59 (313) 0.47 (231) 0.39 (456) 0.77 (574) 

B 0.59 (313) 1.00 (0) 0.37 (418) 0.28 (571) 0.76 (262) 

C 0.47 (231) 0.37 (418) 1.00 (0) 0.09 (632) 0.45 (679) 

D 0.39 (456) 0.28 (571) 0.09 (632) 1.00 (0) 0.49 (832) 

E 0.77 (574) 0.76 (262) 0.45 (679) 0.49 (832) 1.00 (0) 

 

Based on Table 1, B and E show a strong correlation, i.e., 0.76. In contrast, C and D show a minor 

correlation compared to other locations. It is due to the closer distance between the two locations than the 

other three locations. The distance of the location also causes this. The higher the correlation, the stronger 

the relationship between those cases. The further the distance, the smaller the correlation. 
 

3.2  An Iterative Procedure for Outlier Detection in GSTAR(1;1) Model 

The following is the procedure for outlier detection in GSTAR(1;1) model. 

1. Modelling the GSTAR(1;1) model by supposing that there is no outlier detected. The weight matrix 

used is the inverse distance weight matrix. This model assumes that the dengue fever cases in one 

location are affected by distance or closeness with other locations. Table 1 also shows five locations' 

actual distance (in km). D and E are locations that have the farthest distance compared to other 

locations, namely 872 km. In contrast, A and C are locations with the closest distance to other locations, 

namely 231 km. Then the inverse distance weight matrix can be notified as follows: 

𝑾 =

[
 
 
 
 

0 0.28 0.38 0.19 0.15
0.29 0 0.21 0.16 0.34
0.44 0.24 0 0.16 0.15
0.33 0.26 0.24 0 0.18
0.21 0.46 0.18 0.15 0 ]

 
 
 
 

 

The parameter estimation of GSTAR(1;1) model was done by using least square method, those are 

Φ0 = 𝑑𝑖𝑎𝑔(0.54; 0.58; 0.83; 0.66; 0.71) 

Φ1 = 𝑑𝑖𝑎𝑔(0.11; 0.32;−0.02; 0.41; 0.25) 

2. Compute the residuals �̂�𝑡 and �̂�𝑒
2 

3. Do the iterative procedure for 𝑖 = 1,2,… ,5 and 𝑇 = 1,2,… ,42, compute �̂�1,𝑖,𝑇 and �̂�2,𝑖,𝑇 (Eq.(3) and 

(4)) 

4. Detect the type of the outliers by comparing �̂�1,𝑖,𝑇 and �̂�2,𝑖,𝑇. Define 𝜂(𝑡) = max{|�̂�1,𝑖,𝑇|, |�̂�2,𝑖,𝑇|} for 

𝑡 = 1,2,… ,𝑚 and 𝑖 = 1,2,… ,5. 
5. According to the iterative procedure for detecting the outliers using the model in Eq. (1), the procedure 

correctly identifies the time when the outlier has happened. We have four models: GSTAR(1;1) model 
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without outlier factor, first, second, and third. Afterward, do the parameter estimation outlier factor 

based on residual in GSTAR(1;1) model without outlier factor, one iteration on the second model 

(GSTAR(1;1) model with outlier factor based on residual in the first model) and two iterations on the 

third model (GSTAR(1;1) model with outlier factor based on residual in the second model). Table 2 

shows the time identified in the iterative procedure. 

Tabel 2. The Time when The Outliers Detected. 

City Outliers 
Model 

1st 2nd 3rd 

A 
IO [33,-,-,-,-] [(1,2)] [-,-] 

AO [-,1,-,-,-] [-] [-,-] 

B 
IO [34,-,-,13,33] [37] [-,-] 

AO [-,-,-,-,-] [-] [-,-] 

C 
IO [(29,34),28,37,-,35] [-] [-,-] 

AO [-,-,-,25,-] [-] [-,-] 

D 
IO [1,39,-,33,-] [-] [-,-] 

AO [-,-,40,-,2] [-] [-,-] 

E 
IO [33,(36,40),-,-,-] [37] [42,32] 

AO [-,-,-,-,-] [-] [-,-] 

The first model shows many outliers detected. It caused by the residual used is residual based on GSTAR(1;1) 

model without outlier factor. So that, the iterative procedure captures all the origin outliers. 

No more outliers detected on that model after getting the third model. The Auto-regressive’s 

parameters in the GSTAR(1;1) model with outlier factor are 

Φ0
∗ = 𝑑𝑖𝑎𝑔(0.42; 0.72; 0.77; 0.46; 0.89) 

Φ1
∗ = 𝑑𝑖𝑎𝑔(0.17; 0.05; 0.07; 0.44;−0.09) 

While the outlier’s parameters are shown in Table 3. 
 

Tabel 3. The Outlier’s Parameter in GSTAR(1;1) Model with Outlier Factor. 

Parameter A B C D E 

𝝎𝟏𝒋 [15.9,-] [-,-] [-,-] [105.8,-] [-,-] 

𝝎𝟐𝒋 [-11.6,-] [-,-] [-,-] [-,-] [-,-] 

𝝎𝟏𝟑𝒋 [-,-] [123.2,-] [-,-] [-,-] [-,-] 

𝝎𝟐𝟓𝒋 [-,-] [-,-] [-,13.4] [-,-] [-,-] 

𝝎𝟐𝟖𝒋 [-,-] [-,-] [25.1,-] [-,-] [-,-] 

𝝎𝟐𝟗𝒋 [-,-] [-,-] [29.9,-] [-,-] [-,-] 

𝝎𝟑𝟐𝒋 [-,-] [-,-] [-,-] [-,-] [18.4,-] 

𝝎𝟑𝟑𝒋 [33.6,-] [27.9,-] [-,-] [32.3,-] [62.7,-] 

𝝎𝟑𝟒𝒋 [-,-] [49.9,-] [21.7,-] [-,-] [-,-] 

𝝎𝟑𝟓𝒋 [-,-] [-,-] [-14.7,-] [-,-42.9] [-,-] 

𝝎𝟑𝟔𝒋 [-,-] [-,-] [-,-] [-,-] [29.1,-] 

𝝎𝟑𝟕𝒋 [-,-] [-22.5,-] [-19.4,-] [-,-] [-34.5,-] 

𝝎𝟑𝟗𝒋 [-,-] [-,-] [-,-] [70.1,-] [-,-] 

𝝎𝟒𝟎𝒋 [-,-] [-,-] [-,-] [-,-54.9] [37.1,-] 

𝝎𝟒𝟐𝒋 [-,-] [-,-] [-,-] [-,-] [-19.9,-] 

 

These parameters gotten by solve the 3rd model using Least Square. The 3rd model is chosen cause no more 

outlier detected from that residuals. 

Compute the Mean Square Error (MSE) for getting the best model. By adding the outlier factor to the 

model can increase the accuration of the model. The analysis produces the result as presented as Table 4. 

Therefore, the best model is the third model. 

 
 



BAREKENG: J.  Math. & App., vol. 16(3), pp. 975- 984, September, 2022.   983 

Tabel 4. Mean Square Error (MSE) of GSTAR(1;1) Model with Outlier Factor. 

MSE A B C D E 

Without O.F 78.262 130.243 76.453 781.063 210.291 

1st Model 54.724 46.349 9.272 136.851 56.018 

2nd Model 30.569 34.621 9.272 130.409 36.214 

3rd Model 30.569 34.621 9.272 130.409 19.223 

 

3.3 Diagnostic Checking Model 

A diagnostic checking model examines whether the model assumptions are fulfilled. The basic 
assumption of the model is residual white noise. The basic assumption of the model is residual white noise 
[15]. The residual's white noise can be detected by checking that the normality of residuals is independent of 
the lag of times. Visually, residuals are independent if there is no correlation between lag times in the ACF 
plot of the residuals model (see Fig. 3). The plot from left to right connected by arrows shows the ACF of 

GSTAR(1;1) model without outlier factor → The first model → Second model → Third model (The best 

model). 
While the normality residuals is done by Kolmogorov Smirnov test. The significance level (α) used in 

this test is 0.05. The p-value of the KS test sequentially for the city- A, B, C, D, and E are 
1.253;0.655;0.517;0.717;0.850. We can conclude that the residuals are normally distributed. Fig. 4 gives the 
plot of the fitted values based on the GSTAR(1;1) model with the outlier factor versus the observations. The 
plot shows that the outliers can be reached by using this model. Indirectly, this can help reduce the error 
model in approaching the actual data without eliminating important information from the outliers. 
 

 
Figure 3. ACF of Residuals in GSTAR(1;1) Model with Outlier Factor. 
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Figure 4. Fitted Values vs Observations based on The GSTAR(1;1) Model with Outlier Factor. 
 
 
 

4. CONCLUSIONS 

Based on iterative procedures in detecting outliers on the GSTAR(1;1) model, 11 times for IO and 
three times AO are detected. By adding the outlier factor to the GSTAR(1;1) model, the GSTAR(1;1) model 
with an outlier factor is obtained better than the GSTAR(1;1) model without adding the outlier factor. It 
means that the influence of outliers is very significant, so if the outlier is ignored, it can produce a biased 
model. If the data containing the outlier are removed, it will reduce the information from the data. Therefore, 
the right solution to handle data containing outliers is adding the outlier factor to the model. 
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