THE INTERSECTION GRAPH REPRESENTATION OF A DIHEDRAL GROUP WITH PRIME ORDER AND ITS NUMERICAL INVARIANTS

Dewi Santri Ramdani ${ }^{1}$, I Gede Adhitya Wisnu Wardhana ${ }^{2 *}$, Zata Yumni Awanis ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics, Faculty of Mathematics and Natural Science, University of Mataram Majapahit 62 St., Mataram, Nusa Temggara barat, 83125, Indonesia
Corresponding author e-mail: ${ }^{2 *}$ adhitya.wardhana@unram.ac.id

Abstract

One of the concepts in mathematics that developing rapidly today is Graph Theory. The development of Graph Theory has been combined with Group Theory, that is by representing a group in a graph. The intersection graph from group D, noted by Γ_{D}, is a graph whose vertices are all non-trivial subgroups of group D, and two distinct vertices $H, K \in D$ are adjacent in Γ_{D} if and only if $H \cap K \neq\{e\}$. In this research the intersection graph of a Dihedral $D_{2 n}$ group, we looking for the shapes and numerical invariants. The results obtained are if $n=p^{k}$ for $k \geq 2$, then Γ_{D} has a subgraphs $K_{k+p^{1}+p^{2}+p^{3}+\cdots+p^{k-1}}$ and n subgraphs K_{k}, the girth of the graph $\Gamma_{D_{2 n}}$ is 3 , radius and diameter of the graph $\Gamma_{D_{2 n}}$ in a row is 2 and 3, and the chromatic number of the graph $\Gamma_{D_{2 n}}$ is $+p^{1}+p^{2}+p^{3}+\cdots+p^{k-1}$

Keywords: intersection graph, dihedral group, numerical invariants.

How to cite this article:

D. S. Ramdani, I. G. A. W. Wardhana and Z. Y. Awanis, "THE INTERSECTION GRAPH REPRESENTATION OF A DIHEDRAL GROUP WITH PRIME ORDER AND ITS NUMERICAL INVARIANTS", BAREKENG: J. Math. \& App., vol. 16, iss. 3, pp. 1013-1020, September, 2022.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License Copyright © 2022 Author(s)

1. INTRODUCTION

A graph is a diagram that contains certain information if interpreted logically and appropriately. The graph can also be used to describe various types of structures that exist, the goal is to visualize objects to make them easier to understand. Visual representation of a graph is to express objects as vertices, while the relationship between objects is represented by lines.

In recent years, many researchers have studied the visualization of a group using a graph, some of the visualizations are the commuting graph, the coprime graph, the non-coprime graph, and the power graph. The visualization is given some properties like girth, diameter, chromatic number, clique number, and the shape of several groups like the dihedral group, the integer modulo group, or the generalized quaternion group. See [1][2] [3] [4] [5] [6] [7] [8] [9] [10] for more detail.

In 2015, Akbari et al, define the intersection graph of group G, denoted by Γ_{G}, as a graph whose vertices are all a non-trivial subgroup of group G. In their paper, they examine the intersection graph of a group \mathbb{Z}_{n} [11]. Later in 2021, Nurhabibah et al studied the intersection graph of the dihedral groups with prime square order, and give some properties on its shape, degree of vertices, radius, diameter, girth, and domination number [12]. In this article, we give a more general result of the intersection graph of the dihedral group with prime power order.

2. RESEARCH METHODS

This study conducts a literature review to achieve new knowledge from a recent terminology in the graph representation of the algebraic structure. First, we divide the problem into several cases and choose some examples to get a pattern and construct a conjecture from it. And by deductive proof, we prove the conjecture.

3. RESULTS AND DISCUSSION

3.1. Basic Terminology

A dihedral group is a special group with the definition as follows.

Definition 1 [13] The group G called a Dihedral group $D_{2 n}, n \geq 3$ and $n \in \mathbb{N}$, is a group constructed by two elements $a, b \in G$ with property

$$
G=\left\langle a, b \mid a^{n}=e, b^{2}=e, b a b^{-1}=a^{-1}\right\rangle
$$

Dihedral group $D_{2 n}$ and can be written as the set

$$
D_{2 n}=\left\{e, a, a^{2}, a^{3}, \ldots, a^{n-1}, b, a b, a^{2} b, a^{3} b, \ldots, a^{n-1} b\right\} .
$$

And now we give you the definition of the intersection graph of a group.
Definition 2 [11] Let G be a group. The intersection graph of G, denoted by Γ_{G}, is the graph whose vertex set is the set of all non-trivial proper subgroups of G. Furthermore, vertices H and K are adjacent if and only if $H \cap K \neq\{e\}$.

The following are some basic terminology that we will use throughout this article.
Definition 3 [14] Some basic terminology
a. A complete graph G is a simple graph in which every vertex is adjacent to all other vertexes. A complete graph with n vertices is denoted by K_{n}. Every vertex in K_{n} degree $n-1$.
b. The girth of a graph D, denoted by $g(D)$, is the length of the shortest cycle of graph D.
c. The radius of a graph D, denoted by $\operatorname{rad}(D)$, is the minimum eccentricity of all vertices in graph D.
d. The diameter of a graph D, denoted by $\operatorname{diam}(D)$, is the maximum eccentricity of all vertices in graph D.
e. The graph coloring is giving color to the vertices in the graph such that every two vertices adjacent have a different color.
f. The chromatic number is the minimum number of colors that can be used for coloring vertices in graph D, denoted by $\chi(D)$.

The following theorems are some basic properties that are important for our proof throughout this article.
Theorem 1 [15] Let $D_{2 n}$ be a dihedral group with $n \geq 3$. Then the subset $R=\left\{e, a, a^{2}, a^{3}, \ldots, a^{n-1}\right\} \subseteq D_{2 n}$ is a nontrivial subgroup of $D_{2 n}$.

Theorem 2 [15] Let $D_{2 n}$ be a dihedral group with $n \geq 3$. Then the subset $S_{i}=\left\{e, a^{i} b\right\} \subseteq D_{2 n}$ is a nontrivial subgroup of $D_{2 n}$ for $i=0,1,2, \ldots, n-1$.

Theorem 3 [15] Let $D_{2 n}$ be a dihedral group with $n \geq 3$ and $n=p_{1} p_{2} p_{3} \ldots p_{k}$, with p_{i} are a distinct prime number. Then the subset $R_{i}=\left\{e, a^{p_{i}}, a^{2 p_{i}}, a^{3 p_{i}}, \ldots, a^{n-p_{i}}\right\} \subseteq D_{2 n}$ is a nontrivial subgroup of $D_{2 n}$.

Theorem 4 [15] Let $D_{2 n}$ be a dihedral group with $n \geq 3$ and $n=p_{1} p_{2} p_{3} \ldots p_{k}$, with p_{i} are a distinct prime number. Then for $i \in\{1,2, \ldots, k\}$ and $j \in\left\{0,1,2, \ldots, p_{i}-1\right\}$, the subset $G_{i j}=$ $\left\{e, a^{p_{i}}, a^{2 p_{i}}, \ldots, a^{n-p_{i}}, a^{j} b, a^{j+p_{i}} b, \ldots, a^{j+n-p_{i}}\right\} \subseteq D_{2 n}$ is a nontrivial subgroup of $D_{2 n}$.

Theorem 5 [15] Let $D_{2 n}$ be a dihedral group. If n is composite with $n=p_{1} p_{2} p_{3} \ldots p_{m}$ then the subset $S_{j}=$ $\left\{e, a^{\Pi_{j=1}^{t} p_{j}^{\prime}}, a^{2 \Pi_{j=1}^{t} p_{j}^{\prime}}, a^{3 \Pi_{j=1}^{t} p_{j}^{\prime}}, \ldots, a^{n-\Pi_{j=1}^{t} p_{j}^{\prime}}\right\} \subseteq D_{2 n}, \quad p_{j}^{\prime} \in\left\{p_{1} p_{2} p_{3} \ldots p_{m}\right\}, \quad 1 \leq t \leq m \quad$ is \quad a nontrivial subgroup of $D_{2 n}$.

3.2. Numerical invariants of the Intersection Graph of a Dihedral Group

In this section, we discuss the intersection graph representation and numerical invariants of a graph $\Gamma_{D_{2 n}}$ for $n=p^{k}$ with $k \geq 2$. Here are some examples of graphs $\Gamma_{D_{2 n}}$ for $n=p^{k}$.

Graph $\Gamma_{D_{2 n}}$ for $n=2^{2}$

Tabel 2. Subgroup of the Dihedral group D_{8}

	Tabel 2. Subgroup of the Dihedral group $\boldsymbol{D}_{\mathbf{8}}$
Subroup	Member of Subgroup
	$\alpha_{1}=\left\{e, a, a^{2}, a^{3}\right\}$
Rotation subgroups $(\boldsymbol{\alpha})$	$\alpha_{2}=\left\{e, a^{2}\right\}$
	$\beta_{0}=\{e, b\}$
	$\beta_{1}=\{e, a b\}$
Reflexion subgroups ($\boldsymbol{\beta}$)	$\beta_{2}=\left\{e, a^{2} b\right\}$
	$\beta_{3}=\left\{e, a^{3} b\right\}$
	$\gamma_{10}=\left\{e, a^{2}, b, a^{2} b\right\}$
Mixed subgroups $(\boldsymbol{\gamma})$	$\gamma_{11}=\left\{e, a^{2}, a b, a^{3} b\right\}$

Figure 1 Graph $\Gamma_{D_{\mathbf{8}}}$

Based on Figure 1, it is known that the shape of the graph $\Gamma_{D_{8}}$ is in the form of a subgraph K_{4} and 4 subgraph K_{2}.

$$
\text { Graph } \Gamma_{D_{2 n}} \text { for } n=2^{3}
$$

Tabel 2. Subgroup of the Dihedral group D_{8}

Subroup	Member of Subgroup
Rotation subgroups $(\boldsymbol{\alpha})$	$\alpha_{1}=\left\{e, a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}, a^{7}\right\}$
$\alpha_{2}=\left\{e, a^{2}, a^{4}, a^{6}\right\}$	
$\alpha_{3}=\left\{e, a^{4}\right\}$	
	$\beta_{0}=\{e, b\}$
$\beta_{1}=\{e, a b\}$	
$\beta_{2}=\left\{e, a^{2} b\right\}$	
$\beta_{3}=\left\{e, a^{3} b\right\}$	
$\beta_{4}=\left\{e, a^{4} b\right\}$	
$\beta_{5}=\left\{e, a^{5} b\right\}$	
$\beta_{6}=\left\{e, a^{6} b\right\}$	
Reflexion subgroups ($\boldsymbol{\beta})$	$\beta_{7}=\left\{e, a^{7} b\right\}$
Mixed subgroups $(\boldsymbol{\gamma})$	$\gamma_{10}=\left\{e, a^{2}, a^{4}, a^{6}, b, a^{2} b, a^{4} b, a^{6} b\right\}$
	$\gamma_{11}=\left\{e, a^{2}, a^{4}, a^{6}, a b, a^{3} b, a^{5} b, a^{7} b\right\}$

Figure 2 Graph $\boldsymbol{\Gamma}_{\boldsymbol{D}_{16}}$
Based on Figure 2, it is known that the shape of the graph $\Gamma_{D_{16}}$ is in the form of a subgraph K_{9} and 8 subgraph K_{3}.

Based on the graph forms of the graph $\Gamma_{D_{2 n}}$ that have been obtained above, when $n=p^{k}$, then the shape of the intersection graph is in the form of two complete subgraphs which is a subgraph $K_{k+p^{1}+p^{2}+p^{3}+\cdots+p^{k-1}}$ and n subgraph K_{k}. The following theorem is given that graph $\Gamma_{D_{2 n}}$ is formed from a complete subgraph $K_{k+p^{1}+p^{2}+p^{3}+\cdots+p^{k-1}}$.

Theorem 5 If $D_{2 n}$ is a Dihedral group with $n=p^{k}$ for $k \geq 2$, then $\Gamma_{D_{2 n}}$ have a complete subgraph $K_{k+p^{1}+p^{2}+p^{3}+\cdots+p^{k-1}}$.
Proof. Let $D_{2 n}$ is a Dihedral group. Take $n=p^{k}$ with p is any prime number.

Based on Theorems 1, 3, and 4 its is obtained that $D_{2 p^{k}}$ has k rotation subgroups, that is $\alpha_{1}=$ $\left\{e, a, a^{2}, a^{3}, \ldots, a^{n-1}\right\}, \alpha_{2}=\left\{e, a^{\left(p^{2}\right)}, a^{2\left(p^{1}\right)}, a^{3\left(p^{1}\right)}, \ldots, a^{n-\left(p^{1}\right)}\right\}, \alpha_{3}=$ $\left\{e, a^{\left(p^{2}\right)}, a^{2\left(p^{2}\right)}, a^{3\left(p^{2}\right)}, \ldots, a^{n-\left(p^{2}\right)}\right\}, \ldots, \alpha_{k}=\left\{e, a^{\left(p^{k-1}\right)}, a^{2\left(p^{k-1}\right)}, a^{3\left(p^{k-1}\right)}, \ldots, a^{n-\left(p^{k-1}\right)}\right\}$ and $p^{1}+p^{2}+$ $p^{3}+\cdots+p^{k-1} \quad$ mix subgroups, that is $\quad \gamma_{l j}=$ $\left\{e, a^{\left(p^{l}\right)}, a^{2\left(p^{l}\right)}, a^{3\left(p^{l}\right)}, \ldots, a^{n-\left(p^{l}\right)}, a^{j} b, a^{j+\left(p^{l}\right)} b, a^{j+2\left(p^{l}\right)} b, a^{j+3\left(p^{l}\right)} b, \ldots, a^{j+n-\left(p^{l}\right)} b\right\}$
for $j=0,1,2, \ldots, p^{l}-1$ and $l=1,2,3, \ldots, k-1$. Suppose A, B are subgroups from $D_{2 n}$, where A, B are different rotation subgroups or mixed subgroups. Subgroup A and B are adjacent because it always loads $a^{n-\left(p^{k-1}\right)}$. So we get a complete subgraph

$$
Z=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{k}, \gamma_{10}, \gamma_{20}, \gamma_{30}, \ldots, \gamma_{k-1\left(p^{l}-1\right)}\right\}
$$

where Z consists of $k+p^{1}+p^{2}+p^{3}+\cdots+p^{k-1}$ members and each Z member must contain $a^{n-\left(p^{k-1}\right)}$. So we get a complete subgraph $K_{k+p^{1}+p^{2}+p^{3}+\cdots+p^{k-1}}$ with the largest order.

In addition to a complete subgraph $K_{k+p+p^{2}+p^{3}+\cdots+p^{k-1}}$, the $\Gamma_{D_{2 n}}$ graph with $n=p^{k}$ also has n complete subgraphs K_{k}. The following is a theorem that guarantees that the graph $\Gamma_{D_{2 n}}$ is formed from n complete subgraph K_{k}.

Theorem 6 If $D_{2 n}$ is a Dihedral group with $n=p^{k}$ for $k \geq 2$, then $\Gamma_{D_{2 n}}$ have n complete subgraph K_{k} Proof. Let $D_{2 n}$ is a Dihedral group with $n=p^{k}$ where p is any prime number.
Based on Theorems 2 and 4 it is obtained that $D_{2 p^{k}}$ has n reflection subgroups, that is $\beta_{i}=\left\{e, a^{i} b\right\}$ for $i=$ $0,1,2,3, \ldots, n-1$ and $p^{1}+p^{2}+p^{3}+\cdots+p^{k-1} \mathrm{mix}$, that is

$$
\gamma_{l j}=\left\{e, a^{\left(p^{l}\right)}, a^{2\left(p^{l}\right)}, a^{3\left(p^{l}\right)}, \ldots, a^{n-\left(p^{l}\right)}, a^{j} b, a^{j+\left(p^{l}\right)} b, a^{j+2\left(p^{l}\right)} b, a^{j+3\left(p^{l}\right)} b, \ldots, a^{j+n-\left(p^{l}\right)} b\right\}
$$

for $l=1,2,3, \ldots, k-1$ and $j \equiv i \bmod \left(p^{l}\right)$. As a result, a complete subgraph with a set of vertices is obtained as follows :

$$
E_{0}=\left\{\beta_{0}, \gamma_{1(0 \bmod p)}, \gamma_{2\left(0 \bmod p^{2}\right)}, \gamma_{3\left(0 \bmod p^{3}\right)}, \ldots, \gamma_{k-1\left(0 \bmod p^{k-1}\right)}\right\}
$$

where E_{0} consists of k members and each member of E_{0} contains b, then

$$
E_{1}=\left\{\beta_{1}, \gamma_{1(1 \bmod p)}, \gamma_{2\left(1 \bmod p^{2}\right)}, \gamma_{3\left(1 \bmod p^{3}\right)} \cdots, \gamma_{k-1}\left(1 \bmod p^{k-1}\right)\right\}
$$

where E_{1} consists of k members and each member of E_{1} contains $a b$, then

$$
E_{2}=\left\{\beta_{2}, \gamma_{1(2 \bmod p)}, \gamma_{2\left(2 \bmod p^{2}\right)}, \gamma_{3\left(2 \bmod p^{3}\right)} \cdots, \gamma_{k-1\left(2 \bmod p^{k-1}\right)}\right\}
$$

where E_{2} consists of k members and each member of E_{2} contains $a^{2} b$, the process can continue until obtaining

$$
E_{n-1}=\left\{\beta_{n-1}, \gamma_{1(n-1 \bmod p)}, \gamma_{2 n\left(n-1 \bmod p^{2}\right), \gamma_{3\left(n-1 \bmod p^{3}\right)}, \ldots, \gamma_{k-1}\left(n-1 \bmod p^{k-1}\right)}\right\}
$$

where E_{n-1} consists of k members and each member of E_{n-1} contains $(n-1) b$.
So we get a complete graph of K_{k} as many as n pieces.

The next discussion is about girth, radius, and diameter, as well as chromatic number graph $\Gamma_{D_{2 n}}$ with $n=p^{k}$. The following theorem describes the girth of a graph $\Gamma_{D_{2 n}}$.

Theorem 7 If $D_{2 n}$ is a Dihedral group with $n=p^{k}$, for $k \geq 2$, then the girth of a graph $\Gamma_{D_{2 n}}$ is 3 .
Proof. Let $D_{2 n}$ is a Dihedral group with $n=p^{k}$ where p is any prime number.
In proofing Theorem 1, we get non-trivial subgroups of $D_{2 n}$. It is known that the vertex α_{r} for $r \in$ $\{1,2,3, \ldots, k\}$, is adjacent to the vertex $\gamma_{l j}$. It is also known as the vertex $\gamma_{l j}$ is adjacent to the vertex α_{s} and the vertex α_{s} is adjacent to the vertex α_{r} for $s \in\{1,2,3, \ldots, k\}$ and $s \neq r$. To get the shortest cycle then

$$
\alpha_{r}-\gamma_{l j}-\alpha_{s}-\alpha_{r}
$$

So the girth of the graph $\Gamma_{D_{2 n}}$ is equal to 3 .

Next, the following theorem describes the radius and diameter of $\Gamma_{D_{2 n}}$.
Theorem 8 If $D_{2 n}$ is a Dihedral group with $n=p^{k}$, for $k \geq 2$, then the radius and diameter of the intersection graph $\Gamma_{D_{2 n}}$, respectively is

$$
\operatorname{rad}\left(\Gamma_{D_{2 n}}\right)=2
$$

and

$$
\operatorname{diam}\left(\Gamma_{D_{2 n}}\right)=3
$$

Proof. Let $D_{2 n}$ is a Dihedral group with $n=p^{k}$ where p is any prime number.
From Theorems 1 and 2 it is easy to see which vertices are adjacent, so we get the distance of any to different vertices in the graph $\Gamma_{D_{2 n}}$ contains there possibilities, that is a distance 1,2 , or 3 . Two distinct vertices will be 1 if adjacent, 2 if not adjacent and passed two edges, and 3 if not adjacent and passed three edges. Thus obtained

$$
d\left(\alpha_{r}, \alpha_{s}\right)=1, d\left(\alpha_{r}, \gamma_{l j}\right)=1, d\left(\alpha_{r}, \beta_{i}\right)=2
$$

As a result, we get $e(\alpha)=2$. Next

$$
\begin{gathered}
d\left(\beta_{i_{2}}, \beta_{i_{4}}\right)=2, d\left(\beta_{i_{1}}, \beta_{i_{3}}\right)=2, d\left(\beta_{i_{1}}, \beta_{i_{2}}\right)=3 \\
d\left(\beta_{i_{2}}, \beta_{i_{1}}\right)=3, d\left(\beta_{i_{2}}, \gamma_{l j_{2}}\right)=1, d\left(\beta_{i_{1}}, \gamma_{l j_{1}}\right)=1 \\
d\left(\beta_{i_{2}}, \gamma_{l j_{1}}\right)=2, d\left(\beta_{i_{1}}, \gamma_{l j_{2}}\right)=2, d\left(\beta_{i}, \alpha_{r}\right)=2
\end{gathered}
$$

where i_{2}, i_{4} even value and $i_{2} \neq i_{4}, i_{1}, i_{3}$ odd value and $i_{1} \neq i_{3}, j_{1}$ odd value, and j_{2} even value. As a result, we get $e(\beta)=3$. Then

$$
\begin{aligned}
d\left(\gamma_{l j}, \gamma_{l j}\right) & =1, d\left(\gamma_{l j}, \alpha_{r}\right)=1, d\left(\gamma_{l j_{2}}, \beta_{i_{2}}\right)=1 \\
d\left(\gamma_{l j_{1}}, \beta_{i_{1}}\right) & =1, d\left(\gamma_{l j_{2}}, \beta_{i_{1}}\right)=2, d\left(\gamma_{l j_{1}}, \beta_{i_{2}}\right)=2
\end{aligned}
$$

As a result, we get $e(\gamma)=2$, so that it is obtained

$$
\operatorname{rad}\left(\Gamma_{D_{2 n}}\right)=2
$$

and

$$
\operatorname{diam}\left(\Gamma_{D_{2 n}}\right)=3
$$

Next, the following is given the chromatic number theorem of the graph $\Gamma_{D_{2 n}}$.
Theorem 9 Jika $D_{2 n}$ grup Dihedral dengan $n=p^{k}$ untuk $k \geq 2$, maka bilangan kromatik dari graf $\Gamma_{D_{2 n}}$ adalah $k+p^{1}+p^{2}+p^{3}+\cdots+P^{k-1}$.
Proof. Let $D_{2 n}$ is a Dihedral group with $n=p^{k}$ where p is any prime number. From Theorems 1 and 2 it is easy to see that all vertices α_{r} and vertices $\gamma_{l j}$ are adjacent, then based on Definition 7, all vertices α_{r} for $r=1,2,3, \ldots, k$ and vertices $\gamma_{l j}$ for $l=1,2,3, \ldots, k-1$ as well as $j=0,1,2, \ldots, p^{l}-1$ must have a different color. Furthermore, it is easy to see that all vertices α_{r} and β_{i} are not adjacent, then based on Definition 2.2.19 it can be concluded that the color used in the vertex α_{r} can be reused on vertex β_{i}. Thus obtained $\chi\left(\Gamma_{D_{2 n}}\right)=k+p^{1}+p^{2}+p^{3}+\cdots+p^{k-1}$.

4. CONCLUSIONS

For a dihedral group with prime power order $\left(p^{k}\right)$, we always have its complete subgraph consisting of
 that these intersections graph had girth, radius, and chromatic numbers as three, two and $k+p^{1}+p^{2}+p^{3}+$ $\cdots+p^{k-1}$.

ACKNOWLEDGMENTS

Special thanks to KPBI Murni Universitas Mataram for financial support for this article, and GRC for its support during the research.

REFERENCES

[1] X. Ma, H. Wei, and L. Yang, "The Coprime graph of a group," International Journal of Group Theory, vol. 3, no. 3, pp. 13-23, 2014, doi: 10.22108/ijgt.2014.4363.
[2] A. G. Syarifudin, Nurhabibah, D. P. Malik, and I. G. A. W. dan Wardhana, "Some characterizatsion of coprime graph of dihedral group D2n," Journal of Physics: Conference Series, vol. 1722, no. 1, 2021, doi: 10.1088/17426596/1722/1/012051.
[3] Abdussakir, "Radius, Diameter, Multiplisitas Sikel, Dan Dimensi Metrik Graf Komuting Dari Grup Dihedral," Jurnal Matematika Mantik, vol. 3, no. 1, pp. 1-4, 2017.
[4] W. U. Misuki, I. G. A. W. Wardhana, N. W. Switrayni, and Irwansyah, "Some results of non-coprime graph of the dihedral group D2n for n a prime power," AIP Conference Proceedings, vol. 2329, no.1, 2021, doi: 10.1063/5.0042587.
[5] N. Nurhabibah, A. G. Syarifudin, and I. G. A. W. Wardhana, "Some Results of The Coprime Graph of a Generalized Quaternion Group Q_4n," InPrime: Indonesian Journal of Pure and Applied Mathematics, vol. 3, no. 1, pp. 29-33, 2021, doi: 10.15408/inprime.v3i1.19670.
[6] E. Y. Asmarani, A. G. Syarifudin, G. Adhitya, W. Wardhana, and W. Switrayni, "Eigen Mathematics Journal The Power Graph of a Dihedral Group," vol. 4, no. 2, 2021, doi: 10.29303/emj.v4i2.117.
[7] A. G. Syarifudin, I. G. A. W. Wardhana, N. W. Switrayni, and Q. Aini, "The Clique Numbers and Chromatic Numbers of The Coprime Graph of a Dihedral Group," IOP Conference Series: Materials Science and Engineering, vol. 1115, no. 1, p. 012083, 2021, doi: 10.1088/1757-899x/1115/1/012083.
[8] R. Juliana, I. G. W. W. Wardhana, and I. Irwansyah, "Some Characteristics of Prime Submodules of Gaussian Integer Modulo over Integer," in Proceeding International Conference on Science (ICST), 2020, pp. 209-213.
[9] F. Mansoori, A. Erfanian, and B. Tolue, "Non-coprime graph of a finite group," AIP Conference Proceedings, vol. 1750, no. June 2016, 2016, doi: 10.1063/1.4954605.
[10] A. V. Zavarnitsine, "Recognition of finite groups by the prime graph," Algebra and Logic, vol. 45, no. 4, pp. 220-231, 2006, doi: 10.1007/s10469-006-0020-9.
[11] S. Akbari, F. Heydari, and M. Maghasedi, "The intersection graph of a group," Journal of Algebra and its Applications, vol. 14, no. 5, Jun. 2015, doi: 10.1142/S0219498815500656.
[12] N. Nurhabibah, A. Gazir Syarifudin, I. Gede Adhitya Wisnu Wardhana, and Q. Aini, "Eigen Mathematics Journal The Intersection Graph of a Dihedral Group," vol. 4, no. 2, 2021, doi: 10.29303/emj.v4i2.119.
[13] J. H. Silverman, Abstract Algebra An Integrated Approach. 2022.
[14] A. Boggess, K. H. Rosen, D. W. Cunningham, and W. J. Meyer, "Graph Theory Textbooks in Mathematics Series editors: Real Analysis With Proof Strategies," 2021.
[15] A. Gazir and I. G. A. W. Wardhana, "Subgrup Non Trivial Dari Grup Dihedral," Eigen Mathematics Journal, vol. 1, no. 2, p. 73, Dec. 2019, doi: 10.29303/emj.v1i2.26.

