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Abstract. The aim of this study is to find the controlled factors affecting the mass density of the combined Al2O3/Cu. 

All experiments were carried out using powder metallurgy. Experiments were carried out with four controllable 

powder processing parameters, namely milling time, compaction pressure, sintering temperature, and holding time. 

The L18 mixed-level Taguchi Orthogonal Array was used for experimental because it is the basis for the analysis of 

the Taguchi method. In this research, statistical analysis is carried out using GRA with PCA and Quality Loss 

Function.  The result was the best model based on the Quality Loss Function, because the method has the biggest 

determination coefficient value is 99,97% where the results is better than GRA with PCA. From the main effect table 

study, the optimal combination of parameters for response: mass density and hardness are A2B3C3D2 powder 

metallurgical process parameters, namely milling time of 360 minutes, compacting powder of 200 MPa, sintering of 

7000C, and holding time of 20 minutes. The ANOVA results show that the compaction pressure has the most influential 

parameter that affects the response. The percentage contribution of compaction pressure is 87.09%. Based on 

ANOVA, the R-squared value is 99.97%, which means the tested factor variables can explain the density of the 

Al2O3/Cu composite by 99.70%. Therefore, only 18 experimental trials are needed to discover the reality of what will 

happen in the process. 
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1. INTRODUCTION 

Composite materials are multiphase materials created by artificially combining different materials to 

achieve properties that the individual components cannot achieve on their own. Composite materials should 

be distinguished from alloys, which may include two additional components but form naturally through 

processes such as casting. Composite materials can be tailored to different properties by suitable selection of 

their composition, proportions, distribution, morphology, degree of crystallinity, crystal texture, and structure 

and components of the interface between components. Because of this strong adaptability, composite 

materials can be engineered to meet the needs of aerospace, automotive, electronics, construction, energy, 

biomedical, and industrial sectors. Therefore, composite materials make up most of the commercial 

engineering materials [1] 

In general, composites are classified according to their matrix material. The main classes of composites 

are polymer-matrix, cement-matrix, metal-matrix, carbon-matrix, and ceramic-matrix composites. Copper 

(Cu) metal is ductile, having poor mechanical and tribological properties, but very high thermal and electrical 

properties. Remarkable improvements in mechanical and physical properties of Cu matrix reinforced 

composites can be achieved by adding alumina (Al2O3) ceramic particles [2].The development of a high-

performance Cu composite for advanced materials requires the ability to tailor multi-functional properties. 

The successful implementation of such composites depends on the development of novel fabrication 

techniques. 

There are have been researched the process of making Al2O3/Cu composites with the Powder 

Metallurgy Technique [2]. Powder metallurgy is a popular and cost-effective technique used to manufacture 

composite materials. This technique is a complex process for the manufacture of composite parts because it 

involves many parameters. Therefore, parameter optimization is very important to meet good spare parts 

properties. The optimal powder metallurgical process parameters depend on the type of lubrication during 

mixing, the ball-to-powder weight ratio, mixing time, filler particle size, compaction pressure, sintering 

temperature, holding time, etc. Identification of optimal effective parameters is prerequisite for their 

successful implementation. Therefore, it is very important to improve the efficiency and quality of the powder 

metallurgical process by determining the optimal conditions of the powder metallurgical process parameters. 

To determine the optimal effective parameters for meeting the characteristics of good spare parts, it is 

necessary to conduct research as an evaluation of the composition of raw materials and then make 

improvements to the manufacturing process by applying the Taguchi experimental design statistical method. 

The Grey Relational Analysis (GRA) based on grey system theory can be used for solving the complicated 

interrelationships among the multi responses [3]. To determine the optimal effective parameters for meeting 

the characteristics of good spare parts, it is necessary to conduct research as an evaluation of raw material 

composition and then make improvements to the manufacturing process using the Taguchi experimental 

design statistical method. Grey Relational Analysis (GRA) based on grey system theory can be used to solve 

complex interrelationships among multiple responses [4]. 

Aside from these methods, the following can be used for multi-response optimization: Quality Loss 

Function of Taguchi (QLF). Taguchi's quality loss function methodology has proven to be an appealing and 

efficient optimization tool for a variety of performance characteristics [5]. The weighting factors in the total 

loss function are used in the multi-response signal to noise (S/N) ratio optimization using Taguchi's quality 

loss function. Then the two methods are compared based on the highest coefficient of determination. The best 

method will be used to determine the process parameters in the manufacture of Al2O3/Cu composites. 

Experiments were carried out to find the controlled factors affecting the Mass Density and Rockwell 

Hardness of the combined Al2O3/Cu. All experiments were carried out using powder metallurgy based on the 

publication of Hussain [6]. Experiments were carried out with four controllable powder processing 

parameters, namely milling time, compaction pressure, sintering temperature, and holding time. Other 

processing parameters, such as percent by mass of Al2O3, particle size, and spindle speed, were kept constant 

throughout the experiment. A mix of parameter level designs was used for the experimental trials, as shown 

in Fig. The appropriate range for powder processing parameters was determined by varying the milling time 

in the range of 180–360 minutes, the compaction pressure in the range of 100–200 MPa, the sintering 

temperature in the range of 600–7000C, and holding time in the range of 20–60 minutes. The steps and 

methods of analysis are described in chapter 2. The results of the analysis and discussion will be discussed in 

chapter 3. 
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2. RESEARCH METHODS 

2.1 Literature Review 

Dr. Genichi Taguchi invented the Taguchi technique in 1949 intending to improve quality and reduce 

variability [7]. Taguchi's approach to reducing variation entails two steps: first, determining the best 

performance of a product or process over the longest period so that deviation from the target is minimal; and 

second, determining the best performance of a product or process over the longest period so that deviation 

from the target is minimal. Furthermore, it aims to make the products as similar as possible so that product 

variance is minimal [8]. Taguchi's method of enhancing quality during the design phase is to optimize a 

product or process design and make it insensitive to uncontrollable circumstances. 

1. Orthogonal Array 

To identify the combination of components and levels to utilize in an effective experiment and analyze 

the trial findings, the Taguchi technique employs a special set of matrices known as orthogonal arrays [9]. 

Taguchi Orthogonal Arrays ensure that in studies, all controlled variables are equally considered. The total 

degrees of freedom must be greater than or equal to the minimum number of trial runs. Each row of the 

Orthogonal Array represents a different level parameter combination. 

2. GRA with PCA 

Step 1 Signal-to-noise ratio (S/N Ratio) 

The terms 'signal' and 'noise' in the Taguchi technique refer to the desired value (mean) for the output 

characteristic and the unwanted value (standard deviation) for the output characteristic, respectively [10]. As 

a result, the S/N Ratio is defined as the ratio of mean to standard deviation. The S/N Ratio is used by Taguchi 

to determine how far a quality feature deviates from the ideal value. The cause of quality fluctuations is 

uncontrollable elements known as noise factors, which can be classed as external causes, manufacturing 

flaws, and product deterioration. There are three quality qualities depending on the design objective: 

"nominal-is-best," "the smaller the better," and "the larger the better" [11]. The following are their 

mathematical expressions: 

Case 1: ‘‘The smaller the better: aiming to minimize the performance [12]. 

 

𝑆𝑁𝑖𝑗 = −10 log10 (
∑ 𝑦𝑖

2𝑁
𝑖=1

𝑁
)     (1) 

 

where the 𝑦 denotes the performance indicator, subscript 𝑖 experiment number, 𝑁 number of replicates of 

experiment ‘𝑖’ 
Case 2: ‘‘The larger the better’’: aiming to maximize the performance [13]. 

 

𝑆𝑁𝑖𝑗 = −10 log10 (
∑ 1

𝑦𝑖
2⁄

𝑁
𝑖=1

𝑁
)     (2) 

 

Case 3: ‘‘Nominal-is-best’’: aiming to target the predetermined nominal value [14]. 

 

{
 
 

 
 𝑆𝑁𝑖𝑗 = 10 log10 [(

�̅�

𝑠
)
2
]

�̅� =
𝑦1+𝑦2+𝑦3⋯+𝑦𝑛

𝑁

𝑠 =
∑ (𝑦1−�̅�)

2𝑁
𝑖=1

𝑁−1

     (3) 

Step 2 Calculating S/N Ratio Normalization Value 

The value of the S/N ratio that has been obtained previously will be normalized, which is changed to 

a value ranging from 0 to 1 according to the characteristics of each response as follows. 

𝑍𝑖𝑗 =
𝑚𝑎𝑥∀𝑗𝑆𝑁𝑖𝑗−𝑆𝑁𝑖𝑗

𝑚𝑎𝑥∀𝑗𝑆𝑁𝑖𝑗−𝑚𝑖𝑛∀𝑆𝑁𝑖𝑗
    (4) 

(for smaller the better quality characteristics) 
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𝑍𝑖𝑗 =
𝑆𝑁𝑖𝑗−𝑚𝑖𝑛∀𝑗𝑆𝑁𝑖𝑗

𝑚𝑎𝑥∀𝑗𝑆𝑁𝑖𝑗−𝑚𝑖𝑛∀𝑆𝑁𝑖𝑗
    (5) 

(for larger the better quality characteristics) 

where 

𝑍𝑖𝑗  : normalized value of S/N ratio oni-th experiment and j-th response 

𝑆𝑁𝑖𝑗  : the value of the S/N ratio in the th experiment i and j response 

𝑚𝑎𝑥∀𝑗𝑆𝑁𝑗  : value of S/N ratio maximum response to-j 

𝑚𝑖𝑛∀𝑗𝑆𝑁𝑖𝑗 : value of S/N ratio minimum response to-j 

Step 3 Calculating Deviation Sequence 

Deviation Sequence is the absolute difference between the maximum value of the normalized result 

and the normalized data. The formula for determining the deviation sequence is as follows. 

∆0𝑖𝑗= |𝑍0𝑗 − 𝑍𝑖𝑗|    (6) 

where 

∆0𝑖𝑗 : value deviation sequence in the i-th experiment and j . response 

𝑍0𝑗 : maximum value of normalized S/N ratio (value 1) 

𝑍𝑖𝑗 :the normalized value of the S/N ratio in the i-th experiment and the j . response 

Step 4 Calculating the Gray Relational Coefficient 

The Gray Relational Coefficient (GRC) shows the relationship between the ideal (best) conditions and 

the actual conditions of the normalized response [15]. GRC is obtained from the following equation. 

 

𝛾𝑖𝑗 =
∆𝑚𝑖𝑛+𝜁∆𝑚𝑎𝑥

∆0𝑖𝑗+𝜁∆𝑚𝑎𝑥
     (7) 

∆𝑚𝑎𝑥 : minimum valuefrom deviation sequence 

∆𝑚𝑖𝑛 : maximum value of deviation sequence 

𝜁 : distinguishing coefficient (usually 0.5) [15] 

 

Step 5 Determine the Eigen Value and Eigen Vector 

Eigen value can be obtained by using the following formula. 

|𝑹 − 𝜆𝑘𝑰| = 0 ; 𝑘 = 1, 2, … ,𝑚    (8) 

While the eigenvectors are obtained from the following equation. 

(𝑹 − 𝜆𝑘𝑰)𝑽𝑘     (9) 

where 

𝑹  : correlation matrix 

𝜆𝑘 : eigen value for the kth principal component 

𝑰  : identity matrix 

𝑽𝑘
𝑇 = [𝑣1𝑘, 𝑣2𝑘, … , 𝑣𝑗𝑘, … 𝑣𝑚𝑘]are the eigenvectors corresponding to and are the values of the 

eigenvector components which are the coefficients of the principal 

components.𝜆𝑘𝑣1𝑘, 𝑣2𝑘, … , 𝑣𝑗𝑘, … 𝑣𝑚𝑘 

Step 6 Define Principal Component 

Principal component is a linear combination of observed variables that are not correlated with each 

other. Principal components can be written with the following equation. 

𝑃𝐶𝑘 = 𝑣1𝑘𝑌1 + 𝑣2𝑘𝑌2 +⋯+ 𝑣𝑚𝑘𝑌𝑚   (10) 

where Y is the response totaling m, and PC1 is the first principal component, PC2 is the second principal 

component, and PCk is the k-th principal component. 

Step 7 Calculating Weight Value 

Principal component which has the highest proportion of variance will be used as weighting. The value 

of the coefficients is none other than the value of the eigenvector component of the selected principal 

component and then squared, so that the weight value is obtained as follows. 
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𝜔𝑗 = 𝑣𝑗𝑘
2   𝑗, 𝑘 = 1,2,… ,𝑚    (11) 

where 

𝜔𝑗 : weight value for j . response 

𝑣𝑗𝑘 : the value of the eigenvector component or the coefficients of the principal component the chosen 

 

Step 8 Calculating the Gray Relational Grade 

The Gray Relational Grade value will be used as a performance index to determine the combination of 

factor levels that produces an optimal response. To calculate the value of the Gray Relational Grade, the 

following equation is used [16]. 

𝐺𝑖 = ∑ 𝜔𝑗𝛾𝑖𝑗
𝑚
𝑗=1  ; 𝑖, 𝑗 = 1, 2, … ,𝑚   (12) 

where: 

𝐺𝑖 : the value of Gray Relational Grade in the i-th experiment 

𝜔𝑗 : weight value for j . response 

𝛾𝑖𝑗 : the value of the Gray Relational Coefficient of the j-th response in the i-th experiment 

 

3. Taguchi Quality Loss Function Analysis 

Step 1 Calculate the Loss Function value for each response with the following equation. 

𝐿𝑖𝑗 =
𝑘

𝑛
∑ 𝑦𝑖𝑗𝑝

2𝑛
𝑝=1      (13) 

(for smaller the better quality characteristics) 

𝐿𝑖𝑗 =
𝑘

𝑛
∑

1

𝑦𝑖𝑗𝑝
2

𝑛
𝑝=1      (14) 

(for larger the better quality characteristics) 

where 

𝐿𝑖𝑗 :the value of the loss function in the i-th experiment and the j response 

𝑛 : number of replications 

𝑦𝑖𝑗𝑝  : the value of the i-th experiment, j-th response and p-th replication 

𝑘 : cost coefficient 

Step 2 Normalization of the quality loss function in the equation below is used to normalize the value of k. 

𝑁𝑖𝑗 =
𝐿𝑖𝑗

�̅�𝑖𝑗
     (15) 

where 

�̅�𝑖𝑗 : the average loss function in the i-th experiment and the j-th response. 

𝐿𝑖𝑗 : loss function in the i-th experiment and j-th response. 

Step 3 Calculate the Total Loss Function with a predetermined weight with the following equation. 

𝑇𝐿𝑖 = ∑ 𝑤𝑗𝑁𝑖𝑗
𝑚
𝑗=1      (16) 

where 

𝑇𝐿𝑖 : total loss function in the i-th experiment 

𝑚 : number of observed performance characteristics 

𝑤𝑗   : weighting factor for j . response 

𝑁𝑖𝑗 : loss function in experiment-th and j-th responses that have been normalized 

Step 4 Transform the Total Loss Function value into S/N Ratio with the following equation. 

𝜂𝑖 = −10𝑙𝑜𝑔(𝑇𝐿𝑖)     (17) 
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4. Analysis of Variance (ANOVA)  

The general linear model (GLM) is often used for factorial designs, and analysis of variance (ANOVA) 

is an example of the GLM. A factorial design is one in which the experimental settings are divided into groups 

based on one or more factors, each of which has two or more levels. ANOVA is commonly used to calculate 

confidence levels. The technique determines the variability (variance) of the data rather than simply analyzing 

it. The variance is used to calculate confidence. The variance of controlled and noise components is 

determined by analysis. Robust operating conditions can be predicted by understanding the source and 

magnitude of variance. This is the methodology's second advantage. Many parameters, such as degrees of 

freedom, sums of squares, mean square, and so on, are computed and grouped in a standard tabular manner 

in the analysis of variance [17].

5. Measurement of the response variable 

Mass Density of Al2O3/Cu composite can be evaluated by Archimedes principle. Initially, the composite 

sample was weighed in air (w1), then suspended in distilled water and weighed (w2) from the sample [18]. 

The actual density is calculated according to Equation (4).  

𝜌𝐴 =
𝑤1

𝑤1−𝑤2
× 𝜌𝑊     (18) 

with 𝜌𝐴= actual density of Al2O3/Cu, 𝑤1= wight of Al2O3/Cu samples in air, 𝑤2= weight of the sample in 

distilled water, and 𝜌𝑊= mass density of distilled water in 250C = 997,044 kg/m3. 

 

2.2 Research Methods 

In this paper, a study was conducted to find the controlled factors that affect the density of Al2O3/Cu 

composites. All experimental trials were carried out via the powder metallurgical route. Experiments were 

carried out with four controllable powder processing parameters, namely milling time, compaction pressure, 

sintering temperature, and holding time. Other processing parameters, such as percentage by weight of 

Al2O3/Cu, particle size, and spindle speed were kept constant throughout the experiment. The mix parameter 

rate design was used for the experimental trials as shown in Table 1. The feasible range for the powder 

processing parameters was determined by varying the milling time in the range of 180 – 360 min, the 

compaction pressure in the range of 100 – 200 MPa, the sintering temperature in the range of 600 – 7000C, 

and holding times in the range of 20 – 60 minutes. 

Table 1. Factor parameters and their levels 

Symbol Parameters Unit Level-1 Level-2 Level-3 

A Milling time Min 180 360 - 

B Compaction pressure MPa 100 150 200 

C Sintering temperature 0C 600 650 700 

D Holding time Min 20 40 60 

The L18 mixed-level Taguchi Orthogonal Array was used for experimental because it is the basis for 

the analysis of the Taguchi method. The Taguchi Orthogonal Arrays state that all controlled variables are 

equally considered in the experiment. The minimum number of trials must be greater than or equal to the 

total degrees of freedom. Each row of the Orthogonal Array represents a different combination of level 

parameters. The steps for using GRA and QLF to resolve multi-response problems is presented below. 

 

 

 

3. RESULTS AND DISCUSSION 

Data from the results of experiments that have been carried out can be seen in Table 2. 

3.1 Optimization using GRA with PCA  

Principal Component Analysis is a dimension reduction tool that can be used in multi variable analysis 

problem. The initial step for PCA analysis is to calculate the value of the S/N ratio and normalize the S/N 

ratio, which is presented in Table 3 below: 
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Table 2. Data Result 

Run 
Milling Time 

(Min) 

Compaction 

Pressure (MPa) 

Sintering 

Temperature 

(0C) 

Holding 

Time (Min) 

Mass 

density 

(gm/cm3) 

Rockwell 

Hardness 

(B scale) 

1 180 100 600 20 7.6197 15.3173 

2 180 100 650 40 7.6605 15.5150 

3 180 100 700 60 7.6493 15.7910 

4 180 150 600 20 7.7905 16.4945 

5 180 150 650 40 7.8115 16.9725 

6 180 150 700 60 7.8374 17.0554 

7 180 200 600 40 7.8733 18.0926 

8 180 200 650 60 7.9351 18.4054 

9 180 200 700 20 7.9918 18.8273 

10 360 100 600 60 7.7257 15.4552 

11 360 100 650 20 7.7695 15.7394 

12 360 100 700 40 7.7973 15.9392 

13 360 150 600 40 7.8695 17.0544 

14 360 150 650 60 7.8905 17.1595 

15 360 150 700 20 8.0183 17.2743 

16 360 200 600 60 8.0476 17.5673 

17 360 200 650 20 8.0675 17.9901 

18 360 200 700 40 8.0798 19.0167 

 

Table 3. S/N ratio and normalize the S/N ratio 

Run 
S/N Ratio Normalize S/N Ratio 

Mass Density Rockwell Hardness Mass Density Rockwell Hardness 

1 17.6388 23.7036 0 0 

2 17.6851 23.8150 0.0911 0.0593 

3 17.6724 23.9682 0.0661 0.1408 

4 17.8313 24.3468 0.3781 0.3423 

5 17.8547 24.5949 0.4240 0.4743 

6 17.8834 24.6372 0.4805 0.4968 

7 17.9231 25.1500 0.5584 0.7697 

8 17.9910 25.2989 0.6918 0.8490 

9 18.0529 25.4958 0.8132 0.9537 

10 17.7588 23.7815 0.2356 0.0414 

11 17.8079 23.9398 0.3321 0.1257 

12 17.8389 24.0493 0.3930 0.1840 

13 17.9189 24.6367 0.5502 0.4966 

14 17.9421 24.6901 0.5956 0.5250 

15 18.0816 24.7480 0.8697 0.5558 

16 18.1133 24.8941 0.9319 0.6335 

17 18.1348 25.1007 0.9740 0.7435 

18 18.1480 25.5827 1 1 

 

Then in the next stage, deviation sequence and GRC values are calculated. Then by using the value of 

the PC1 eigenvector component, it will be used for the calculation of the GRG with the results presented in 

Table 4. With the larger is the better criterion, the experimental results for the appropriate density S/N ratio 

are tabulated in Table 5.  

Table 4. Deviation sequence, GRC and GRG 

Run 

Deviation Sequence Grey Relational Coefficient Grey 

Relational 

Grade Mass Density 
Rockwell 

Hardness 
Mass Density 

Rockwell 

Hardness 

1 0.017224 0.004262 1.062368 0.262897 0.3332 

2 0.017041 0.004154 1.051082 0.25624 0.3509 

3 0.017091 0.00401 1.054162 0.247361 0.3582 

4 0.016477 0.003676 1.016295 0.226711 0.4386 

5 0.016388 0.003471 1.010838 0.214121 0.4759 
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Run 

Deviation Sequence Grey Relational Coefficient Grey 

Relational 

Grade Mass Density 
Rockwell 

Hardness 
Mass Density 

Rockwell 

Hardness 

6 0.01628 0.003438 1.004169 0.212044 0.4943 

7 0.016132 0.003055 0.995032 0.188429 0.6077 

8 0.015882 0.002952 0.979593 0.182079 0.6931 

9 0.015657 0.002821 0.965743 0.17401 0.8214 

10 0.016754 0.004186 1.033415 0.258227 0.3690 

11 0.016566 0.004037 1.021797 0.248986 0.3958 

12 0.016448 0.003936 1.014524 0.242783 0.4157 

13 0.016148 0.003438 0.995993 0.212069 0.5122 

14 0.016062 0.003396 0.990699 0.209479 0.5327 

15 0.015554 0.003351 0.95937 0.206704 0.6612 

16 0.015441 0.00324 0.952397 0.199867 0.7284 

17 0.015365 0.00309 0.947704 0.190583 0.8055 

18 0.015318 0.002765 0.944821 0.170561 0.9997 

 

Table 5. Signal Noise and Rank from GRA with PCA 

Factors Parameter 
Signal Noise Rates for Levels 

Delta Rank 
Level 1 Level 2 Level 3 

Milling time -6.279 -4.871   1.407 3 

Compaction pressure -8.649 -5.767 -2.309 6.340 1 

Sintering temperature -6.375 -5.688 -4.661 1.714 2 

Holding time -5.322 -5.552 -5.851 0.529 4 

Based on Table 5 it is found that the compaction pressure variable has the highest influence with a 

value of rank 1, followed by the sintering temperature, milling time, and holding time variables. It can be 

seen that main effect plot for mean and main effect plot for S/N ratios have equivalent forms. On the effect 

of each factor, it appears that at the milling time the S/N ratio is higher at the 360 min level. Likewise, the 

compaction pressure at 200MPa gives a higher S/N ratio than the compaction pressure at other levels. The 

sintering temperature and waiting time are relatively stable at different levels. 

 

  

Figure 1. Main Effects Plot for Means and SN Ratios 

In order to investigate the effects of drilling process parameters quantitatively the analysis of variance 

(ANOVA) is performed. The ANOVA is accomplished by separating total variability of multi response S/N 

ratio, which is measured by sum of squared deviations from total mean of multi-response S/N ratio into 

percent contribution (PC) by each of the parameters and the error. 
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Table 6. ANOVA from GRA with PCA 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

A 1 0.039842 6.33% 0.039842 0.039842 88.32 0.011 

B 2 0.504975 80.23% 0.504975 0.252487 559.72 0.002 

C 2 0.049789 7.91% 0.049789 0.024895 55.19 0.018 

D 2 0.006781 1.08% 0.000381 0.000191 0.42 0.703 

A*B 2 0.006272 1.00% 0.006272 0.003136 6.95 0.126 

A*C 2 0.003745 0.59% 0.002684 0.001342 2.98 0.252 

B*C 4 0.017104 2.72% 0.017104 0.004276 9.48 0.098 

Error 2 0.000902 0.14% 0.000902 0.000451     

Total 17 0.629410 100.00%         

 

Based on the table above, it can be seen that there are factors that have a significant effect. These 

factors include Milling time, Compaction pressure, and Sintering Temperature. The Compaction Pressure 

factor gave the largest contribution with a value of 80.23%. Then the results of the GRA with PCA analysis 

obtained the following R-square values: 

Table 7. R-square from GRA with PCA 
Method R-square 

GRA with PCA 99.86% 

By using the GRA with PCA method, the R-square value of 99.86% is obtained, which means that the 

factor can explain the multi response variable of 99.86% and the remaining 0.14% is explained by other 

factors outside this study. 

Table 8. Computed values of multi-response S/N ratio 

Run 

Loss Function 
Normalized Loss 

Function Total loss 

function (Tli) 

Multi-response S/N 

ratio (ηi) Mass 

Density 

Rockwell 

Hardness 

Mass 

Density 

Rockwell 

Hardness 

1 0.017224 0.004262 1.062368 0.262897 0.662633 1.787272 

2 0.017041 0.004154 1.051082 0.25624 0.653661 1.846476 

3 0.017091 0.00401 1.054162 0.247361 0.650761 1.865782 

4 0.016477 0.003676 1.016295 0.226711 0.621503 2.065567 

5 0.016388 0.003471 1.010838 0.214121 0.61248 2.129083 

6 0.01628 0.003438 1.004169 0.212044 0.608106 2.160204 

7 0.016132 0.003055 0.995032 0.188429 0.591731 2.278759 

8 0.015882 0.002952 0.979593 0.182079 0.580836 2.359463 

9 0.015657 0.002821 0.965743 0.17401 0.569876 2.442193 

10 0.016754 0.004186 1.033415 0.258227 0.645821 1.898877 

11 0.016566 0.004037 1.021797 0.248986 0.635391 1.969588 

12 0.016448 0.003936 1.014524 0.242783 0.628653 2.015889 

13 0.016148 0.003438 0.995993 0.212069 0.604031 2.189406 

14 0.016062 0.003396 0.990699 0.209479 0.600089 2.217843 

15 0.015554 0.003351 0.95937 0.206704 0.583037 2.343038 

16 0.015441 0.00324 0.952397 0.199867 0.576132 2.394782 

17 0.015365 0.00309 0.947704 0.190583 0.569143 2.447784 

18 0.015318 0.002765 0.944821 0.170561 0.557691 2.536064 

3.2 Optimization using Quality Loss Function 

Taguchi's quality loss function concept was used in the current study to optimize the multiple 

performance characteristics, Mass Density and Rockwell Hardness. The loss functions, normalized loss 

functions for each response, total loss function, and corresponding multi-response S/N ratios for each trial of 
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the L18 orthogonal array were calculated using Eqs. (16) - (19), and are shown in Tables 3 below. In this 

study, the total loss function was computed with a weighting factor of 0.5, which gives equal weight to Mass 

Density and Rockwell Hardness. 

With the larger is the better criterion, the experimental results for the appropriate density S/N ratio are 

tabulated in Table 9.  

Table 9. Signal Noise and Rank 

Factors Parameter 
Signal Noise Rates for Levels 

Delta Rank 
Level 1 Level 2 Level 3 

Milling time 6.412 6.901   0.489 3 

Compaction pressure 5.556 6.779 7.635 2.079 1 

Sintering temperature 6.41 6.655 6.905 0.495 2 

Holding time 6.693 6.671 6.606 0.087 4 

Based on Table 9 it is found that the compaction pressure variable has the highest influence with a 

value of rank 1, followed by the sintering temperature, milling time, and holding time variables. 

  
Figure 2. Main Effects Plot for Means and SN Ratios 

It can be seen that the main effect plot for mean and main effect plot for S/N ratios have equivalent 

forms. On the effect of each factor, it appears that at the milling time the S/N ratio is higher at the 360 min 

level. Likewise, the compaction pressure at 200MPa gives a higher S/N ratio than the compaction pressure at 

other levels. The sintering temperature and waiting time are relatively stable at different levels. 

In order to investigate the effects of drilling process parameters quantitatively the analysis of variance 

(ANOVA) is performed. The ANOVA is accomplished by separating total variability of multi response S/N 

ratio, which is measured by sum of squared deviations from total mean of multi-response S/N ratio into 

percent contribution (PC) by each of the parameters and the error. 

Table 10. ANOVA from Quality Loss Function 

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value 

A 1 0.064617 7.11% 0.064617 0.064617 3786.91 0.000 

B 2 0.791799 87.09% 0.791799 0.3959 23201.92 0.000 

C 2 0.046727 5.14% 0.046727 0.023364 1369.24 0.001 

D 2 0.002135 0.23% 0.001479 0.00074 43.35 0.023 

A*B 2 0.000948 0.10% 0.000948 0.000474 27.78 0.035 

A*C 2 0.002367 0.26% 0.001898 0.000949 55.6 0.018 

B*C 4 0.000587 0.06% 0.000587 0.000147 8.6 0.107 

Error 2 0.000034 0.00% 0.000034 0.000017   
Total 17 0.909215 100.00%     

 
Based on the Table 10 above, it can be seen that there are factors that have a significant effect. These 

factors include Milling time, Compaction pressure, Sintering Temperature, Holding Time, Interaction of 

Milling Time with Compaction Pressure, and Interaction of Milling Time with Sintering Temperature. Then 

the results of the Quality Loss Function analysis obtained the following R-square values: 
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Table 11. R-square from Quality Loss Function 

Method R-square 

Quality Loss Function 99.97% 

By using the Quality Loss Function method, an R-square value of 99.97% is obtained, which means 

that the factor can explain the multi-response variable of 99.97% and the remaining 0.03% is explained by 

other factors outside of this study. 

The following were resulted of GRA with PCA and Quality Loss Function. Table 5 showed the results 

of comparing R-square values based on parametric and nonparametric approaches. 
 

Table 12. Comparison based on R-square 

Estimation R-square 

GRA with PCA 99.86% 

Quality Loss Function 99.97% 

 

Based on Table 12, it showed that R2 values in the Quality Loss Function were better than GRA with PCA 

with R2 is 99.97%. It means that Quality Loss Function is very suitable to be used in this research. 

 

 

 

4. CONCLUSIONS 

This paper investigated the effect of powder metallurgical processing parameters on the characteristics 

of Al2O3/Cu composites based on the Taguchi method. From the main effect table study, the optimal 

combination of parameters for response mass density are A2B3C3D2 powder metallurgical process parameters, 

namely milling time of 360 minutes, compacting powder of 200 MPa, sintering of 7000C, and holding time 

of 20 minutes. The result, we choose Quality Loss Function, because the method has the biggest 

determination coefficient value is 99.97% where the results is better than GRA with PCA. The ANOVA 

results show that the compaction pressure has the most influential parameter that affects the response. The 

percentage contribution of compaction pressure is 87.09%. Based on ANOVA, the R-squared value is 

99.97%, which means the tested factor variables can explain the density of the Al2O3/Cu composite by 

99.97%. Therefore, only 18 experimental trials are needed to discover the reality of what will happen in the 

process. 
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