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Abstract. In the application of thermonuclear reactor cooling, temperature regulation relies on experiments based 

on practical experience. Therefore, the accuracy of this temperature setting is operator-dependent. So it is necessary 

to develop a mathematical model to solve these problems. The dimensional mathematical model therefore is generated 
using the conservation laws of mass, momentum, and energy. The dimensional mathematical model is further 

transformed into non-dimensional mathematical model by using non-dimensional variables. The non-dimensional 

mathematical model is simplified using the similarity equation by utilizing the stream function. The model obtained 

is a system of nonlinear ordinary differential equations. This system of equations is then solved using an implicit 
numerical method using the Keller-Box scheme. This Keller-Box method has high accuracy and is more efficient. The 

numerical simulation results show that the velocity profile and temperature profile decrease as the magnetic 

parameter, porosity parameter, and the Prandtl number increase, respectively. Meanwhile, when the radiation 
parameter increases, the temperature profile also increases, but the radiation parameter does not affect the velocity 

profile. 
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1. INTRODUCTION 

In the application of thermonuclear reactor cooling, we still rely on experiments based on practical 

experience in regulating temperature. So the accuracy of the temperature setting depends on the operator. 

Therefore, in this temperature regulation, it is necessary to develop an accurate technique or method based 

on scientific temperature calculations that are acceptable to all parties and the experience of the operator. In 

terms of this mathematical model, there has been a preliminary model of temperature regulation. However, 

further, development is still needed. 

In terms of mathematical model, the fluid considered is nanofluid, e.g. ferrofluid. The nanoferro fluid 

is Newtonian fluid. This nanoferro fluid contains nano-particles (ferroparticles) [1]. The nanoparticle used is 

𝐹𝑒2𝑂3 with water as the base fluid. Meanwhile, magnetohydrodynamics is a science that studies the flow of 

fluids that conduct electricity due to magnetic induction in the fluid [2]. The basic concept of 

magnetohydrodynamics is the induction of a magnetic field capable of conducting electricity in a moving 

conductive fluid. Thus giving rise to the Lorentz force which exerts a force on the fluid and also changes its 

own magnetic field [3]. In this paper, we consider the effect of magnetohydrodynamics is caused by the 

porous sphere's magnetic field and the influence of ferrofluid radiation. 

Many studies have been carried out on the magnetohydrodynamic flow of nanoferro fluid on various 

surfaces, for example, in rectangular channels by Aminfar et al. [4], on inclined plates by Ilias et al. [5], over 

a horizontally rotating disk by Shah et al. [6], through T-shaped ventilated cavities by Jhumur et. al. [7], over 

a cylinder by Reddy et al. [8], through a surface that is a non-linear motion by Jamaludin et. al. [9], as well 

as through solid spherical surfaces by Widodo et. al. [10]. From these literatures, it has been mentioned that 

the volume fraction of air-based ferro particles, thermal radiation, and type parameters are the main factors 

in increasing heat transfer in nanoferro fluids. We, therefore, develop a mathematical model to solve the 

magnetohydrodynamics problem of radiative nanoferro fluid flowing over the surface of a porous magnetic 

sphere. 

 

 

 

2. RESEARCH METHODS 

In this study, the object (bluff body) considered is a porous magnetic ball, as seen in Figure 1. It is 

known that nanoferro fluid flows from bottom to top against the direction of gravity and has a speed of 𝑈∞ 

and a temperature of 𝑇∞ far from the porous magnetic sphere. While 𝑇𝑤 is the temperature on the surface of 

the porous magnetic sphere. 𝑥 is measured anticlockwise from downward vertical along a sphere surface. The 

distances 𝑥 and 𝑦 are measured respectively to the vertical line through the porous magnetic sphere and to 

the surface of the porous magnetic sphere [11]. In this study, the focus area is in front of the lower stagnation 

point of the porous magnetic sphere. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 1. Sketch of a Nanoferro fluid Flow Through a Magnetic Porous Sphere 
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2.1 Developing Dimensional Equation 

In this research, the system is both steady and incompressible. Therefore, the dimensional governing 

equations of continuity, momentum, and energy equation can be expressed as:  
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with the boundary conditions 

�̅� = �̅� = 0, �̅� = 𝑇𝑤   at �̅� = 0 

�̅� = �̅�𝑒(�̅�), �̅� = 𝑇∞  at �̅� → ∞ 

 

where �̅� and �̅� represent the velocity components along the �̅� and �̅� axes, respectively. Furthermore, the 

subscripts 𝑓𝑓 and 𝑓 refer to ferrofluid and base fluid. Then, �̅� is radial distance from the axis of symmetry to 

the spherical surface, 𝐵0 is the magnetic field, 𝜇 is dynamic viscosity, 𝜌 is density, 𝑔 is the acceleration due 

to gravity, 𝜎 is electrical conductivity, 𝛽 is ferrofluid thermal expansion, �̅� is local temperature, 𝜌𝐶𝑝 is 

effective heat capacity, and 𝛼 is heat diffusivity [12]. Furthermore, the Rosseland approximation [13] is used 

where the radiative heat flux, 𝑞𝑟, is defined 

𝑞𝑟 = −
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where 𝜎∗ is the Stefan-Boltzmann constant and 𝑘∗ represents the average absorption coefficient. The 

temperature difference around the flow is assumed to be 𝑇4, which can be further extended in the Taylor 

series as a linear combination of temperatures. Then by expanding 𝑇4 into the Taylor series for 𝑇∞ and 

ignoring the higher-order terms [14], we obtain 𝑇4 = 4𝑇∞
3 𝑇 − 3𝑇∞

4 . Thus, Equation (4) is reduced to 
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2.2 Non-dimensional Equation 

 

The dimensional equations that have been obtained are further transformed into non-dimensional 

equations. We apply non-dimensional variables as follows [15] 
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Furthermore, the non-dimensional parameters are given as follows [10][15][16] 
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where 𝑀 is a magnetic parameter, 𝜆 is a convection parameter, 𝐺𝑟 is a Grashof number, 𝑃𝑟 is a Prandtl 

number, 𝜙 is a porosity parameter, and 𝑁𝑟 is a radiation parameter. By substituting non-dimensional variables 

and non-dimensional parameters into Equations (1), (2), (3), and (5), the following non-dimensional 

equations are obtained as follows, 
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with the non-dimensional boundary conditions 

𝑢 = 𝑣 = 0, 𝑇 = 1  at 𝑦 = 0 

𝑢 = 𝑢𝑒(𝑥), 𝑇 = 0  at 𝑦 → ∞ 

Furthermore, the variables related to nanoferro fluid and base fluid are defined as follows [17][18] 
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where 𝜒 is volume fraction. By substituting these variables into Equations (6) to (9) and by using boundary 

layer theory, then the equation becomes respectively as follows 
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In Equation (12), the pressure 𝑝 does not depend on the variable 𝑦. Thus, the equation for momentum 

exists in the system only on the 𝑥-axis. Furthermore, by defining 𝑢𝑒 as the velocity outside the boundary 

layer, then the momentum equation outside the boundary layer is obtained as follows: 
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2.3 Similarity Equation 

The non-dimensional equations that have been obtained are further converted into similarity equations 

using the stream function. The stream function simplifies the system of equations making computations 

easier. To solve the non-dimensional equation, then the variables are defined as follows [19] 
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Then substituting the stream function into Equations (10), (13), and (14) respectively, we obtain 
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with the boundary conditions 

𝑓(0) = 𝑓′(0) = 0 and 𝜃 = 1 at 𝜂 = 0 

𝑓′(∞) = 1 and 𝜃 = 0  at 𝜂 → ∞ 
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2.4 Numerical Solution 

The similarity equation that has been obtained is then solved using the Keller-Box method. Using the 

procedure described by Cebeci and Bradshaw, the steps of this method are as follows [20]: 

1. Converting second-order or higher-order equations into first-order differential equations. 

2. Discretize by using a finite-difference to the center. 

3. Linearize the discretized equation and write it in vector-matrix form. 

4. Solve a linear system using the tridiagonal-block-elimination method. 

 

 

 

3. RESULTS AND DISCUSSION 

The nanoparticles considered in this study is 𝐹𝑒2𝑂3 with water as the base fluid. Thermophysical 

properties of base fluid and ferroparticles are defined in Table 1 [21]. 

 
Table 1. Thermophysical Properties 

Physical properties Water 𝑭𝒆𝟐𝑶𝟑 

𝜌 (𝑘𝑔/𝑚3) 997.1 5260 

𝐶𝑝 (𝐽/𝑘𝑔 ∙ 𝐾) 4179 570 

𝑘 (𝑊/𝑚 ∙ 𝐾) 0.613 0.58 

 

The simulation results for each parameter variation are described as follows 

 

  
(a) (b) 

Figure 2. (a) Velocity Profile and (b) Temperature Profile with Variation of Magnetic Parameters 

 

Figure 2 show the variation of magnetic parameter, namely 𝑀 =  1.3, 1.8, 2, 2.3. Other parameters 

used are porosity parameter 𝜙 =  1.04, Prandtl number 𝑃𝑟 =  1.7, radiation parameter 𝑁𝑟 =  1, mixed 

convection 𝜆 =  1, and volume fraction 𝜒 =  0.1. The Magnetic parameters are directly proportional to the 

electrical conductivity and magnitude of the magnetic field, but are inversely proportional to the density of 

the fluid. Figure 2(a) shows that the larger the parameters, the lower the velocity profiles of the fluid flow. 

This is occurred as the existence of Lorentz force on the magnetic ball that causes the fluid passing through 

the ball to receive the Lorentz force. Since the magnitude of the Lorentz force is proportional to the magnetic 

parameter, then as the magnetic parameter increases, the Lorentz force also increases. As a result, the Lorentz 

force around the magnetic sphere also increases, thus affecting the decrease in the velocity of the fluid around 

the sphere. Further, in Figure 2(b), it shows that the temperature profile in this flow decreases with increasing 

magnetic parameters. This is due to the decrease in the internal energy of the fluid. The velocity of the fluid 

that decreases results in an increase in fluid density. As the density of the fluid increases, the heat transfer 

that occurs will slow down more and more as the magnetic parameters increase. 
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(a) (b) 

Figure 3. (a) Velocity Profile and (b) Temperature Profile with Variation of Prandtl Numbers 

The Figure 3 depicts the variation of the Prandtl number, namely 𝑃𝑟 = 1, 1.5, 2.5, 3. Other parameters 

used are magnetic parameter 𝑀 = 1.3, porosity parameter 𝜙 = 1, radiation parameter 𝑁𝑟 = 0.5, mixed 

convection 𝜆 = 1, and volume fraction 𝜒 = 0.1. Figure 3(a) shows that the greater the Prandtl number, the 

velocity profile of the fluid flow will decrease. This is occurred because the Prandtl number is inversely 

proportional to the thermal diffusivity but directly proportional to the kinematics viscosity. Thus, the greater 

the Prandtl number, the kinematics viscosity in the fluid will also be greater, so that the viscosity of the fluid 

will increase. As a result, the velocity of the fluid becomes slower or smaller. In Figure 3(b), it further shows 

that the temperature profile of the fluid decreases with the increase in the Prandtl number. This is because 

when the Prandtl number increases, the thermal diffusivity decreases, so that the fluid temperature decreases. 

 

  
(a) (b) 

Figure 4. (a) Velocity Profile and (b) Temperature Profile with Variation of Porosity Parameters 

 

Figure 4 shows the variation of the porosity parameter, namely 𝜙 = 1, 1.5, 2, 2.5. Other parameters 

used are magnetic parameter 𝑀 = 1.3, Prandtl number 𝑃𝑟 = 1, radiation parameter 𝑁𝑟 = 0.5, mixed 

convection 𝜆 = 1, and volume fraction 𝜒 = 0.1. Figure 4(a) shows that the greater the porosity parameter, 

the velocity profile of the fluid flow will decrease. This is occurred because the porosity parameter is directly 

proportional to the dynamic viscosity but inversely proportional to the density of the fluid. Thus, the greater 

the porosity parameter, the dynamics viscosity in the fluid will also be greater. As a result, the velocity of the 

fluid becomes slower or smaller. Further, in Figure 4(b), it shows that the temperature profile of the fluid 

decreases with increasing porosity parameters. This happens because when the fluid velocity decreases, the 

resulting skin friction also decreases, so that the fluid temperature decreases. 
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(a) (b) 

Figure 5. (a) Velocity Profile and (b) Temperature Profile with Variation of Radiation Parameters 

 

Figure 5 shows the variations of radiation parameters are 𝑁𝑟 = 0.5, 0.9, 1, 1.5. Other parameters used 

are magnetic parameter 𝑀 = 1.3, Prandtl number 𝑃𝑟 = 1, porosity parameter 𝜙 = 1, mixed convection 𝜆 =
1, and volume fraction 𝜒 = 0.1. Figure 5(a) shows that the radiation parameters have no effect on the velocity 

profile. This is occurred as radiation dominantly affects the energy equation rather than the momentum 

equation, so this radiation parameter only affects changes in fluid temperature. Then, in Figure 5(b), it shows 

that the greater the radiation parameter, the temperature profile of the fluid also increases. This is occurred 

because the increase in the value of the radiation parameter has a tendency to increase the conduction effect 

and provide a level of dominance of the heat source, thus causing the fluid temperature increases. 

The simulation results are validated with research that has been produced by [22]. 

 

 

 

4. CONCLUSIONS 

Based on the analysis and discussion that has been carried out using several variations of parameters, 

namely magnetic parameters, Prandtl number, porosity parameters, and radiation parameters on ferrofluid 

nanoparticles 𝐹𝑒2𝑂3, it can be concluded that: 

a. When the magnetic parameters increase, the velocity profile and temperature profile decrease. With 

the variation of magnetic parameters given is 𝑀 = 1.3, 1.8, 2, 2.3. 

b. When the Prandtl number increases, the velocity profile and temperature profile decrease. With the 

given variation of Prandtl numbers is 𝑃𝑟 = 1, 1.5, 2.5, 3. 

c. When the porosity parameters increase, the velocity profile and temperature profile decrease. With 

the variation of the given porosity parameter is 𝜙 = 1, 1.5, 2, 2.5. 

d. As the radiation parameters increase, the temperature profile increases, but radiation does not exert 

an influence on the velocity profile because the dominant radiation affects the energy equation rather 

than the momentum equation. With variations in the radiation parameters given are 𝑁𝑟 =
0.5, 0.9, 1, 1.5. 
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