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Abstract. One of the problems in modeling multivariate time series is stationary. Stationary test results do not always 

produce all stationary variables; mixed stationary and non-stationary variables are possible. When stationary 

problems are found in multivariate time series modeling, it is necessary to evaluate the model's performance in 

various stationary conditions to obtain the best forecasting model. This study aims to get a superior multivariate time 

series forecasting model based on the goodness of the model in various stationary conditions. In this study, the 

evaluation of the model's performance through simulation data modeling is then applied to the actual data with a 

stationary problem, namely Bogor City inflation data. The best model in simulation modeling is based on the stability 

of RMSE and MAD in 100 replications. The results are that the VAR model is the best in various stationary conditions. 

Meanwhile, the best model on actual data modeling is based on evaluation in 4 folds for model fitting power and 

model forecasting power. The Bogor City inflation data modeling with the mixed stationary problem resulted in the 

best model, namely the VAR(1) model. This means the VAR model is good enough to be used as a forecasting model 

in mixed stationary conditions. Thus, in this study, based on the goodness of the model in two modeling scenarios in 

various stationary conditions, overall, it was found that the VAR model was superior to the VARD and VECM models.  
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1. INTRODUCTION 

In modeling multivariate time series data, there are several model choices, including the vector 

autoregressive (VAR) model, vector autoregressive with differencing (VARD), and vector error correction 

model (VECM). Stationarity can be a problem in time series modeling, so testing is necessary. In addition to 

visual, stationary testing can be carried out with formal tests, including the augmented Dickey-Fuller (ADF) 

test [1]. The results of the ADF test do not always result in all variables being stationary as expected. Another 

possibility is to produce a mixed stationary variable, or all variables are not stationary. 

Multivariate time series data are increasingly available in various fields, for example, in the economic 

area, namely inflation data. When economic conditions are unstable, one of the indicators is inflation. This 

phenomenon causes problems that can affect regional and national economic growth [2]. Inflation is an 

essential focus of the regional (TPID) and national (TPIN) inflation control teams, so the inflation rate needs 

to be controlled. One of the efforts to control inflation is to predict future inflation. This means that a good 

forecasting model is required to control inflation. 

Previous studies include [3] analyzing the cointegration and causality of Engel Granger deposit interest 

rates, changes in the IDR/USD exchange rate, and stock market returns on the Jakarta Stock Exchange. [4] 

analyzed the autoregressive vector (VAR) on the interrelationship between the financing deposit ratio (FDR) 

and returned on assets (ROA) in Islamic banks in Indonesia. [5] analyzed the influence of the supplier region 

area on the price of red chilli in DKI Jakarta using VECM. [6] modeled and predicted export data for 

agricultural commodities using the VAR model. [7] A stationary test of the Padang city inflation data for 

2014-2019. [8] driven multivariate modeling of tourist visits to Indonesia through air, sea, and land gates 

involving the impact of the covid 19 outbreak.  

 The difference between this research and previous research is that previous research has not done 

modeling with simulation data. Besides, the actual data modeling has not been evaluated in various scenarios 

of multivariate time series models and different stationary conditions. Based on these differences, modeling 

with simulation data was carried out in this study, and the modeling was evaluated in various stationary 

conditions and scenarios of multivariate time series models. The simulation data modeling was assessed on 

100 replicates in various stationary conditions and multivariate time series model scenarios. It aims to obtain 

stability of model performance in different multivariate time series modeling scenarios. In addition, the actual 

data modeling applies the K-fold concept to get the best model in various conditions from the same data [9]. 

Furthermore, it is used for the actual data containing the stationary problem, namely the case of Bogor City 

inflation data. The accuracy of the model performance evaluation results is based on the smallest RMSE value 

for the evaluation of model fitting power and forecasting power. This study aims to obtain a multivariate time 

series forecasting model that excels in various stationary conditions or when there is a stationary problem in 

multivariate time series data. So that the advantage of this study is that a multivariate time series forecasting 

model is obtained that is superior in various stationary conditions. 

 

 

 

2. RESEARCH METHODS 

This study uses simulation data and actual data. Actual data obtained from the Central Bureau of 

Statistics Indonesia (BPS) is multivariate time series data in the form of monthly inflation data in the foodstuff 

group from January 2014 to December 2019. The variables used in the modeling are limited to three variables, 

namely preserved fish (𝑦1), fresh fish (𝑦2) and vegetables (𝑦3).  Modeling simulation data in 100 replications 

evaluated the multivariate time series model. It aims to obtain the stability of the best model performance in 

three modeling scenarios in various stationary conditions. Furthermore, it is applied to the actual data 

containing the stationary problem, namely the case of inflation data for the Bogor City food ingredients group. 

The accuracy of the model performance evaluation results is based on the smallest RMSE value for the 

evaluation of model fitting power and forecasting power. 

 

2.1 Modeling Using Generated Data or Simulation Data  

The stages of analysis in modeling with simulation data are 
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a. The first stage is to generate simulation data. 

b. Simulation data is generated by following the VAR(1) model with three variables. The length of the 

observation period (𝑡) of the generated data is 240-time points. 

c. The scenario used in the simulation is that all variables are stationary, the variables are mixed 

stationary, and all variables are not stationary. 

d. Tested for stationery using Augmented Dickey-Fuller (ADF) test. 

e. Performed multivariate time series modeling for each scenario. 

f. Evaluate the three models by calculating the RMSE and MAD values 

g. The process is repeated 100 times to obtain the best model. 

 

2.2 Modeling with Actual Data 

The stages of analysis in modeling with actual data are 

a. Data exploration 

This stage aims to see the data pattern from all variables or to present an overview of the data [7], 

[10].  

b. Stationary test  

The hypothesis used in the ADF test is 

𝐻0 : data contains unit root or is not stationary (𝐴 = 0) 

𝐻1 : data does not contain unit root or is stationary (𝐴 < 0) 

The test statistic:   

𝑡𝑡𝑒𝑠𝑡 =
𝐴

𝜎�̂�

                                                                                                                            (1) 

where 𝐴 is the intercept, �̂� is the estimated value of 𝐴, and 𝜎 is the standard deviation of �̂�. The 

criteria for rejecting 𝐻0 are if the p-value < 𝛼 = 5%. It shows that the observed time series data does 

not contain unit roots or stationary data. Otherwise, the decision accepts 𝐻0. It shows that the 

observed time series data contains unit roots or the data is not stationary [6], [10], [11]. When non-

stationary results are obtained, differencing is performed [10], [11]. 

According to [10] and [12], cointegration occurs when the movement pattern is the same between 

periods in a long period on a time series variable. The cointegration test used is the Johansen 

cointegration test with trace test type. The test's null hypothesis (𝐻0) is that there is no cointegration 

equation between variables. The alternative hypothesis (𝐻1) states that at least one cointegration 

relationship is formed between time series variables.  

c. Determination of optimum lag 

[12] generally presents the criteria used to determine the lag length of the VAR model, namely the 

Akaike criteria (AIC), Schwarz criteria (SC), Hannan-Quinn criteria (HQ), and the final prediction 

error (FPE) criteria. The following are the criteria for determining the length of the lag in multivariate 

time series: 

𝐴𝐼𝐶(𝜌) = ln|Σ(𝜌)| +
2

𝑇
𝜌𝑠2                                                                                                 (2) 

𝑆𝐶(𝜌) = ln|Σ(𝜌))| +
ln 𝑇

𝑇
𝜌𝑠2                                                                                               (3)  

𝐻𝑄(𝜌) = ln|Σ(𝜌))| +
2 ln(ln 𝑇)

𝑇
𝜌𝑠2                                                                                      (4) 

𝐹𝑃𝐸(𝜌) = [
𝑇+𝑠𝜌+1

𝑇−𝑠𝜌−1
]

𝑘
|∑(𝜌)|                                                                                                (5)  
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where Σ(𝜌) is the covariance matrix, 𝑠 is the number of variables, 𝑇 is the number of observations, 

and 𝑝 is the order. The optimal lag length is obtained when the criteria are used to produce the smallest 

value [13], [14]. The lag selection in the VAR model is also known as the order selection of the VAR 

model. 

d. Multivariate time series modeling (VAR, VARD, VECM) 

According to [1], [10], [15], [16], [17], [18] the VAR model is a system of regression equations in 

which each variable is regressed against other variables, including the variable itself at the previous 

time point. The general form of the VAR (𝑝) model is as follows:  

𝒚𝑡 = 𝑨0 + 𝑨1𝒚𝑡−1 + 𝑨2𝒚𝑡−2 + ⋯ + 𝑨𝑝𝒚𝑡−𝑝 + 𝒖𝑡 , 𝑡 = 1, … , 𝑇                                          (6) 

Equation (6) can be written in the form:  

𝒚𝑡 = 𝑨0 + ∑ 𝑨𝑖𝒚𝑡−𝑖 + 𝒖𝑡
𝑝
𝑖=1                                                                                                  (7) 

with 𝒚𝑡 , 𝒚𝑡−𝑖   is a vector of size (𝑛 × 1). It contains 𝑛 variables included in the VAR model at times 

 𝑡 and 𝑡 − 𝑖, where 𝑖 = 1,2, … 𝑝, and 𝑝 is the order of VAR, and 𝑡 is the observation period. 𝑨0 =
(𝐴10, 𝐴20, … , 𝐴𝑛0)′ is an intercept vector of size (𝑛 × 1). 𝑨𝑖 is a coefficient matrix of size (𝑛 × 𝑛), 

and 𝒖𝑡 = (𝑢1𝑡 , 𝑢2𝑡 , … 𝑢𝑛𝑡)′ is a white noise error vector of size (n×1).  

The VAR (𝑝) model is developed into a vector error correction model (VECM) when the data is not 

stationary and has one or more cointegration relationships. [1], [6], [10], [16] present the general form 

of VECM as follows: 

∆𝒚𝑡 = 𝑨0 + 𝝅𝒚𝑡−1 + ∑ 𝚪𝑖∆𝒚𝑡−𝑖 + 𝒖𝑡
𝑝−1
𝑖=1                                                                               (8) 

with ∆ is the difference operator where ∆𝒚𝑡 = 𝒚𝑡 − 𝒚𝑡−1, and 𝒚𝑡−1 is a time series variable vector in 

the first lag of size (𝑛 × 1). 𝑨0 is an intercept of size (𝑛 × 1), 𝝅 is a cointegration coefficient matrix 

of size (𝑛 × 𝑘),  𝚪𝑖 is a coefficient of the ith-variable matrix of size (𝑛 × 𝑛), with 𝑖 = 1,2, … 𝑝 − 1, 

and 𝒖𝑡 is an error vector of size (𝑛 × 1). 

e. Evaluation of the goodness of model 

According to [18] and [19] , the Root Mean Squared Error (RMSE) can measure the goodness of the 

model. RMSE is the amount of deviation from the predicted value to the actual value. RMSE is 

formulated as follows:  

𝑅𝑀𝑆𝐸 = (
∑ (𝑦𝑡−�̂�𝑡)𝑛

𝑡=1

𝑛
)

1/2

                                                                                                        (9) 

where 𝑦𝑡 is the observed value at time 𝑡,  and �̂�𝑡 is the estimated value at time 𝑡. Other measures, 

such as the Akaike Information Criterion (AIC) and Mean Absolute Deviation (MAD). The goodness 

of the model can be determined by the smallest value of RMSE, AIC, or MAD [18], [20].       

f. Impulse response function (IRF) and forecast error variance decomposition (FEVD) testing [5], [17].   

g. Diagnostic test on the best model [20]. 

h. Forecasting using the best model 

 

 

 

3. RESULTS AND DISCUSSION 

3.1 Modeling on Simulation Data 

The study of the multivariate time series model on the simulation data starts with generating three 

variables 𝑦𝑡 which will be modeled following the VAR(1) model. Previously, generated random numbers 

following the standard normal distribution 𝑢𝑡~𝑁(0,1) of 300 data for each variable. Then determine the 

initial value of the data at time 𝑡 = 1. Furthermore, the data burning process is carried out by removing the 

first 60 data of 𝑦𝑡 on each variable so that the length of the observation period (𝑡) of simulation data is 240-

time points. Furthermore, the stationarity test was carried out on the variables. Finally, modeling is carried 

out with three scenarios.  
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3.1.1 Scenario 1: All variables are not stationary  

 The first scenario in this study is modeling with all non-stationary variables. This modeling begins 

with the generation of simulation data on the condition that all variables (𝑦1, 𝑦2, 𝑦3) are not stationary. Next 

are VAR, VARD, and VECM modeling. The performance of the three models was evaluated based on the 

stability of the RMSE and MAD in 100 replicates. The results of the performance evaluation of the three 

models in 100 replications are presented in Figure 1. 

  

    
 (a) (b) 

 

            
                     (c) (d) 

Figure 1. Evaluation of the Three Models when All Variables are not Stationary (a) RMSE Stability on Three 

Models, (b) MAD Stability on Three Models,   (c) Best Model Based on RMSE, (d) Best Model Based on MAD 

 
Figures 1(a) and 1(b) show the stability of the performance of the three models based on the evaluation 

of RMSE and MAD in 100 replications. The results show that the VAR and VECM models perform almost 

equally well. Figures 1(c) and 1(d) present the best model in 100 replications. The results obtained by the 

VAR model as the best model based on the RMSE evaluation. This is obtained when all non-stationary 

variables are different. Meanwhile, based on the MAD evaluation, the best model was obtained, namely, the 

VECM model, when no differencing was performed on all variables. So, in this scenario simulation, it can 

be said that the VAR model has almost as good a performance as VECM. It means that the VAR model is 

still suitable for modeling with the condition that all variables are not stationary. 

 

3.1.2 Scenario 2: Mixed stationary variable 

The second scenario is modeling with mixed stationary variables. This scenario simulation modeling is 

the same as the first scenario simulation modeling process, but 𝑦1, 𝑦2, and 𝑦3are generated with mixed 

stationary conditions. The results of the evaluation of the performance of the VAR, VARD, and VECM 

models in 100 replications under mixed stationary conditions are presented in Figure 2.   
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                    (a)  (b)       

  

       
 (c) (d)  

Figure 2. Model Evaluation in Mixed Stationary Scenario, (a) RMSE Stability on Three Models, (b) MAD 

Stability on Three Models,  (c) Best Model Based on RMSE, (d) Best Model Based on MAD                                                           

 
Figures 2(a) and 2(b) show the stability of the three models based on the evaluation of RMSE and 

MAD in 100 replicates. The results show that the RMSE in the VAR and VECM models are almost the same, 

while the MAD values for the three models are almost the same. The best model in 100 replications is shown 

in Figures 2(c) and 2(d). The results obtained by the VAR model as the best model based on the RMSE 

evaluation. Meanwhile, based on the MAD evaluation, the best model was obtained, namely the VARD 

model. These results were obtained when the non-stationary variables were differencing at order 1. This 

means that in this scenario simulation, it can be said that the VAR model has almost as good a performance 

as the VARD. Thus, the VAR model is still well used in modeling with mixed stationary conditions. 
 

3.2 Modeling on Secondary Data (Actual Data) 

The actual data used is the inflation data for the Bogor City foodstuff group from January 2014 to 

December 2019. The variables used are limited to three variables, namely preserved fish (𝑦1), fresh fish (𝑦2), 

and vegetables (𝑦3) . The stages in this modeling begin with actual data exploration, stationary testing, 

dividing the data 4-fold, determining the optimal lag, modeling with three scenarios, diagnostic test for the 

best model, testing IRF and FEVD, and forecasting.  

 

3.2.1 Data Exploration 

 

Stationarity can be checked visually through data exploration. The results of the exploration of the 

three variables show that the variable 𝑦1 is not stationary, while the variables 𝑦2 and 𝑦3 are already 

stationary. The results of data exploration are presented in Figure 3 below:   
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(a)  

  

 
(b)  

Figure 3. Exploration on Bogor City Inflation Data, (a) Bogor City Foodstuffs Group Inflation 

Exploration, (b) ACF and PACF Plot 

 

Based on Figure 3(a), the inflation that occurs in foodstuffs 𝑦1 and 𝑦2 has a relatively small variation 

compared to inflation in 𝑦3. However, the three foodstuffs did not show an uptrend or a downtrend. Based 

on the ACF plot in Figure 3(b) shows the ACF, PACF, and CCF plots in descending order. Based on the 

ACF plot, it can be seen that the 𝑦1 variable has a cuts-off pattern after the k-th lag, while the 𝑦2 and 𝑦3 

variables have a tails-off pattern with cosine-shaped. Based on the PACF plot, the three variables show the 

same tails-off pattern. The CCF plot shows the close relationship between the two variables where the 

variables 𝑦1 and 𝑦3 do not show any signs of any lag. Meanwhile, between the variables 𝑦2 and 𝑦3, the CCF 

plot looks significant at the eighth lag, which shows a significant relationship between the two variables 

after eight periods. 

 

3.2.2 Stationary Test  

Figure 3 shows an indication of non stationarity in the PF variable. Furthermore, the stationarity check 

was carried out with a formal test, the ADF test. The results of the stationary test on the three variables with 

the ADF test are presented in Table 1. 

Table 1. Variable Stationary Test 

Variable 
Level    Description 

Stationary  ADF Test Statistic P- value 

𝒚𝟏 -4.1084 0.0213 Not stasionary 

𝒚𝟐 -4.9116 0,01* Stasionary 

𝒚𝟑 -4.5345 0,01* stasionary 
       *Significant at level 0.01 
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Table 1 shows that the variable 𝑦1 (PF) is not stationary at a significant level of 1%, while 𝑦2 and 𝑦2 

are stationary. This means that the inflation data for the Bogor City foodstuff group contains a stationary 

problem.  

3.2.3 Multivariate Time Series Modeling (VAR, VARD, VECM) and Evaluation 

The next step is to obtain the best multivariate time series forecasting model in various stationary 

conditions. Then two modeling scenarios are carried out in various stationary conditions, namely, non-

stationary and mixed stationary variables. The next stage is to divide the data into 4-fold. The data for each 

fold is divided into training data and testing data. Furthermore, three scenarios were modeled and evaluated 

based on model-fitting and forecasting power. The evaluation results for each fold are presented in Table 2 

and Table 3. 

 
Table 2.  Evaluation Results of Model Fittings on Four Folds 

Fold RMSE MAD 

VAR VARD VECM VAR VARD VECM 

1st 1.52 1.92     1.56     2.25  3.60 2.38 

2nd 1.54 1.94    1.59  2.33    3.70 2.47 

3rd  1.60     2.06 1.65       2.53 4.17 2.67 

4th  1.73 2.12  1.77  2.95   4.43 3.08 

 
Table 2 presents the results of the evaluation of the model fitting power for three multivariate time 

series modeling scenarios at 4-fold. The evaluation results indicate that the VAR model is the best. 

Furthermore, the results of the evaluation of the 4-fold forecasting power are presented in Table 3. 

 
Table 3. Forecasting Power Evaluation Results on Four Folds  

Fold RMSE MAD 

VAR VARD VECM VAR VARD VECM 

1st 1.87 2.55      1.90     3.21 5.55 3.29 

2nd 2.48 3.73     2.35 5.48 11.90 5.35 

3rd  3.45      2.61  3.31     10.80     6.33    10.60 

4th   2.63       4.78   2.58 6.34    19.60 7.28 

 

The results of the evaluation of forecasting power in Table 3 show that there is a difference in the best 

model, although it appears that the VAR model is still better. Furthermore, the best overall model at 4-fold 

based on RMSE and MAD was obtained on average. The evaluation results based on fitting power and 

forecasting power as a whole are presented in Table 4. 

Table 4. Overall Fitting Power and Forecasting Power Evaluation Results 

Model 
    Fitting Power      Forecasting Power  

RMSE MAD               RMSE MAD 

   VAR            1.60      2.51                    2.61      6.45 

    VARD              2.01      3.97                    3.42      10.9 

    VECM              1.64        2.65                    2.53      6.64 

 

In Table 4, the power fitting model based on RMSE and MAD is evaluated. Overall the VAR model 

is obtained as the best model. The evaluation of forecasting power based on MAD obtained the best model, 

namely the VAR model. Meanwhile, based on RMSE obtained, VECM is the best model. In the case of this 

study, the VAR model is still chosen as the best model because RMSE is sensitive to outliers. Based on the 

best 4-fold model, the VAR model is used in the second modeling stage. 

VAR modeling at this stage uses all data, starting with determining the optimal lag; the results obtained 

are lag one. It means that the modeling in the second stage uses the VAR(1) model. Next, estimate the 

parameters of the VAR(1) model, then form the VAR(1) model. So the VAR(1) model for the inflation data 

for the Bogor City food group is 

                           𝑷𝑭 = 𝟎. 𝟒𝟎𝟕𝟖 + 𝟎. 𝟐𝟕𝟏𝟕𝑷𝑭𝒕−𝟏 + 𝟎. 𝟎𝟗𝟏𝟒𝑭𝑭𝒕−𝟏 − 𝟎. 𝟎𝟎𝟕𝟑𝑽𝑮𝒕−𝟏     

                             𝐹𝐹 = 0.4865 − 0.1544𝑃𝐹𝑡−1 + 0.0155𝐹𝐹𝑡−1 + 0.1120𝑉𝐺𝑡−1 
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                             𝑉𝐺 = 0.5339 − 0.0526𝑃𝐹𝑡−1 + 0.071𝐹𝐹𝑡−1 + 0.1080𝑉𝐺𝑡−1 

The next stage is the diagnostic test on the VAR(1) model; the results obtained indicate that the VAR 

model has met the assumptions of non-autocorrelation and homoscedasticity. Thus, in this study, it can be 

concluded that the VAR model is a feasible multivariate time series forecasting model. 

The following stage tests the Impulse response function (IRF) and Forecast Error Variance 

Decomposition (FEVD) on the best multivariate time series forecasting model. IRF was conducted to find 

out how the shock effect of a variable on the variable itself and other variables. Meanwhile, FEVD estimates 

how much a variable contributes to the variable itself and other variables in the following several periods, 

with its value measured in percentage terms. The results of the two tests are presented in Figure 4 and Figure 

5. 

           
        (a)                 (b)               (c)   

Figure 4.  IRF on VAR (1) Models, (a) Impulse Response on PF, (b) Impulse Response on FF, 

(c)  Impulse Response on VG 

 

Figure 4(a) shows that the variable PF responded positively to the shock that occurred to oneself, which 

was quite large at the beginning of the period, and decreased from the second period, then the response given 

disappeared with increasing time. The FF variable tends to give a negative response to the shock in the PF 

variable in the initial three periods, and then the given response disappears in the long term. While the VG 

variable gave a positive response that was not too large at the beginning of the period, the response 

disappeared with increasing time. 

Figure 4(b) shows that the PF variable did not respond tremendously to the shock that occurred in the 

FF variable in the following two periods. The given response disappeared with increasing time. While the FF 

variable responded positively to the shock that occurred in the variable itself, which was quite prominent in 

the initial two periods, the response disappeared with increasing time. Furthermore, the VG variable gave a 

not too large response to the shock that occurred in the FF variable at the beginning of the period, then gave 

a slightly negative response in the second period, then the response given disappeared with increasing time. 

Figure 4(c) shows that the PF variable did not respond to the shock that occurred in the VG variable 

from the beginning of the period to the long period. While the FF variable gave a slightly positive response 

to the shock in the VG variable in the initial two periods, the response given decreased. In the long term, the 

response disappeared. Next, the best model FEVD test results are presented in Figure 5. 

 

        
Figure 5. FEVD on VAR (1) Models  
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Figure 5 presents the FEVD results for all variables. The first FEVD shows the variables that are 

estimated to have a significant contribution to the FF variable in the next 15 months, namely the FF variable 

itself, with an average monthly contribution of more than 95%, followed by the VG variable, which has an 

average contribution of less than 10%. In contrast, the second FEVD shows the variable estimated to have a 

significant contribution to the PF variable in the next 15 months, namely the PF variable itself, with an 

average monthly contribution of almost 100%. Furthermore, the last FEVD shows the variable estimated to 

significantly contribute to the VG variable in the next 15 months, namely the VG variable itself, followed by 

the FF variable of less than 5%. The last stage in modeling is forecasting the following few periods using all 

actual data. The results of the comparison of actual data, estimated values, and forecasting results are 

presented in Figure 6.           

       

 
(a)  

 

 
(b)  
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(c)  

Figure 6.  Comparison of Actual Data, Fitted Value and Forecast Value, (a) Comparison of Actual Data, 

Fitted Value and Forecast Value for PF, (b) Comparison of Actual Data, Fitted Value and Forecast Value for 

FF, (c) Comparison of Actual Data, Fitted Value and Forecast Value for VG 

 

Based on Figure 6(a), the model estimates the inflation value for the variable PF with a minor variance 

from the actual data. This can be seen from the width of the plot of the estimated value is smaller than the 

actual data. However, based on the plot pattern between the estimated value and the actual data, it shows a 

similarity with the accuracy based on RMSE of 0.9303 and MAD of 0.7071. The forecast results show that 

inflation in the PF variable will decrease in January 2020 compared to December 2019. Then it will increase 

in February and March 2020, then experience a slight decrease, and the next inflation forecast will increase 

steadily in the following few periods.  

Figure 6(b) presents a composite plot of FF estimates for inflation with a minor variance from the actual 

data. This can be seen from the width of the plot of the estimated value is smaller than the actual data. 

However, based on the plot pattern between the estimated value and the actual data, it shows a similarity with 

the accuracy based on RMSE of 1.3784 and MAD of 1.0596. The forecast results show that inflation in the 

FF variable decreased in January 2020 compared to December 2019. Then it increased slightly in February 

2020 and then decreased in March 2020, then the next inflation forecast looks constant after several periods 

ahead. 

Figure 6(c) presents a combined VG plot of estimated inflation values with a minor variance compared 

to the actual data. This can be seen from the width of the plot of the estimated value is smaller than the actual 

data. Based on the plot form, the estimated value and the actual data still show similarities, although not 

precisely the same, with an accuracy based on RMSE of 3.1822 and MAD of 2.4810. The results of the 

inflation forecast showed a decline in January 2020 compared to December 2019, then experienced a 

relatively high increase in February. The next inflation forecast will decline in the next three months, then be 

seen to be constant in the following several periods. 

 

 

 

4. CONCLUSIONS 

In this study, a superior multivariate time series forecasting model was obtained based on the model's 

goodness in various stationary conditions. The evaluation of the multivariate time series model on simulation 

modeling in various stationary conditions is that the vector autoregressive (VAR) model is the best model. 

This is indicated by the stability of the performance of the VAR model in 100 replications. Evaluating 

inflation data modeling in Bogor City with mixed stationary conditions showed that the VAR model was the 

best multivariate time series, forecasting model. This is based on the value of two measures of model 

goodness for evaluating model fitting power and forecasting power. The multivariate time series model that 

is formed on the inflation of the foodstuff group in Bogor City is the VAR(1) model. This means the VAR 

model is good enough to be used as a forecasting model in mixed stationary conditions. Thus, in this study, 

based on the goodness of the model in two modeling scenarios in various stationary conditions, overall, it 
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was found that the VAR model was superior to the VARD and VECM models. The limitation of this study 

is that the outlier effect is not handled further, so for future studies, it is possible to add outlier effects and 

increase the number of replications in the simulation modeling. 
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