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Abstract.  

This research develops an optimal control as an effort to push down the widely of Covid-19 with a mathematical 

model. Where, the problem of optimal control is conducted by adding three control variables, i.e an effort to avoid 

direct contact between the susceptible populations without masks and the infected populations without masks, and 

the thoughtfulness of a mask-wearing policy. The primary goal of optimal control is to minimize the infected 

populations without and with masks, and minimize the cost of weight control. Furthermore, if it applies Pontryagin's 

principle and discovers the Hamiltonian function, then optimal control conditions for the COVID-19 approximation 

are determined. Finally, as an addition to the model analysis results, numerical simulations are conducted to 

represent the solutions behavior of each subpopulation before and after the control was designed. 

Keywords: Optimal Control, Covid-19, Quarantine Population, Health Mask Strategic, Pontryagin’s Principle, 

Numerical Simulations. 
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1. INTRODUCTION 

The worldwide population was shocked toward the end of 2019 by a malignant disease infection caused 

by a viral genome, specifically Coronavirus Disease 2019 (COVID-19) [1], [2]. Previously, the Coronavirus 

was responsible for more serious outbreaks, such as the Middle East Respiratory Syndrome Coronavirus 

(MERS-CoV) in 2012 and the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) in 2003 [3]. 

COVID-19 is a pulmonary syndrome infection characterized by the SARS-CoV-2 Coronavirus [4]. In 

general, the contagion of this virus occurs through droplets on a person or objects between one and two 

meters, by coughing and sneezing [5]. In reference to World Health Organization (WHO), the COVID-19 

epidemic was first detected on December 31, 2019, in Wuhan, China [6]. Furthermore, the World Health 

Organization realized on March 11, 2020, that COVID-19 had infected nearly 118,000 humans worldwide, 

spreading widely through 114 countries. As a result, the WHO has declared COVID-19 a worldwide hazard, 

assuming that it has spread globally [7]. Whereas, on March 2, 2020, Indonesia verified the first occurrence 

of COVID-19, involving two Indonesian people who positive test again for Coronavirus, it has been 

transmitted by a Japanese peoples [8]. Unfortunately, the spread of the coronavirus in Indonesia remained 

until the end of 2021. Following that, the coronavirus spread started to slow in the first quarter of 2022. 

However, the spread of COVID-19 infectious began to rise in May 2022. 

Considering the state of Indonesia, regulating the spread of the coronavirus is crucial. Strategies to 

control the spread of COVID-19 in Indonesia are being made through the implementation of a health protocol 

policy, as known Using Masks, Washing Hands, and Maintaining Distance, Staying Away from the Crowds, 

and Limiting Mobility and Interaction). In reference to Wuhan, COVID-19 prevention initiatives, the 

Republic of Indonesia's government has implemented an isolation policy or a quarantine for infected 

individuals [8]–[11]. With the goal of avoiding contact between the infected populations and the community 

at large. On the other hand, quarantine policies are also carried out by countries around the world in the non-

essential sector, while the critical sector continues to function as before [12]. Assuming that the COVID-19 

spread can be controlled, it has been shown that the quarantine strategy resulted in a decrease in infected 

cases. Moreover, based on the phenomenon of the state government policies in handling COVID-19. In 

addition, the epidemiologist attempt to fund studies using a mathematical model approach [13]–[17]. 

The 𝑆𝐼𝑅 compartment mathematical model was presented by Kermack and McKendrick in 1927 as the 

first epidemic model [18]. Further, it become the foundational model in research on the transmission of 

COVID-19, and the mathematical concept involved in Kusumo et al. [19], Husniah et al. [20], Kurniawan et 

al. [7], Sihotang et al. [21], Fatmawati et al. [22], Husniah et al. [23], and Nuraini et al. [24]. Then, a 

quarantine policy and isolation are used to design a mathematical model by Manaqib et al. [8], Ali et al. [9], 

Batista et al. [10], Musafir et al. [11], and Khan et al. [12], to investigate the spread of the corona disease. 

Supplementary information is a systematical model of COVID-19 with a vaccination effect in a compartment 

[11], [25]. The mathematical model was especially redeveloped by incorporating the use of masks in an effort 

to minimize the COVID-19 epidemic [8]. 

As far as we know from above, some control needs to be performed by applying the optimum control 

problem. The optimal control problem is applied in controlling the spread of Malaria disease [26], 

Tuberculosis and HIV [27], [28], and Cervical Cancer Model [29]. Additionally, the implementation of 

optimal control was also carried out in controlling Cholera [30], Hepatitis B [31], [32], and Measle [17], [33], 

[34]. Based on previous research, which applied the optimal control problem as a disease control tool. In this 

study, the model was organized as a procedure to prevent the escalation of COVID-19 by adding control 

variables in research model by Manaqib et al. [8]. The sections of this work are arranged as follows. The 

development of the research methods and the model are resolved in Section 2, followed by results and 

discussion in Section 3. Part 3, is divided into three sections, and section 3.1, describes the reconstruction of 

the Covid-19 model with control variables. The terms and conditions of optimal control are exhausted in 

Section 3.2. While, part 3.3, discusses a numerical simulation and its interpretation. Finally, in Section 4, we 

make some closing observations. 

 

 

 

2. RESEARCH METHODS 

In this work, we adopt a transmission epidemic COVID-19 model by Manaqib et al. [8]. The model is 

divided into the following subpopulation, i.e. susceptible without a mask (𝑆1), susceptible with mask (𝑆2), 
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infected without a mask (𝐼1), infected with a mask (𝐼2), quarantine (𝑄), and the recovery subpopulations (𝑅). 

This compartment can be characterized by using the mathematical model of a nonlinear differential equation. 

According to the compartment model used in [8], the variable 𝑅 does not affect to other populations. 

Therefore, the model reduction can be carried out as follows: 

𝑑𝑆1(𝑡)

𝑑𝑡
= 𝜇 + 𝜂1𝑆2(𝑡) − (𝜇 + 𝜂1)𝑆1(𝑡) − 𝛽𝑆1(𝑡)𝐼1(𝑡) 

𝑑𝑆2(𝑡)

𝑑𝑡
= 𝜂1𝑆1(𝑡) − (𝜇 + 𝜂2)𝑆2(𝑡) 

𝑑𝐼1(𝑡)

𝑑𝑡
= 𝛽𝑆1(𝑡)𝐼1(𝑡) + 𝜂2𝐼2(𝑡) − (𝜂1 + 𝜇 + 𝛾 + 𝛼)𝐼1(𝑡) 

𝑑𝐼2(𝑡)

𝑑𝑡
= 𝜂1𝐼1(𝑡) − (𝜂2 + 𝜇 + 𝛾 + 𝛼)𝐼2(𝑡) 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛼(𝐼1(𝑡) + 𝐼2(𝑡)) − (𝜇 + 𝛾 + 𝜃)𝑄(𝑡) 

(1) 

 

Based on the equation system (1), a model modification was performed by considering three control 

variables, namely 𝑧1(𝑡) as an effort to control direct contact between susceptible populations without masks 

and infected populations without masks. The variable 𝑧2(𝑡), represents an effort to prevent COVID-19 by 

requiring infected populations to use masks, and the control 𝑧3(𝑡) represents a responsibility for susceptible 

groups to constantly wear masks. Furthermore, the following methods may be used to deal with the problem 

of optimal control of the COVID-19 spread model: 

1. Develop a Covid-19 model with variable control 𝒛𝟏(𝒕), 𝒛𝟐(𝒕), and 𝒛𝟑(𝒕). 

2. Determine the objective function to minimize the infected populations without masks and infected 

populations with masks. 

3. By using the Pontryagin Minimum Principle to examine the best solution for optimal control. 

4. Define the state systems, adjoint systems, and stationary conditions. 

5. Using Matlab software, to describe the behavior solution an optimal control problems.  

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Mathematical Model 

In this segment, we consider a mathematical problem of covid-19 with variable control, which is 

organized as follows: 

 
𝑑𝑆1(𝑡)

𝑑𝑡
= 𝜇 + 𝜂1𝑆2(𝑡) − (𝜇 + 𝜂1)𝑆1(𝑡) − (1 − 𝑧1(𝑡))𝛽𝑆1(𝑡)𝐼1(𝑡) − 𝑧2(𝑡)𝑆1(𝑡) 

𝑑𝑆2(𝑡)

𝑑𝑡
= 𝜂1𝑆1(𝑡) + 𝑧2𝑆1(𝑡) − (𝜇 + 𝜂2)𝑆2(𝑡) 

𝑑𝐼1(𝑡)

𝑑𝑡
= (1 − 𝑧1(𝑡))𝛽𝑆1(𝑡)𝐼1(𝑡) + 𝜂2𝐼2(𝑡) − (𝜂1 + 𝜇 + 𝛾 + 𝛼)𝐼1(𝑡) − 𝑧3(𝑡)𝐼1(𝑡) 

𝑑𝐼2(𝑡)

𝑑𝑡
= 𝜂1𝐼1(𝑡) − (𝜂2 + 𝜇 + 𝛾 + 𝛼)𝐼2(𝑡) + 𝑧3(𝑡)𝐼1(𝑡) 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝛼(𝐼1(𝑡) + 𝐼2(𝑡)) − (𝜇 + 𝛾 + 𝜃)𝑄(𝑡), 

 

(2) 

where 𝑧1(𝑡) is an effort to control direct contact between susceptible and infected without masks. The variable 

𝑧2(𝑡) reflects an attempt to restrict disease by requiring infected subpopulations to wear masks, while control 

𝑧3(𝑡) as a policy to always use masks. 

 

3.2. The Optimal Control Conditions 

The aim of optimal control is to carry out the best value condition for the model (2). In this part, we 

construct an optimal control condition to identify the minimum of the objective function, such that 
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𝐽(𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡)) = ∫ (𝐴𝐼1(𝑡) + 𝐵𝐼2(𝑡) + 𝐶𝑧1
2(𝑡) + 𝐷𝑧2

2(𝑡) + 𝐸𝑧3
2(𝑡)) 𝑑𝑡

𝑡𝑓

𝑡0

. (3) 

The constant parameter 𝐴, indicate the important value to reduce infected subpopulations without a 

mask, and the constant 𝐵 represents the significance of lowering the infectious transmission of Covid-19 with 

a mask. While the parameters 𝐶, 𝐷, and 𝐸 denote the effort required to apply the controls. By using the 

positive parameter 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸, we derive the best control 𝑧1
∗(𝑡), 𝑧2

∗(𝑡), and 𝑧3
∗(𝑡) such that: 

𝐽(𝑧1
∗(𝑡), 𝑧2

∗(𝑡), 𝑧3
∗(𝑡)) = min{𝐽(𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡)), with  𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡) ∈ 𝑈}, (4) 

 

with regard to domain 𝑈 = {(𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡)): 0 ≤ 𝑧1(𝑡) ≤ 1;  0 ≤ 𝑧2(𝑡) ≤ 1;  0 ≤ 𝑧3(𝑡) ≤ 1}. 
Pontryagin’s Minimum Principle gives an optimal control condition. This principle converts (2) - (4), into a 

Hamiltonian function, as seen below: 

   𝐻 = 𝐴𝐼1(𝑡) + 𝐵𝐼2(𝑡) + 𝐶𝑧1
2(𝑡) + 𝐷𝑧2

2(𝑡) + 𝐸𝑧3
2(𝑡) + 𝜆𝑆1

(𝜇 + 𝜂1𝑆2(𝑡) − (𝜇 +

𝜂1)𝑆1(𝑡) − (1 − 𝑧1(𝑡))𝛽𝑆1(𝑡)𝐼1(𝑡) − 𝑧2(𝑡)𝑆1(𝑡)) + 𝜆𝑆2
(𝜂1𝑆1(𝑡) + 𝑧2𝑆1(𝑡) − (𝜇 +

𝜂2)𝑆2(𝑡)) + 𝜆𝐼1
((1 − 𝑧1(𝑡))𝛽𝑆1(𝑡)𝐼1(𝑡) + 𝜂2𝐼2(𝑡) − (𝜂1 + 𝜇 + 𝛾 + 𝛼)𝐼1(𝑡) −

𝑢3(𝑡)𝐼1(𝑡)) + 𝜆𝐼2
(𝜂1𝐼1(𝑡) − (𝜂2 + 𝜇 + 𝛾 + 𝛼)𝐼2(𝑡) + 𝑧3(𝑡)𝐼1(𝑡)) + 𝜆𝑄 (𝛼(𝐼1(𝑡) +

𝐼2(𝑡)) − (𝜇 + 𝛾 + 𝜃)𝑄(𝑡)), 

(5) 

 

where 𝜆𝑆1
, 𝜆𝑆2

, 𝜆𝐼1
, 𝜆𝐼2

, 𝜆𝑄 are the costate (adjoint) variables for an optimal control condition. Then, the 

theorem an optimal control is derived using Pontryagin’s Minimum Principle, as stated below: 
 

Theorem 1. If the variables control 𝑧1
∗(𝑡), 𝑧2

∗(𝑡), 𝑧3
∗(𝑡) exist, and the simultaneous solution of 

𝑆1
∗(𝑡), 𝑆2

∗(𝑡), 𝐼1
∗(𝑡), 𝐼2

∗(𝑡), 𝑄∗(𝑡) holds on the system (2), that minimizes 𝐽(𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡)) in domain 𝑈. 

So, there are exist adjoint (costate) variables 𝜆𝑆1
, 𝜆𝑆2

, 𝜆𝐼1
, 𝜆𝐼2

, 𝜆𝑄, that obey the equations system, 

 
𝑑𝜆𝑆1

𝑑𝑡
= 𝜆𝑆1

(𝜇 + 𝜂1 + 𝑧2(𝑡) + (1 − 𝑧1(𝑡))𝛽𝐼1(𝑡)) − 𝜆𝑆2
(𝜂2 + 𝑧2(𝑡))

− 𝜆𝐼1
(1 − 𝑧1(𝑡))𝛽𝐼1(𝑡) 

𝑑𝜆𝑆2

𝑑𝑡
= −𝜆𝑆1

𝜂2 + 𝜆𝑆2
(𝜇 + 𝜂2) 

𝑑𝜆𝐼1

𝑑𝑡
= −𝐴 + 𝜆𝑆1

((1 − 𝑧1(𝑡))𝛽𝑆1(𝑡))

− 𝜆𝐼1
((1 − 𝑧1(𝑡))𝛽𝑆1(𝑡) − (𝜇 + 𝜂1 + 𝛾 + 𝛼) − 𝑧3(𝑡)) − 𝜆𝐼2

(𝜂1 + 𝑧3(𝑡))

− 𝜆𝑄𝛼 

𝑑𝜆𝐼2

𝑑𝑡
= −𝐵 − 𝜆𝐼1

𝜂2 + 𝜆𝐼2
(𝜇 + 𝜂2 + 𝛾 + 𝛼) − 𝜆𝑄𝛼 

𝑑𝜆𝑄

𝑑𝑡
= 𝜆𝑄(𝜇 + 𝛾 + 𝜃). 

(6) 

 

Then incorporate the transversality condition 𝜆𝑆1
(𝑡𝑓) =  𝜆𝑆2

(𝑡𝑓) =  𝜆𝐼1
(𝑡𝑓) =  𝜆𝐼2

(𝑡𝑓) = 𝜆𝑄(𝑡𝑓) = 0, 

such that an optimal control problem sets 𝑧1
∗(𝑡), 𝑧2

∗(𝑡), and 𝑢3
∗(𝑡) are provided by 

 

𝑧1
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,

(𝜆𝐼1
− 𝜆𝑆1

)𝛽𝑆1(𝑡)𝐼1(𝑡)

2𝐶
) , 1} 

𝑧2
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,

(𝜆𝑆1
− 𝜆𝑆2

)𝑆1(𝑡)

2𝐷
) , 1} 

𝑧3
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 (0,

(𝜆𝐼1
− 𝜆𝐼2

)𝐼1(𝑡)

2𝐸
) , 1} . 

(7) 
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Proof: 

Due to the convexity condition of the integrand of 𝐽(𝑧1(𝑡), 𝑧2(𝑡), 𝑧(𝑡)) and correspond to the Lipschitz 

condition on the state system [35]. The existence of an optimal control problem can be conducted by working 

Pontryagin’s Minimum Principle. Then, the adjoint variables are accomplished by differentiating the 

Hamiltonian function around the state variable, and the system can be immediately recognized as bellows, 

 
𝑑𝜆𝑆1

𝑑𝑡
= 𝜆𝑆1

(𝜇 + 𝜂1 + 𝑧2(𝑡) + (1 − 𝑧1(𝑡))𝛽𝐼1(𝑡)) − 𝜆𝑆2
(𝜂2 + 𝑧2(𝑡)) − 𝜆𝐼1

(1 − 𝑧1(𝑡))𝛽𝐼1(𝑡) 

𝑑𝜆𝑆2

𝑑𝑡
= −𝜆𝑆1

𝜂2 + 𝜆𝑆2
(𝜇 + 𝜂2) 

𝑑𝜆𝐼1

𝑑𝑡
= −𝐴 + 𝜆𝑆1

((1 − 𝑧1(𝑡))𝛽𝑆1(𝑡)) − 𝜆𝐼1
((1 − 𝑧1(𝑡))𝛽𝑆1(𝑡) − (𝜇 + 𝜂1 + 𝛾 + 𝛼) − 𝑧3(𝑡))

− 𝜆𝐼2
(𝜂1 + 𝑧3(𝑡)) − 𝜆𝑄𝛼 

𝑑𝜆𝐼2

𝑑𝑡
= −𝐵 − 𝜆𝐼1

𝜂2 + 𝜆𝐼2
(𝜇 + 𝜂2 + 𝛾 + 𝛼) − 𝜆𝑄𝛼 

𝑑𝜆𝑄

𝑑𝑡
= 𝜆𝑄(𝜇 + 𝛾 + 𝜃) 

 

with the transversality condition 𝜆𝑆1
(𝑡𝑓) =  𝜆𝑆2

(𝑡𝑓) =  𝜆𝐼1
(𝑡𝑓) =  𝜆𝐼2

(𝑡𝑓) = 𝜆𝑄(𝑡𝑓) = 0. Followed by 

section is an optimal control variable can be found by differentiating the Hamiltonian function around the 

control 𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡), and evaluating the result equal to zero, such that 

  
𝜕𝐻

𝜕𝑧1(𝑡)
= 2𝐶𝑧1(𝑡) + 𝜆𝑆1

(𝛽𝑆1(𝑡)𝐼1(𝑡)) − 𝜆𝐼1
(𝛽𝑆1(𝑡)𝐼1(𝑡)) = 0 

𝜕𝐻

𝜕𝑧2(𝑡)
= 2𝐷𝑧2(𝑡) − 𝜆𝑆1

𝑆1 + 𝜆𝑆2
𝑆1 = 0 

𝜕𝐻

𝜕𝑧3(𝑡)
= 2𝐸𝑧3(𝑡) − 𝜆𝐼1

𝐼1 + 𝜆𝐼2
𝐼1 = 0. 

 
Direct consequence, by solving an optimization problem provides 
 

𝑧1
∗(𝑡) = min {𝑚𝑎𝑥 (0,

(𝜆𝐼1
− 𝜆𝑆1

)𝛽𝑆1(𝑡)𝐼1(𝑡)

2𝐶
) , 1} 

 

𝑧2
∗(𝑡) = min {𝑚𝑎𝑥 (0,

(𝜆𝑆1
− 𝜆𝑆2

)𝑆1(𝑡)

2𝐷
) , 1} 

 

𝑧3
∗(𝑡) = min {𝑚𝑎𝑥 (0,

(𝜆𝐼1
− 𝜆𝐼2

)𝐼1(𝑡)

2𝐸
) , 1} . 

 
 

3.3. Numerical Result 

To support the analytical results of optimal control theorem before, we demonstrate a numerical 

simulation of a system (2) using the Matlab software. In this section, we apply the control weight into the 

simulation are 𝐴 = 𝐵 = 1, and 𝐶 = 𝐷 = 𝐸 = 0,5. The initial condition is 𝑆1(0) = 𝑆2(0) =  𝐼1(0) = 1, 

and 𝐼2(0) = 𝑄(0) = 0. According to Manaqib et al. [8], and the values in Table 1, we realize the basic 

reproduction number 𝑅0 = 1,1237 for the system (1). By reason of the basic numbers 𝑅0 > 1, and it is line 

with the spread of COVID-19 will persist in a subpopulation. Hence, the controlling process must be carried 

out by applying optimal control into model (2). 
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Table 1. Parameter Values 

Parameter Explanation Value Sources 

𝜇 The population’s natural birth and death rates 0,0125 [8] 

𝜂1 The rate of using the health mask 0,15 Assumed 

𝜂2 The rate of without the health mask 0,65 Assumed 

𝛾 The death rate causes the infectious 0,025 [8] 

𝛼 Quarantine rate 0,084 [8] 

𝛽 The contact rate for the susceptible population without a mask and 

the infected population without a mask  

0,2 [8] 

𝜃 Recovery rate population 0,255 Assumed 

 

  
(a) (b) 

Figure 1. The behavior solutions of sub-population without and with control: (a) Susceptible without masks,  

(b) Susceptible with masks 

Based on the simulation in figure 1, part (a) demonstrates that susceptible populations without masks 

have decreased starting at the beginning of the simulation time. This indicates that the susceptible population 

has entered into infected Covid-19 or into susceptible population with masks. Interestingly, if the control of  

𝑧1(𝑡), 𝑧2(𝑡) and 𝑧3(𝑡) is decided to apply into the Covid-19 model, then the computation results show a rise 

at the beginning of time simulation. Additionally, from 𝑡 = 8 through the end of the simulations, the 

susceptible population will decrease, although not as crisp as before the procedure is performed. In the 

meanwhile, part (b) provides the simulation results of susceptible populations with masks have decreased 

from the beginning of time to the ending of the 100th day. However, by giving controls resulted in a 

significant decrease in susceptible with masks, than the controls were not implemented. In other words, the 

probability of a susceptible population spreading to an infected population persists. 

Figure 2 below illustrates the behavior of an infected subpopulation's solution with and without a mask. 

Figure 1, part (a) clearly demonstrates, that the infected Covid-19 population without a mask before 

controlling grew at the start of the simulation period, and the quantity of infected reduced in time around the 

85th day. In contrast, after applying the controls to the model, it appears that the number of infected 

populations decreased at the beginning of the simulation. Meanwhile, the numerical simulation of part (b) in 

figure 2 shows that the number of populations infected with masks has increased significantly when the 

control process is not implemented. Similarly, when 𝑧1(𝑡), 𝑧2(𝑡) and 𝑧3(𝑡) are governed, the population rise 

is as strong as previously, as depicted by the solution curve in blue. In this situation, it means that the optimal 

control utilized was already in line with the functional objective of the previously defined, which is to 

minimize the infected subpopulations without and using a masks. 
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(a) (b) 

Figure 2. The behavior solutions of sub-population without and with control: (a) Infected without masks,  

(b) Infected with masks 

 

  
(e) (f) 

Figure 3. (a) The behavior solutions of Quarantine, (b) The profile of control rate 𝒛𝟏
∗ , 𝒛𝟐

∗ , and 𝒛𝟑
∗  

Figure 3, part (a), depicts the isocline solution of the quarantine population, before going to the control 

process shows immoderate. It provides a condition that the infected population is very high, then quarantine 

strategy is needed to prevent the COVID-19 infectious. Meanwhile, after the control was carried out, it was 

seen that the quarantine population continued to increase at the beginning of time, but not as high as before 

the control was carried out. Part (b) of Figure 3, shows the profile of the control variables 𝑧1(𝑡), 𝑧2(𝑡) and 𝑧3(𝑡). 

Where the control variable 𝑧1(𝑡) must be applied maximally from the beginning of the time after time to the end 

of time, 𝑡 = 100. Meanwhile, the behavior of the control variables 𝑧2(𝑡) and 𝑧3(𝑡) are seem growth at the end 

of the simulation. Therefore, based on the simulation appear that controlling direct contact between susceptible 

populations and infected populations (𝑧1(𝑡)) is more effective than the control variables 𝑧2(𝑡) and 𝑧3(𝑡) in the 

form of efforts to wear masks by sub-populations. 
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4. CONCLUSIONS 

In this study, an optimal control of controlling the spread COVID-19 has been presented by analytically 

theorem and numerically simulation. In order to manage COVID-19, three control variables are used. The 

first control variable is an effort to reduce direct contact between susceptible and infected populations without 

a mask. Conversely, the second and third control variables lead to the formation of a policy initiative to wear 

masks on susceptible and infected populations, respectively. Whereas, an optimal control works to minimize 

infected populations without and with a mask, as well as the weight of the control process. Finally, the 

numerical simulation suggests that an optimal control already be carried out to hold down of spreading 

COVID-19, and it is in line with the governed objective function. 
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