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ABSTRACT 

Article History: 
Tuberculosis can spread in two ways: exogenously and endogenously. A mathematical model 

is used to analyse exogenous or external tuberculosis transmission in order to predict 

tuberculosis reinfection. Later, a study based on bifurcation was undertaken on the 

mathematical model. On the basis of the results, it was determined that the system of exogenous 

reinfection tuberculosis exhibited a change in stability characteristics and the type of 

equilibrium point, where the bifurcation parameter is 𝑥 = (𝜇 + 𝑘)(𝜇 + 𝑟 + 𝑑) −
𝛽𝑐∧𝑘

𝜇𝑁
. When x 

is less than zero, the system displays one unstable equilibrium with a saddle point type; when x 

is equal to zero, the system's stability cannot be determined; and when x is greater than zero, 

the system of differential equations displays three types of equilibrium: node, star node, and 

spiral. 
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1. INTRODUCTION 

Tuberculosis is caused by Mycobacterium tuberculosis, which transmits the disease by direct contact 

between individuals with active tuberculosis [1]–[3]. The spread of tuberculosis can occur exogenously, 

endogenously, or both [4]–[6]. Exogenous spread occurs when people with active tuberculosis come into 

contact with one another. While the endogenous spread is the development of tuberculosis bacteria in 

individuals who have been previously infected, the individual develops into an individual infected with active 

tuberculosis [5]. The spread that repeatedly occurs due to contact between latent individuals and active 

individuals, thereby accelerating the development of bacteria in latent individuals, is called exogenous 

reinfection. 

Globally, in 2020 there were 10 million people in the world suffering from tuberculosis (TB), and 1,2 

million people die annually. Indonesia is one of the nations with the largest burden of tuberculosis, with an 

estimated 845,000 cases of TB-related illness and a death rate of 98.000, or 11 deaths every hour[7]. The 

transmission of tuberculosis must thereafter be examined. 

Using a mathematical model, the spread of exogenous reinfection tuberculosis can be observed. The 

mathematical model is the process of translating real-world situations into mathematical assertions or 

mathematical models [8]. Then, a bifurcation-based study of the mathematical model was conducted. 

Bifurcation is a qualitative change characterized by variations in the number of equilibrium points due to 

varying parameter values [9]. The equilibrium point is a fixed, constant point with respect to time. The 

equilibrium point is divided into two parts: the hyperbolic equilibrium point (if the real part of the eigenvalues 

of the Jacobian matrix at the equilibrium point is not zero) and the non-hyperbolic equilibrium point [10]. 

Stability properties for hyperbolic equilibrium points are divided based on the type and sign of the 

eigenvalues. 

Some research has been undertaken on modelling, regulating, and analysing the transmission of 

tuberculosis [11], [12]. Their results show that the spreading can be controlled at the fixed point of the model 

and show some parameters that should be considered to reduce the case. Liu et al. (2010) give 

recommendations about preventive programmes for tuberculosis case by case. They show that the spread of 

tuberculosis has a pattern related to the season. Carlos Castillo-Chaves has had some results on the 

tuberculosis spreading model in the last two decades. One of them is by including the effect of exogenous 

reinfection [5], [13], and following the research of Khajanchi et al. [4]. 

As part of this study, we intend to incorporate a bifurcation analysis into the model provided in [5]. 

This model has been examined in [5], however the bifurcation approach of 𝑅0  requires additional research. 

Numerous researchers [14, 15] examined the consequences of backward bifurcation the tuberculosis 

transmission model. In addition to immunological bistability, they indicate a link with prevalence. This work 

examines differently the impact of bifurcation on the model of exogenous reinfection tuberculosis at its free 

infection fixed point. 

 

 

2. RESEARCH METHODS 

The steps to be taken are: 

1. Identify the problem raised, namely the problem of the spread of exogenous reinfection of 

tuberculosis; 

2. Collecting references related to the problem of the spread of exogenous reinfection of tuberculosis; 

3. Determine and analyze the stability of the equilibrium point of the mathematical model of exogenous 

reinfection tuberculosis; 

4. Analyse the mathematical model of exogenous reinfection tuberculosis with a bifurcation approach; 

5. Conduct simulations and conclude. 

 

 

3. RESULTS AND DISCUSSION 

 Figure 1 illustrates the mathematical model of external reinfection of tuberculosis.  The population is 

classified into four categories: Susceptible (S), which indicates the number of individuals who are still healthy 

and vulnerable to illness infection; Exploded (E) indicates the number of passive (latent) infected individuals 

who cannot transmit the disease to other individuals; Infectious (I) indicates the number of actively infected 
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individuals who can transmit the disease to other individuals; and Treated (T) indicates the number of 

individuals undergoing treatment and individuals who have recovered but are susceptible to reinfection. 

 

 
 

Figure 1. Compartment diagram of exogenous reinfection tuberculosis mathematical model 

 

While the parameters that appear in the diagram are: the recruitment rate of TB (Λ), the natural mortality rate 

per capita (𝜇), the average contact per person per unit time (𝑐), the transmission rate (𝛽), the death rate per 

capita caused by TB (𝑑), the treatment rate per capita (𝑟), the regular progression rate per capita (𝑘), the 

number of treated individuals infected by one infectious infection per contact per unit time (𝜎𝛽), and the rate 

of exogenous reinfection (𝑝). The following system of differential equations is derived from the compartment 

diagram [13]. 

𝑑𝑆

𝑑𝑡
=∧ −𝛽𝑐𝑆

𝐼

𝑁
− µ𝑆                                                                                                         (1) 

𝑑𝐸

𝑑𝑡
= 𝛽𝑐𝑆

𝐼

𝑁
− 𝑝𝛽𝑐𝐸

𝐼

𝑁
− (µ + 𝑘)𝐸 + 𝜎𝛽𝑐𝑇

𝐼

𝑁
                                                                 (2) 

𝑑𝐼

𝑑𝑡
= 𝑝𝛽𝑐𝐸

𝐼

𝑁
+ 𝑘𝐸 − (µ + 𝑟 + 𝑑)𝐼                                                                                 (3) 

𝑑𝑇

𝑑𝑡
= 𝑟𝐼 − 𝜎𝛽𝑐𝑇

𝐼

𝑁
− µ𝑇                                                                                                  (4) 

𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑇 .                                                                                                       (5) 

with initial value 𝑆(0) = 𝑆0,   𝐸(0) = 𝐸0,   𝐼(0) = 𝐼0, 𝑇(0) = 𝑇0. 
 

To explore the effects of backward bifurcation in the exogenous reinfection tuberculosis model, it is 

first necessary to discuss the stability near its fixed points. The impact of backward bifurcation is then 

examined. 

 

3.1. Analysis of Equilibrium Point Stability Mathematical Model of Exogenous Reinfection 

Tuberculosis 

Prior to doing an analysis at the equilibrium point, it is essential to identify the equilibrium point, which 

is as follows: 
𝑑𝑆

𝑑𝑡
= 0,

𝑑𝐸

𝑑𝑡
= 0,

𝑑𝐼

𝑑𝑡
= 0,

𝑑𝑇

𝑑𝑡
= 0  

Thus, the following equation holds: 

∧ −𝛽𝑐𝑆
𝐼

𝑁
− µ𝑆 = 0                                                                                                       (6) 

𝛽𝑐𝑆
𝐼

𝑁
− 𝑝𝛽𝑐𝐸

𝐼

𝑁
− (µ + 𝑘)𝐸 + 𝜎𝛽𝑐𝑇

𝐼

𝑁
= 0                                                                 (7) 

𝑝𝛽𝑐𝐸
𝐼

𝑁
+ 𝑘𝐸 − (µ + 𝑟 + 𝑑)𝐼 = 0                                                                                (8) 

𝑟𝐼 − 𝜎𝛽𝑐𝑇
𝐼

𝑁
− µ𝑇 = 0                                                                                                  (9) 

In the epidemic model, there are two sorts of equilibrium points: disease-free equilibrium and endemic 

equilibrium. 
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a) Disease-free equilibrium point 

The disease-free equilibrium point is the equilibrium point indicating the absence of disease in the 

population when 𝐼 = 0. By substituting  𝐼 = 0  into System (6)-(9), we got the disease-free equilibrium point 

𝐸0 = (
∧

µ
, 0,0,0).  

To investigate the stability of  𝐸0, we employ linearity using the Jacobian matrix at the point as follows: 

𝐽 (
∧

µ
, 0,0,0) =

[
 
 
 
 
 −𝜇 0        −𝛽𝑐

(
∧

µ
)

𝑁
            0

0 −(𝜇 + 𝑘)    𝛽𝑐
(
∧

µ
)

𝑁
                    0

0
0

𝑘
0

−(𝜇 + 𝑟 + 𝑑)
𝑟

       0
     −𝜇]

 
 
 
 
 

  

In addition, the characteristic equation must be applied in order to determine the eigenvalues. Thus, 

the following is the characteristic equation: 

𝑉(𝐸0) = (𝜆 + µ)(𝜆 + µ)(𝜆2 + (2µ + 𝑟 + 𝑑 + 𝑘)𝜆 + (µ + 𝑘)(µ + 𝑟 + 𝑑) −
𝛽𝑐 ∧ 𝑘

µ𝑁
= 0. 

 The eigenvalues are negatives (𝜆1,2 = −µ), while the expression 𝜆2 + (2µ + 𝑟 + 𝑑 + 𝑘)𝜆 +

(µ + 𝑘)(µ + 𝑟 + 𝑑) −
𝛽𝑐∧𝑘

µ𝑁
= 0 needs to be solved to get the remaining eigenvalues. We apply the Routh-

Hurwitz criteria to find the characteristics of the remaining eigenvalues. 

 
Table 1. Routh-Hurwitz Table of Characteristic Equations for Disease-Free Points 

𝜆2 1 (µ + 𝑘)(µ + 𝑟 + 𝑑) −
𝛽𝑐 ∧ 𝑘

µ𝑁
 

𝜆 (2µ + 𝑟 + 𝑑 + 𝑘) 0 

𝜆0 (µ + 𝑘)(µ + 𝑟 + 𝑑) −
𝛽𝑐 ∧ 𝑘

µ𝑁
 0 

 

Based on Table 1, the stability requires a positive coefficient. Clearly 1 > 0 and (2µ + 𝑟 + 𝑑 + 𝑘) >

0. While in the third row, if 𝛽𝑐 <
µ𝑁(µ+𝑘)(µ+𝑟+𝑑)

∧𝑘
  then (µ + 𝑘)(µ + 𝑟 + 𝑑) −

𝛽𝑐∧𝑘

µ𝑁
> 0. Thus, the 

equilibrium becomes asymptotically stable. 

It can therefore be concluded that the disease-free equilibrium point of the mathematical model of the 

spread of exogenous reinfection of tuberculosis is asymptotically stable or that the disease will disappear if 

the rate of contact between individuals and infected individuals is reduced. 

 

b) Disease endemic equilibrium point 

The endemic equilibrium point will then be identified. This is the point at which the number of people 

with the disease exceeds zero, indicating that the disease is spreading throughout the community. Endemic 

disease implies that there are constantly infected individuals in a group. Hence, at the point of endemic 

equilibrium for the disease I > 0 is reached and is written in notation 𝐸1 = (𝑆∗, 𝐸∗, 𝐼∗, 𝑇∗),  

𝑆∗ = (
∧𝑁

𝐼∗𝛽𝑐𝜎+𝑁𝜇
)   

𝐸∗ = (
𝛽𝑐𝐼∗(𝛽𝑐𝜎𝑟𝐼∗

2
𝑁+𝜇𝜎𝑟𝐼∗𝑁2+𝐼∗𝛽𝑐𝜎𝑁∧+∧𝑁2µ)

(𝐼∗𝛽𝜎+𝑁𝜇)(𝐼∗𝛽𝑐+𝑁µ)(𝐼∗𝛽𝑐𝑝+𝑁𝑘+𝑁µ)
   

𝑇∗ =
𝑟𝐼∗𝑁

𝐼∗𝛽𝑐𝜎+𝑁µ
  

 

To write 𝐼∗ in more simpler ways, let 

𝐴 = (−𝛽3𝑐3𝑝𝜎𝜇 − 𝛽2𝑐2𝜇2𝑁𝜎 − 𝛽3𝑐3𝑝𝜎𝑑)    

𝐵 = (𝑝𝛽3𝑐3𝜎 ∧ +𝑘𝛽2𝑐2𝜎𝑟𝑁 − 𝛽2𝑐2𝜇2𝑁𝑝𝜎 − 𝛽2𝑐2𝑁𝑘𝜎𝜇 − 𝛽2𝑐2𝑝𝜇2𝑁 − 𝛽2𝑐2𝑁𝑘𝜎𝑟 −

𝛽2𝑐2𝑁𝜇𝜎𝑟 − 𝛽2𝑐2𝑝𝑁𝜇𝑟 − 𝛽2𝑐2𝑁𝜇𝑝𝜎𝑑 − 𝛽2𝑐2𝑁𝑘𝜎𝑑 − 𝛽2𝑐2𝑁𝜇𝜎𝑑 − 𝛽2𝑐2𝑝𝑁𝜇𝑑)       
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𝐶 = (𝑝𝛽2𝑐2 ∧ 𝑁𝜇 + 𝑘𝛽𝑐𝜇𝜎𝑟𝑁2 + 𝑘𝛽2𝑐2𝜎𝑁 ∧ −𝜇2𝑘𝛽𝑐𝜎 − 𝑁2𝜇3𝛽𝑐𝜎 − 𝑁2𝛽𝑐𝑝𝜇3 − 𝑁2𝛽𝑐𝑘𝜇2 −

𝑁2𝛽𝑐𝜇3 − 𝑁2𝜇𝑘𝛽𝑐𝜎𝑟 − 𝑁2𝜇2𝛽𝑐𝜎𝑟 − 𝑁2𝜇2𝛽𝑐𝑝𝑟 − 𝑁2𝛽𝑐𝑘𝜇𝑟 − 𝑁2𝜇2𝛽𝑐𝑟 − 𝑁2𝜇𝑘𝛽𝑐𝜎𝑑 −

𝑁2𝜇2𝛽𝑐𝜎𝑑 − 𝑁2𝜇2𝛽𝑐𝑝𝑑 − 𝑁2𝛽𝑐𝑘𝜇𝑑 − 𝛽𝑐𝑑𝑁2𝜇2)   

𝐷 = (𝑘𝛽𝑐 ∧ 𝑁2𝜇 − 𝑁3𝑘𝜇3 − 𝑁3𝜇4 − 𝑁3𝜇2𝑘𝑟 − 𝑁3𝜇3𝑟 − 𝑁3𝑘𝑑𝜇2 − 𝑁3𝜇3𝑑)     

 

Hence  𝐼∗ obtained as follows: 

𝐼2
∗ =

1

6

(−108𝐷𝐴2+36𝐶𝐵𝐴+12√3√27𝐴2𝐷2−18𝐴𝐵𝐶𝐷+4𝐴𝐶3+4𝐵3𝐷−𝐵2𝐶2𝐴−8𝐵3)
1
3

𝐴
−

2

3

3𝐴𝐶−𝐵2

𝐴(−108𝐷𝐴2+36𝐶𝐵𝐴+12√3√27𝐴2𝐷2−18𝐴𝐵𝐶𝐷+4𝐴𝐶3+4𝐵3𝐷−𝐵2𝐶2𝐴−8𝐵3)
1
3

−
1

3

𝐵

𝐴
  

 

𝐼2
∗ satisfy the endemic equilibrium point if 𝐼2

∗ >0 with 

1

6

(−108𝐷𝐴2+36𝐶𝐵𝐴+12√3√27𝐴2𝐷2−18𝐴𝐵𝐶𝐷+4𝐴𝐶3+4𝐵3𝐷−𝐵2𝐶2𝐴−8𝐵3)

1
3

𝐴
>

(
2

3

3𝐴𝐶−𝐵2

𝐴(−108𝐷𝐴2+36𝐶𝐵𝐴+12√3√27𝐴2𝐷2−18𝐴𝐵𝐶𝐷+4𝐴𝐶3+4𝐵3𝐷−𝐵2𝐶2𝐴−8𝐵3)

1
3

+
1

3

𝐵

𝐴
)  

 

𝐼3
∗ = −

1

12

(−108𝐷𝐴2+36𝐶𝐵𝐴+12√3√27𝐴2𝐷2−18𝐴𝐵𝐶𝐷+4𝐴𝐶3+4𝐵3𝐷−𝐵2𝐶2𝐴−8𝐵3)

1
3

𝐴
+

1

3

3𝐴𝐶−𝐵2

𝐴(−108𝐷𝐴2+36𝐶𝐵𝐴+12√3√27𝐴2𝐷2−18𝐴𝐵𝐶𝐷+4𝐴𝐶3+4𝐵3𝐷−𝐵2𝐶2𝐴−8𝐵3)
1
3

−
1

3

𝐵

𝐴
+

1

2
𝐼√3 (

1

6

(−108𝐷𝐴2+36𝐶𝐵𝐴+12√3√27𝐴2𝐷2−18𝐴𝐵𝐶𝐷+4𝐴𝐶3+4𝐵3𝐷−𝐵2𝐶2𝐴−8𝐵3)

1
3

𝐴
+

2

3

3𝐴𝐶−𝐵2

𝐴(−108𝐷𝐴2+36𝐶𝐵𝐴+12√3√27𝐴2𝐷2−18𝐴𝐵𝐶𝐷+4𝐴𝐶3+4𝐵3𝐷−𝐵2𝐶2𝐴−8𝐵3)
1
3

)  

𝐼4
∗ = −

1

12

(−108𝐷𝐴2+36𝐶𝐵𝐴+12√3√27𝐴2𝐷2−18𝐴𝐵𝐶𝐷+4𝐴𝐶3+4𝐵3𝐷−𝐵2𝐶2𝐴−8𝐵3)

1
3

𝐴
+

1

3

3𝐴𝐶−𝐵2

𝐴(−108𝐷𝐴2+36𝐶𝐵𝐴+12√3√27𝐴2𝐷2−18𝐴𝐵𝐶𝐷+4𝐴𝐶3+4𝐵3𝐷−𝐵2𝐶2𝐴−8𝐵3)
1
3

−
1

3

𝐵

𝐴
−

1

2
𝐼√3 (

1

6

(−108𝐷𝐴2+36𝐶𝐵𝐴+12√3√27𝐴2𝐷2−18𝐴𝐵𝐶𝐷+4𝐴𝐶3+4𝐵3𝐷−𝐵2𝐶2𝐴−8𝐵3)

1
3

𝐴
+

2

3

3𝐴𝐶−𝐵2

𝐴(−108𝐷𝐴2+36𝐶𝐵𝐴+12√3√27𝐴2𝐷2−18𝐴𝐵𝐶𝐷+4𝐴𝐶3+4𝐵3𝐷−𝐵2𝐶2𝐴−8𝐵3)
1
3

)  

 

𝐼3
∗ and 𝐼4

∗ has an imaginary value then 𝐼3
∗ dan 𝐼4

∗ not an endemic equilibrium point. Based on the results 

of the calculation of the endemic equilibrium point, the value is obtained 𝐸1 = (𝑆2
∗, 𝐸2

∗, 𝐼2
∗, 𝑇2

∗). 

Similar to the disease-free equilibrium point, the endemic equilibrium point matrix is obtained as 

follows: 

 

𝐽(𝑆∗, 𝐸∗, 𝐼∗, 𝑇∗) = [

𝐺 0 𝐻 0
𝐽 𝐾 𝐿 𝑀
0
0

𝑂
0

𝑃
𝑄

0
𝑅

]  

𝐺 = −𝛽𝑐
𝐼2
∗

𝑁
− 𝜇,                            𝐻 = −𝛽𝑐

𝑆2
∗

𝑁
,        𝐽 = 𝛽𝑐

𝐼2
∗

𝑁
,                    𝐾 = −𝑝𝛽𝑐

𝐼2
∗

𝑁
− (𝜇 + 𝑘), 

𝐿 = 𝛽𝑐
𝑆2

∗

𝑁
− 𝑝𝛽𝑐

𝐸2
∗

𝑁
+ 𝜎𝛽𝑐

𝑇2
∗

𝑁
,      𝑀 = 𝜎𝛽𝑐

𝐼2
∗

𝑁
,          𝑂 = 𝑝𝛽𝑐

𝐼2
∗

𝑁
+ 𝑘,       𝑃 = 𝑝𝛽𝑐

𝐸2
∗

𝑁
− (𝜇 + 𝑟 + 𝑑), 

𝑄 = 𝑟 − 𝜎𝛽𝑐
𝑇2

∗

𝑁
,                            𝑅 = −𝜎𝛽𝑐

𝐼2
∗

𝑁
− 𝜇 

To analyze the endemic equilibrium point, a characteristic equation is needed, namely 

|𝜆𝐼 − 𝐽(𝐸1)| = 0   
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We get 

𝜆4 + 𝑈1𝜆
3 + 𝑈2𝜆

2 + 𝑈3𝜆 + 𝑈4 = 0  

𝑈1 = −(𝐺 + 𝑅 + 𝑃 + 𝐾)  

𝑈2 = (𝐺𝑅 + 𝐺𝑃 + +𝑃𝑅 + 𝐺𝐾 + 𝐾𝑅 + 𝑃𝐾 − 𝐿𝑂)  

𝑈3 = −(𝐺𝑃𝑅 + 𝐺𝐾𝑅 + 𝐺𝑃𝐾 + 𝑅𝑃𝐾 − 𝐺𝐿𝑂 − 𝑅𝐿𝑂 + 𝑄𝑀𝑂 − 𝐽𝑂𝐻)  

𝑈4 = 𝐺𝑅𝑃𝐽 − 𝐺𝑅𝐿𝑂 + 𝐺𝑄𝑀𝑂 + 𝑅𝐽𝑂𝐻  

 
Table 2. Routh-Hurwitz Table of Endemic Point Characteristic Equations 

𝜆4 1 𝑈2 𝑈4 

𝜆3 𝑈1 𝑈3 0 

𝜆2 
𝑈1𝑈2 − 𝑈3

𝑈1`
 𝑈4 0 

𝜆 
𝑈1𝑈2𝑈3 − 𝑈3

2 − 𝑈3
2𝑈4

𝑈1𝑈2 − 𝑈3
 0 0 

𝜆0 𝑈4 0 0 

 
𝑈1 = −(𝐺 + 𝑅 + 𝑃 + 𝐾)  

𝑈1 = −(−𝛽𝑐
𝐼2
∗

𝑁
− 𝜇 − 𝜎𝛽𝑐

𝐼2
∗

𝑁
− 𝜇 + 𝑝𝛽𝑐

𝐸2
∗

𝑁
− (𝜇 + 𝑟 + 𝑑) − 𝑝𝛽𝑐

𝐼2
∗

𝑁
− (𝜇 + 𝑘))  

𝑈1 > 0 jika 𝑝𝛽𝑐
𝐸2

∗

𝑁
< 𝛽𝑐

𝐼2
∗

𝑁
+ 𝜇 + 𝜎𝛽𝑐

𝐼2
∗

𝑁
+ 𝜇 + (𝜇 + 𝑟 + 𝑑) + 𝑝𝛽𝑐

𝐼2
∗

𝑁
+ (𝜇 + 𝑘)) 

 

If the rate of exogenous recurrent infection is large, then the endemic point of the mathematical model 

of the spread of exogenous reinfection of tuberculosis is asymptotically stable. This is due to the fact that a 

high rate of exogenous recurrent infection decreases the latent population, since the latent population rapidly 

transforms into an infection population, resulting in an increase in the infection population. Because there are 

too many operations on parameters at each value of variable, we can find the stability when the value of 

parameters is given. By the result, the value of fixed is affected significantly by the value of 𝑝 and 𝑘. It means 

the exogenous reinfection has a significant role in the spreading of tuberculosis [16], [17]. 

 

3.2. Bifurcation Analysis 

The characteristic equation of the disease-free equilibrium point is as follows: 

(𝜆 + 𝜇)(𝜆 + 𝜇) (𝜆2 + (2𝜇 + 𝑟 + 𝑑 + 𝑘)𝜆 + (𝜇 + 𝑘)(𝜇 + 𝑟 + 𝑑) −
𝛽𝑐 ∧ 𝑘

𝜇𝑁
) = 0 

It is obtained that the value of  𝜆1,2 = −µ or has a negative value, then in the polynomial equation to 

the power of two from the above equation, namely; 

(𝜆2 + (2𝜇 + 𝑟 + 𝑑 + 𝑘)𝜆 + (𝜇 + 𝑘)(𝜇 + 𝑟 + 𝑑) −
𝛽𝑐∧𝑘

𝜇𝑁
) = 0  

Suppose 𝑉 = 1 

𝑊 = 2𝜇 + 𝑟 + 𝑑 + 𝑘  

𝑋 = (𝜇 + 𝑘)(𝜇 + 𝑟 + 𝑑) −
𝛽𝑐∧𝑘

𝜇𝑁
  

Then the above equation becomes 𝑉𝜆2 + 𝑊𝜆 + 𝑋 = 0, so 𝜆3,4 =
−𝑊±√𝑊2−4𝑉𝑋

2𝑉
.  

• For 𝑊2 − 4𝑋 > 0 → 𝑋 <
𝑊2

4
 then 𝜆3,4 ∈ 𝑅 

So 𝜆3 =
−𝑊+√𝑊2−4𝑋

2
 and 𝜆4 =

−𝑊−√𝑊2−4𝑋

2
 

a. If 𝑊 > 0, 𝑋 = 0 

𝜆3 = −𝑊 + √𝑊2        →        𝜆3 = 0   

𝜆4 = −𝑊 − √𝑊2        →        𝜆4 < 0  

Cannot determine stability 
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b. If 𝑊 > 0, 0 < 𝑋 <
𝑊2

4
 

𝜆3 = −𝑊 + √𝑊2 − 4𝑋        →        𝜆3 < 0   

𝜆4 = −𝑊 − √𝑊2 − 4𝑋        →        𝜆4 < 0    
Asymptotically stable 

c. If 𝑊 > 0, 𝑋 < 0 

𝜆3 = −𝑊 + √𝑊2 − 4𝑋        →        𝜆3 > 0  

𝜆4 = −𝑊 − √𝑊2 − 4𝑋        →        𝜆4 < 0  

Unstable 

• For 𝑊2 − 4𝑋 = 0 → 𝑋 =
𝑊2

4
 and 𝑊 > 0 then 𝜆3,4 ∈ 𝑅 

So that 𝜆3,4 =
−𝑊±√𝑊2−4𝑋

2
= −

𝑊

2
          →        𝜆3,4 < 0 

Asymptotically stable 

• For 𝑊2 − 4𝑋 < 0 → 𝑋 >
𝑊2

4
 then 𝜆3,4 ∈ 𝑅 

So that 𝜆3 =
−𝑊+√𝑊2−4𝑋

2
  and 𝜆4 =

−𝑊−√𝑊2−4𝑋

2
 

a. If 𝑊 > 0, 𝑋 >
𝑊2

4
 

𝜆3 = −𝑊 + √𝑊2 − 4𝑋        →        𝜆3 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟  

𝜆4 = −𝑊 − √𝑊2 − 4𝑋        →        𝜆4 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟  

Because of –W is negative, the point stability is asymptotically stable. 

 

So 𝜆3 and 𝜆4 will change stability due to changes in the parameter 𝑋, where 𝑋 = (𝜇 + 𝑘)(𝜇 + 𝑟 + 𝑑) −
𝛽𝑐∧𝑘

𝜇𝑁
.  

If: 

𝑋 < 0                → Unstable (saddle point)  

𝑋 = 0                → Cannot determine stability 

0 < 𝑋 <
𝑊2

4
    → Asymptotically stable (nodes)  

𝑋 =
𝑊2

4
            → Asymptotically stable (star nodes)  

𝑋 >
𝑊2

4
            → Asymptotically stable (spiral)  

 

Based on the explanation above, the following is the form of the bifurcation  

 

 
Figure 2. Bifurcation Diagram of Exogenous Reinfection Tuberculosis Model 

Spiral  

Star 

nodes 

W=√4𝑋 

Saddle 

point 

Nodes  

          Stable 

          Unstanble 
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Based on the figure, it can be concluded that the stability properties change when the value of 𝑋 

changes as shown above. The system of equations for the spread of tuberculosis exogenous reinfection 

will be stable when 𝑋 > 0 or (𝜇 + 𝑘)(𝜇 + 𝑟 + 𝑑) >
𝛽𝑐∧𝑘

𝜇𝑁
, which means value 𝑋 > 0 when 

displacement due to contact between infected individuals is reduced so the disease disappears, which 

means in the area with a high incidence of tuberculosis, the reinfection model going to unstable [18]. 

By the value of 𝑋 > 0, increasing the value of 𝑑 also can keep the model stable at its free infection 

point. One most interesting is the increasing value of 𝑘 also increases the stability rate of the result. It 

means that when the primary progression rate (endogenous re-activation) increases, the disease will be 

eliminated [19]. 

 

 

4. CONCLUSIONS 

Based on the discussion, it was found that there was a change in the nature of stability and the type of 

equilibrium point in the distribution equation system of exogenous reinfection tuberculosis, where the 

parameter that occurred bifurcation was 𝑋, with 𝑋 = (𝜇 + 𝑘)(𝜇 + 𝑟 + 𝑑) −
𝛽𝑐∧𝑘

𝜇𝑁
. When the value of 𝑋 is less 

than zero, the system of differential equations for tuberculosis exogenous reinfection shows an unstable type 

with a saddle point type, when the value of 𝑋 is equal to zero the system of differential equations cannot be 

determined stability, and when the value of 𝑋 is greater than zero, the stability of the system of differential 

equations is asymptotically stable. 
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