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ABSTRACT 

Article History: 
In this research, we discussed the solution of the KdV equation using the Homotopy 

Perturbation method. The KdV equation that describes the water wave equation is solved by 

using the mixing method between Homotopy and Perturbation methods. Homotopy was built 

with embedding parameter 𝑝 ∈ [0,1],  which undergoes a deformation process from linear 

problems to nonlinear problems, and the assumed solution of the KdV equation is expressed in 

the form of a power series p up to the third order. The result shows that in each order solution, 

we obtained resonance term. For handling the condition, we used the Lindsteadt-Poincare 

method. The wave number k2 and dispersion relation  can be obtained in the second-order 

solution as the effect of using the Lindsteadt-Poincare method. 
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1. INTRODUCTION 

Mathematical models can be used to describe problems that occur in nature. The problems that occur 

in nature can usually be modeled in the form of a nonlinear differential equation which is difficult to find an 

exact solution. A popular method for solving nonlinear differential equations is the perturbation method[1], 

but according to He [2], the perturbation method has many drawbacks, namely it relies on small parameters, 

and the determination of small parameters must be precise otherwise, it will result in large errors. Thus, it is 

necessary to develop a method to solve nonlinear problems that are difficult to solve exactly and do not 

depend on small parameters. 

The homotopy perturbation method is one of the developments of the perturbation method, which was 

first proposed by J. He in 1999. The application of this method has been carried out on the Duffing equation 

with an error value of less than 5.8%(see [3]). The homotopy perturbation method was also applied to the 

pendulum equation and the error value was not more than 1.5% [4]. Both studies are mathematical models in 

the form of nonlinear ordinary differential equations. Problems in nature are also often modeled with 

nonlinear partial differential equations. This method has also been applied to nonlinear partial differential 

equations and the results show that the homotopy perturbation method is very effective and simple [5]. 

Mohyud-Din and Noor [6] also apply the homotopy perturbation method to nonlinear differential equations 

and the results obtained are simpler than the adomian decomposition method [7]  

In this paper, we use the homotopy perturbation method to solve the KdV equation which is the uni 

directional water wave equation. The KdV equation has been used in many studies in the context of wave 

problems in fluid dynamics and its derivation has been carried out for various conditions and approaches   [8]. 

 

 

2. RESEARCH METHODS 

The KdV equation that we use in this paper is given as (Debnath, [9]) 

 

𝜂𝑡 + 𝑐𝜂𝑥 +
3

2

𝑐

ℎ
𝜂𝜂𝑥 +

𝑐ℎ2

6
𝜂𝑥𝑥𝑥 = 0, (1) 

 

where  𝒄 = √𝒈𝒉  and g is gravity acceleration, h represents water depth and the total depth 𝑯 = 𝒉 + 𝜼. While 

𝜼 is elevation of wave. The first two terms (𝜼𝒕 + 𝒄𝜼𝒙)  describe the evolution of waves. The term with the 

coefficient (
𝟑𝒄

𝟐𝒉
)represents the slope of the nonlinear wave, and the term with the coefficient (

𝒄𝒉𝟐

𝟔
) describes 

the dispersion. Thus, the Korteweg-de Vries equation is a balance between time evolution, nonlinearity, and 

dispersion [10]. 

Initially, we make the KdV equation in the form of wave propagates so we take 𝜼 =  𝜼(𝜲) with  𝑿 =
 𝒙 − 𝑼𝒕. Then we apply the the homotopy perturbation method the KdV equation to get the solution and 

we also make simulation for various parameter of wave in the solution. 

The basic idea of Homotopy Perturbation Method for solving nonlinear differential equations is given 

as follows, consider the following differential equations 

  
                               𝐴(𝑢) − 𝑓(𝑟) = 0,    𝑟 𝜖 Ω                                                                        (2) 

with boundary condition 

                                    𝐵 (𝑢,
𝜕𝑢

𝜕𝑡
) = 0,     𝑟 ∈ Γ                                                                                          (3) 

 

where  𝑨 is the general differential operator, 𝒇(𝒓) is known as the known function, 𝒖 is the function to be 

determined, 𝑩 is the boundary operator, 𝚪 is the boundary of the domain (Ω), and 
𝝏𝒖

𝝏𝒕
 denotes the differential 

along the normal to 𝚪. 

 In general, operator 𝑨 is divided into two parts 𝑳 and 𝑵, where 𝑳 is linear operator while 𝑵 is 

nonlinear operator. Therefore, Equation (2) can be written as follows: 
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𝐿(𝑥) + 𝑁(𝑥) − 𝑓(𝑟) = 0,    𝑟𝜖Ω                  (4) 

In the case of the nonlinear Equation (2), it does not include small parameters, we can construct the homotopy 

equation as follows. 

𝐻(𝑣, 𝑝) = (1 − 𝑝)[𝐿(𝑣) − 𝐿(𝑢0)] + 𝑝[𝐴(𝑣) − 𝑓(𝑟)] = 0                                             (5) 

where 
                       𝑣(𝑟, 𝑝): Ω × [0, 1] → 𝑅                                                                                     (6)     

 

In Equation (5), 𝒑𝝐[𝟎, 𝟏]  is the embedding parameter and 𝒖𝟎 is the first approximation that satisfies the 

boundary conditions. 
From Equation (5) we have  

𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑢0) = 0,                (7) 

𝐻(𝑣, 1) = 𝐴(𝑣) − 𝑓(𝑟) = 0.            (8) 

The process of moving p from zero to one represents moving of 𝒗(𝒓, 𝒑) from 𝒖𝟎 to 𝒖𝒓. In topology, 

this is called deformation, and 𝑳(𝒗) − 𝑳(𝒖𝟎), 𝑨(𝒗) − 𝒇(𝒓) are homotopies  [11]. 

We introduce embedding parameters p in a more natural way, which is not affected by artificial factors. 

Furthermore, we can consider p as a small parameter for 𝟎 ≤ 𝒑 ≤ 𝟏. Therefore, it is reasonable to assume 

that solution of Equation (5) can be expressed as 

                                                                𝑣 = 𝑣0 + 𝑝𝑣1 + 𝑝2𝑣2 + ⋯                                           (9) 

Therefore, the approximate solution of Equation (2) can be obtained as    

 

                           𝐥𝐢𝐦
𝒑→𝟏

𝒗 = 𝒗𝟎 + 𝒗𝟏 + 𝒗𝟐 + ⋯                                                                                          (10) 

 

 

 

3. RESULTS AND DISCUSSION 

 

Consider the KdV Equation (1), take 𝜂 =  𝜂(𝛸) with  𝑋 =  𝑥 − 𝑈𝑡. We obtain  

                           (𝑐 − 𝑈)𝜂′ +
3𝑐

2ℎ
𝜂𝜂′ +

𝑐ℎ2

6
𝜂′′′ = 0                                                                       (11)  

where  𝜂′ = U is the speed of the wave and (Χ) represents the shape of the wave. Equation (2) is integrated 

once with respect to X, we get              

(𝑐 − 𝑈)𝜂 +
3𝑐

4ℎ
𝜂2 +

𝑐ℎ2

6
𝜂′′ = 𝐺,                                     (12) 

where G is the constant of integration. Dividing Equation (11) by 
𝑐ℎ2

6
 , we obtain  

𝜂′′ +
6(𝑐 − 𝑈)

𝑐ℎ2
𝜂 +

9

2ℎ3
𝜂2 = 𝐾, 𝑐, ℎ ≠ 0, 𝐾 =

6𝐺

𝑐ℎ2
    (13) 

with initial values 𝜂(0) = 𝐴 and 𝜂′(0) = 0. 
Furthermore, by using the homotopy method, Equation (13) is built into a homotopy equation as follows: 

𝐻(𝜂, 𝑝) = (1 − 𝑝) [𝜂′′ +
6(𝑐 − 𝑈)

𝑐ℎ2
𝜂] + 𝑝 [𝜂′′ +

6(𝑐 − 𝑈)

𝑐ℎ2
𝜂 +

9

2ℎ3
𝜂2] = 𝐾.        (14) 

It is clear that when 𝑝 = 0, Equation (14) becomes a linear equation. When 𝑝 = 1, Equation (14) becomes 

Equation (13). Thus, the process of moving 𝑝 from zero to one is a linear oscillator process to the original 

nonlinear oscillator. By assuming the solution of Equation (14) in the terms of a power series p: 

𝜂 = 𝜂0 + 𝑝𝜂1 + 𝑝2𝜂2 + 𝑝3𝜂3 + ⋯. (15) 

and substituting Equation (15) into Equation (14) and takes the monochromatic mode as its input. In the 

first order term there is a secular term which causes the amplitude to increase over time. to overcome the 

secular terms, we use Linstedt-Poincaire method by assuming the coefficients of linear terms as a power 

series in p (see [12]).Then, we get 

                    
6(𝑐−𝑈)

𝑐ℎ2 = 𝜔2 + 𝑝𝜔1 + 𝑝2𝜔2 + 𝑝3𝜔3 + ⋯.                (16) 
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and also expanding K as power series in p 

𝐾 = 𝑝𝑘1 + 𝑝2𝑘2 + 𝑝3𝑘3 +…        (17) 

Substituting Equation (15), Equation (16), and Equation (17) into Equation (14), we obtain the linear 

differential equation as follows: 

𝑝0: 𝜂0
′′ + 𝜔2𝜂0 = 0 (18) 

𝑝1: 𝜂1
′′ + 𝜔2𝜂1 + 𝜔1𝜂0 +

9

2ℎ3
𝜂0

2 = 𝑘1 (19) 

𝑝2: 𝜂2
′′ + 𝜔2𝜂2 + 𝜔1𝜂1 + 𝜔2𝜂0 +

9

2ℎ3
2𝜂0𝜂1 = 𝑘2 (20) 

𝑝3: 𝜂3
′′ + 𝜔2𝜂3 + 𝜔1𝜂2 + 𝜔2𝜂1 + 𝜔3𝜂0 +

9

2ℎ3
(2𝜂0𝜂2 + 𝜂1

2) = 𝑘3.    (21) 

Then we obtain the zero order solution of Equation (18)   

𝜂0 = 𝐴 cos 𝜔𝑋.          (22) 

By substituting Equation (22) in to the Equation (19), we obtain  

𝜂1
′′ + 𝜔2𝜂1 = −𝜔1𝐴 cos 𝜔𝑋 −

9

4ℎ3
𝐴2 cos 2𝜔𝑋 −

9

4ℎ3
𝐴2 + 𝑘1.      (23) 

In the fact that we get secular term in Equation (23). For handling this secular term, we use Linstedt-

Poincaire method by assuming the coefficients of linear terms as a power series in p, so we get 

𝜔1 = 0 
(24) 

and 

𝑘1 =
9

4ℎ3
𝐴2, (25) 

Therefore, Equation (23) will be  

𝜂1
′′ + 𝜔2𝜂1 = −

9

4ℎ3
𝐴2 cos 2𝜔𝑋. (26) 

Then the solution of Equation (26) is  

𝜂1 =
3𝐴2

4𝜔2ℎ3
cos 2𝜔𝑋. (27) 

We substitute Equation (24) and Equation (27) into Equation (20) then we obtain second order equation as 

follows. 

𝜂2
′′ + 𝜔2𝜂2 + 𝐴 cos 𝜔𝑋 (𝜔2 +

27𝐴2

8𝜔2ℎ6) +
27𝐴3

8𝜔2ℎ6
cos 3𝜔𝑋 − 𝑘2 = 0. (28) 

In the same way for handling secular term in Equation (28), we use Linstedt-Poincare method then we obtain  

𝜔2 = −
27𝐴2

8𝜔2ℎ6
   (29) 

and 

𝑘2 = 0, (30) 

The Equation (20) will be 

𝜂2
′′ + 𝜔2𝜂2 = −

27𝐴3

8𝜔2ℎ6
cos 3𝜔𝑋. (31) 

The solution of the second order Equation (31) is obtained as follows.  

𝜂2(𝑋) =
27𝐴3

64𝜔4ℎ6
cos 3𝜔𝑋. 

(32) 

In the third order equation we have, 
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𝜂3
′′ + 𝜔2𝜂3 = −𝜔3𝐴 cos 𝜔𝑡 −

81𝐴4

64𝜔4ℎ9
+ 𝑘3 + (

81𝐴4

128𝜔4ℎ9) cos 2𝜔𝑋

− (
405𝐴4

128𝜔4ℎ9) cos 4𝜔𝑋. 

(33) 

 

By using Linstedt-Poincare method [13], we can drop the secular term and we obtain 

𝜔3 = 0 (34) 

and we obtain also 

𝑘3 =
81𝐴4

64𝜔4ℎ9
 . (35) 

Therefore Equation (33) can be rewritten as follows. 

𝜂3
′′ + 𝜔2𝜂3 = (

81𝐴4

128𝜔4ℎ9) cos 2𝜔𝑋 − (
405𝐴4

128𝜔4ℎ9) cos 4𝜔𝑋. (36) 

The third order solution of Equation (36) is obtained as 

𝜂3 =
27𝐴4

128𝜔6ℎ9
cos 4𝜔𝑋. (37) 

By using homotopy perturbation method we can rewrite Equation (16) and Equation (17) as follows. 

6(𝑐 − 𝑈)

𝑐ℎ2
= 𝜔2 −

27𝐴2

8𝜔2ℎ6
 (38) 

𝐾 =
9𝐴2

4ℎ3
+

81𝐴4

64𝜔4ℎ9
. (39) 

By using Equation (29), we obtain 𝜔 as follows. 

𝜔 =
1

2ℎ2𝑐
√3ℎ𝑐 (4𝑐ℎ − 4ℎ𝑈 + √16𝑐2ℎ2 − 32𝑐ℎ2𝑈 + 16ℎ2𝑈2 + 6𝑐2𝐴2). (40) 

The Equation (40) is called the dispersion relation of the wave (see [14],[15]). The solution of KdV equation 

up to third order solution is given by  

𝜂 = 𝜂0 + 𝜂1 + 𝜂2 + 𝜂3  

𝜂 = 𝐴 cos 𝜔𝑋 +
3𝐴2

4𝜔2ℎ3
cos 2𝜔𝑋 +

27𝐴3

64𝜔4ℎ6
cos 3𝜔𝑋 +

27𝐴4

128𝜔6ℎ9
cos 4𝜔𝑋. (41) 

The total solution and third order solution of Equation (1) by using the homotopy perturbation method 

are described in Figure 1. In the solution, we take A = 0,04 m, water depth h = 5 m, gravity acceleration           

g = 9,81 m/s2. Velocity of wave U=1 m/s. We observed each order solution at time 𝑡 = 10. While the wave 

profiles or the total solution based on the solution for the KdV equation at different times are given in      

Figure 2. 

 

 

Figure 1. (a)The total solution and (b) the third order solution of the KdV equation at t=10. 
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Figure 2. The wave profile of the KdV equation at (a) t=0, (b) t=10,    

 

 

4. CONCLUSIONS 

In this paper, we studied the solution of the KdV equation up to the third order by using homotopy 

perturbation method. We found that in each order solution, there exist secular term. For handling this term, 

we used Linstedt-Poincare method, such that we obtained frequency and wave number in each order of 

equations. Finally, we obtained the total solution which is sum of the zero order solution, first order solution, 

the second order solution and the third order solution and also we found the dispersion relation of the wave. 
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