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Abstract. Resistance to antibiotics is increasing to alarmingly high levels. As antibiotics are less effective, more 

infections are becoming more complex and often impossible to treat. Numerous antibiotics discovered in marine 

organisms show that the marine environment, which accounts for over half of the world's biodiversity, is a huge 

source of novel antibiotics. This resource must be explored to identify next-generation antibiotics. This research 

aimed to predict antibacterial activity in marine compounds using a computational approach to reduce the cost and 

time of finding marine organisms, extracting, and testing numerous unknown marine compounds' bioactivities. We 

used a simple unsupervised learning approach to predict the biological activity of marine compounds, called 

agglomerative hierarchical clustering. We mixed antibiotic drug data in DrugBank Database and chemical 

compound data from marine organisms in the literature to compile our dataset. We applied five linkage methods in 

our dataset and compared the best method by assessing internal validation measurement. We found that the Ward 

with squared dissimilarity matrix is the best method in the dataset, and ten compounds from 73 compounds of marine 

compounds are determined as potential marine compounds which have antibacterial activity.  
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1. INTRODUCTION 

Antibiotics are the first solution to fighting bacterial infections that threaten human health. However, 

when antibiotics are consumed over time, microorganisms acquire the capacity to tolerate them and evolve 

to prevail over antibiotics [1]. This condition is popularly known as antibiotic resistance. As antibiotics 

become less effective, many infections, including pneumonia, TB, blood poisoning, gonorrhea, and 

foodborne diseases, are becoming more challenging and occasionally impossible to treat [2]. Thus, antibiotic 

resistance is increasing to alarmingly high levels. 

Natural products are an essential source of leads for drug development and have played a vital role in 

identifying and developing antibacterial agents [3]. The ocean is one of the potent natural product sources 

since natural products from the sea have shown unique molecular structures and promising biological 

activities. Numerous antibiotics have been discovered in marine organisms, such as bacteria, fungi, algae, 

sponges, cnidarians, arthropods, echinoderms, and mollusks [4]. It indicates that the marine environment, 

which accounts for almost half of the world's biodiversity, is a vast source of novel antibiotics and has to be 

investigated to find new generation antibiotics.  

Although marine organisms are vast sources of antibiotic drug development, marine sources are mostly 

untapped resources where new antibiotic molecules can be found. Finding bioactive compounds from marine 

environments is never easy; there are many obstacles to overcome, such as finding rare marine resources, 

reviving inhospitable organisms outside of the marine environment, separating novel compounds from known 

ones, revealing the function of MNPs, and maximizing their pharmacological use [5]. In the drug discovery 

process, millions of extracts from marine organisms are synthesized and tested later for activity against 

various target infectious diseases. That process is time-consuming and requires a high cost since producing 

one "lead" compound, 50.000–100.000 active molecules might be required.  

This research aimed to predict antibacterial activity in marine compounds using a computational 

approach. This method can reduce the cost and time of finding marine organisms, extracting, and testing 

numerous marine compounds whose bioactivities are still unknown, particularly their's antibacterial activity. 

There is much previous research using a computational approach in predicting biological activity, such as [6] 

an implemented classification algorithm, a particularly the Naïve-Bayesian classifier, in predicting bioactive 

activity. They combined the Similarity Ensemble Approach (SEA) and the maximum Tanimoto similarity. 

In the other study, [7] modified the Naïve Bayes algorithm to reveal structure−activity relationships. Those 

previous studies used supervised modeling to classify various kinds of biological activity. In this research, 

we used a simple unsupervised learning approach to predict the antibacterial activity of marine compounds. 

We used agglomerative hierarchical clustering analysis based on chemical similarity as an input in the 

algorithm. Chemical similarity is used in this research based on the hypothesis that two compounds with 

similar chemical structures probably have similar bioactivities and bind related target proteins [8]. Compared 

to previous studies which use a classification model, one of the advantages of this study is the ability to know 

related targets based on the synthetic drugs in a similar cluster. It can be useful for discovering the natural 

compounds' activities and mechanisms of action. 

 

 

 

2. RESEARCH METHODS 

2.1 Data Sources 

In this research, we collected chemical structure data from marine compounds and antibiotic drug 

compounds. The marine compounds are the compounds from the waters of South Sulawesi Province (SSW), 

Indonesia. All chemicals of marine compounds were collected from the literature [8] and were identified in 

the PubChem database (https://pubchem.ncbi.nlm.nih.gov/) [9]. In addition, antibiotic drug compounds were 

collected from the DrugBank database (https://go.drugbank.com/) [10]. Both marine and antibiotics 

compounds were converted from their PubChem CID to an SDF file using the ChemmineR package in R 

[11]. We then used the fingerprint of all molecules as raw data in quantifying chemical similarity. 
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2.2 Methods 

2.2.1 Compound Similarity Measures 

Many computational techniques use chemical similarity in pharmaceutical research to find new molecules [12]. 

Chemical or compound similarity is the structural or functional closeness involving chemical components, molecules, 

or compounds. It usually is represented in numerical scores as an effort to quantify chemical structural similarity in 

compounds. Several formulas are provided in computing compound similarity. One of the most popular measures of 

molecular similarities is the Tanimoto coefficient or Jaccard coefficient. The Tanimoto is defined as the fraction of 

features in common between two molecules relative to the total number of features present in either molecule. The 

similarity between a pair of compounds calculated by the Tanimoto formula: 

𝐶𝑆 = 𝑐/[𝑎 + 𝑏 − 𝑐] (1) 

where 𝑎 is the number of on-bits in the first compound, 𝑏 is the number of on-bits in the second compound, 

and 𝑐 is the number of bits in both compounds. The 2D structure of compounds was converted to a binary 

number using 1024-bit fingerprints, unique substructures generated by fragmenting each molecule. 

 

2.2.2 Agglomerative Hierarchical Clustering Method 

Hierarchical clustering is one type of clustering method which assigns a set of objects into groups 

called clusters. Generally, hierarchical clustering falls into two types: 1) Divisive approach. Initially, all data 

points lie in a single cluster and are split recursively as one descends the hierarchy; 2) Agglomerative 

approach. Unlike the divisive approach, each data point begins in its cluster, and pairings of clusters are 

combined as one ascends the hierarchy [13]. This study used an agglomerative hierarchical approach where 

the data point was defined as a cluster and combined existing clusters at each step. We used different methods 

for this approach: 

a. Complete Linkage 

The basic principle in the single linkage is the distance between two clusters to be the maximum 

distance between any single data point in the first cluster and any single data point in the second 

cluster [14]. Based on this definition of distance between clusters, the two clusters are combined at 

each stage of the process with the smallest complete linkage distance. The distance 𝐷𝑖𝑗 between two 

clusters 𝐶𝑖 and 𝐶𝑗 is the maximum distance between two points 𝑥 and 𝑦, with 𝑥 ∈ 𝐶𝑖 and    𝑦 ∈ 𝐶𝑗: 

𝐷𝑖𝑗 =  max
x ∈ 𝐶𝑖,𝑦∈𝐶𝑗

𝑑(𝑥, 𝑦) (2) 

where 𝑛𝑖 is the number of elements in clusters 𝐶𝑖  and 𝑛𝑗  is the number of elements in clusters 𝐶𝑗. 

This method tends to form clusters with the same variance, tiny ones. 

b. Average Linkage 

In this method, the distance between two clusters was defined as the average distance between data 

points in the first cluster and data points in the second cluster [14]. The distance 𝐷𝑖𝑗 between two 

clusters 𝐶𝑖 and 𝐶𝑗 is the mean of the distances between the pair of points 𝑥 and 𝑦, where 𝑥 ∈ 𝐶𝑖 and 

𝑦 ∈ 𝐶𝑗: 

𝐷𝑖𝑗 =  ∑
𝑑(𝑥, 𝑦)

𝑛𝑖 × 𝑛𝑗
x ∈ 𝐶𝑖,𝑦∈𝐶𝑗

 (3) 

where 𝑛𝑖 is the number of elements in clusters 𝐶𝑖  and 𝑛𝑗  is the number of elements in clusters 𝐶𝑗.  

c. Centroid Method 

In this method, the distance between two clusters is the distance between the two mean vectors of the 

clusters in the centroid method. The two clusters with the smallest centroid distance are combined at 

each process stage [14]. The distance 𝐷𝑖𝑗 between two clusters 𝐶𝑖 and 𝐶𝑗 is the squared euclidean 

distance between the gravity centres of the two clusters. It is defined as: 

𝐷𝑖𝑗 =  ‖𝑥̅𝑖 − 𝑥̅𝑗‖
2
 (4) 

 

where 𝑥̅𝑖 is the mean vectors in clusters 𝐶𝑖 and 𝑥̅𝑗 is the mean vectors in clusters 𝐶𝑗. 

d. Ward's Method 
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This method is an ANOVA-based approach that does not define a direct distance measurement 

between two data points or clusters. In Ward's method, one-way univariate ANOVA is implemented 

for each variable, with clusters representing the groups. In each step, the method calculates the 

incremental sum of squares and pairs of clusters with minimum cluster distance [15]. Assume that 

there are three clusters called 𝐶𝑖, 𝐶𝑗 and 𝐶𝑘 including 𝑛𝑖, 𝑛𝑗 and 𝑛𝑘 as the number of rows (or 

columns). Clusters 𝐶𝑗 and 𝐶𝑘  are aggregated to form a new single cluster called 𝐶𝑙. 

The distance between cluster 𝐶𝑖 and the new cluster 𝐶𝑙 is calculated as: 

𝐷𝑖𝑙 = 𝑎 × 𝐷𝑖𝑗 + 𝑏 × 𝐷𝑖𝑘 − 𝑐 ×  𝐷𝑗𝑘 (5) 

where  

𝑎 =  
𝑛𝑖 + 𝑛𝑗

(𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘)
 (6) 

 

𝑏 =  
𝑛𝑖 + 𝑛𝑘

(𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘)
 (7) 

 

𝑐 =  
𝑛𝑖

(𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘)
 (8) 

 

Ward.D1 and Ward.D2 algorithms are found in the literature and available in software 

packages that produce different results when applied to the same distance matrix 𝐷. Ward.D2 method 

also uses the minimum variance method; however, dissimilarities are squared before clustering.  

 

2.2.3 Cluster Validation Measures 

Validity measurements endeavor to determine how correctly the clusters represent the data. There is a 

proliferation of validity metrics, and various assessments frequently generate divergent results. This research 

uses three internal validity measures: Dunn Index, Average Silhouette Width, and Calinski-Harabasz Index.  

a. Dunn Index  

J. Dunn proposed Dunn's Index (DI) in 1974 as an index based on cluster element distance. The Index 

is obtained by calculating the ratio between the minimal intercluster distance and to maximal 

intracluster distance [16]. It follows: 

𝐷(𝒞) =
min

1≤𝑖<𝑗≤𝑞  
( min

𝑖∈𝐶𝑘,𝑗∈𝐶𝑙  
 𝐷(𝐶𝑖 , 𝐶𝑗))

max
1≤𝑘≤𝑞

𝑑𝑖𝑎𝑚(𝐶𝑘)
 (9) 

where 𝐷(𝐶𝑖 , 𝐶𝑗) is the dissimilarity function between two clusters 𝐶𝑖 and 𝐶𝑗 and 𝑑𝑖𝑎𝑚(𝐶) is the 

diameter of a cluster. The diameter is the maximum distance between observations in a cluster 𝐶𝑘, 

which may be considered a measure of cluster dispersion. If the data set contains compact and well-

separated clusters, the distance between the clusters is expected to be large, and the diameter of the 

clusters is expected to be small. Therefore, the Dunn index should be maximized.  

b. Average Silhouette Width 

The silhouette width is the average of each observation's silhouette value. The silhouette value 

measures the degree of confidence in the clustering assignment of a particular observation, with well-

clustered observations if values are near one and poorly clustered observations if values are near −1 

[16].  

For observation 𝑖, it is defined as: 

𝑆(𝑖)  =  
𝑏𝑖 − 𝑎𝑖

𝑚𝑎𝑥(𝑏𝑖 , 𝑎𝑖)
 (10) 

where 𝑎𝑖 is the average distance between 𝑖 and all other observations in the same cluster, and 𝑏𝑖 is 

the average distance between 𝑖 and the observations in the "nearest neighbouring cluster," i.e. 
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𝑎𝑖 =  
1

𝑛(𝐶(𝑖))
∑ 𝑑𝑖𝑠𝑡(𝑖, 𝑗)

𝑗∈𝐶(𝑖)

 (11) 

and,  

𝑏𝑖 =  min
𝐶𝑘∈ 𝒞\𝐶(𝑖)  

∑
𝑑𝑖𝑠𝑡(𝑖, 𝑗)

𝑛(𝐶𝑘)
𝑗∈𝐶𝑘

 (12) 

where 𝐶(𝑖) is the cluster containing observation 𝑖, 𝑑𝑖𝑠𝑡(𝑖, 𝑗) is the Euclidean between observations 𝑖 
and 𝑗, and 𝑛(𝐶) is the cardinality of cluster 𝐶. The silhouette width thus lies in the interval [−1, 1] 

and should be maximized.  

c. Calinski-Harabasz Index 

This index is an evaluation index based on the degree of cluster dispersion [17]. It is defined by:  

𝐂𝐇(𝐂) =
𝑩(𝑪)(𝑵 − 𝑪)

𝑾(𝑪)(𝑪 − 𝟏)
 (13) 

where 𝐶 is the corresponding number of clusters, 𝐵(𝐶) is the inter-cluster divergence, also called the 

inter-cluster covariance, 𝑊(𝐶) is the intra-cluster divergence, also called the intra-cluster covariance, 

and N is the number of samples. The 𝐵(𝐶) defined as: 

𝑩(𝑪) = (∑ 𝒂𝒄‖𝒙̅𝒄 − 𝒙̅‖𝟐

𝑪

𝒄=𝟏

) (14) 

and, the 𝑊(𝐶) follows the equation: 

𝑾(𝑪) = (∑ ∑ ‖𝒙̅𝒋 − 𝒙̅𝒄‖
𝟐

𝑪(𝒋)=𝒄

𝑪

𝒄=𝟏

) (15) 

The high degree of cluster dispersion, the larger the 𝐵(𝐶) is. The closer the relationship is in 

the cluster, the smaller the 𝑊(𝐶) is. The better clustering effect occurs when the ratio is higher, and 

the value of the CH index is higher. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Chemical Similarity 

Determining the structural similarity of two chemical compounds is necessary for discovering 

prospective drug development molecules. We generated a compound chemical similarity matrix of 105 

compounds in this study. Seventy-three compounds originated from marine compounds, specifically from 17 

marine biotas in the waters of South Sulawesi. A list of the marine compounds can be found in [12] with the 

SSW code of province. Many marine compounds' bioactivities are still undetermined, while the rest (32 

compounds) are antibiotics drugs whose bioactivities are known and pass clinical testing. The list of 32 

antibiotic drugs can be seen in Table 1.  

 
Table 1. List of Antibiotics Drugs Obtained from DrugBank Database 

ID Drugbank Id Name  ID Drugbank Id Name 

D1 DB00027 Gramicidin D  D17 DB00684 Tobramycin 

D2 DB00199 Erythromycin  D18 DB00759 Tetracycline 

D3 DB00207 Azithromycin  D19 DB00798 Gentamicin 

D4 DB00260 Cycloserine  D20 DB00803 Colistin 

D5 DB00314 Capreomycin  D21 DB00826 Natamycin 

D6 DB00400 Griseofulvin  D22 DB00955 Netilmicin 

D7 DB00415 Ampicillin  D23 DB01045 Rifampicin 

D8 DB00446 Chloramphenicol  D24 DB01053 Benzylpenicillin 

D9 DB00452 Framycetin  D25 DB01082 Streptomycin 

D10 DB00479 Amikacin  D26 DB01172 Kanamycin 

D11 DB00512 Vancomycin  D27 DB01190 Clindamycin 
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ID Drugbank Id Name  ID Drugbank Id Name 

D12 DB00595 Oxytetracycline  D28 DB01201 Rifapentine 

D13 DB00615 Rifabutin  D29 DB01220 Rifaximin 

D14 DB00626 Bacitracin  D30 DB01421 Paromomycin 

D15 DB00646 Nystatin  D31 DB02703 Fusidic Acid 

D16 DB00681 Amphotericin B  D32 DB08874 Fidaxomicin 

 

The chemical similarity of antibiotic medicines and marine chemicals is assessed based on the 

hypothesis that two compounds with similar chemical structures have similar bioactivities and bind 

functionally related target proteins [8]. Using the Tanimoto formula, we obtained a chemical similarity matrix 

represented in a heat map (see Figure 1). 

The range of chemical similarity scores in this measurement is from 0 to 1. The compound with high 

similarity scores has a high value and vice versa. Therefore, we can see that the red area represents the 

compound pair with high structure similarity, in contrast to the dark blue area, where the pair of the compound 

has a low similarity. At the same time, the yellow one indicates the compound pairs with moderate similarity. 

As shown in the below heatmap, the proportion of red is smaller than the yellow and dark blue. In other 

words, many pairs of compounds have lower than high similarity. In further analysis, the similarity of the 

compounds to all compounds as a row becomes input in clustering analysis. The clustering is conducted to 

group the compounds with high similarity and separate the compound with low similarity based on the 

chemical similarity score. 

 

 
 

3.2. Cluster Evaluation and Comparison 

Several linkage methods in agglomerative hierarchical clustering analyses are applied to group the 

compounds based on their similarity to all other compounds. We also implemented internal clustering 

validation to compare the various methods and identify the optimal number of clusters. Three internal cluster 

validation metrics were used and produced different results. We calculated the Dunn Index, Average 

Silhouette Width, and Calinski Harabasz Index from two to 20 clusters using agglomerative hierarchical 

clustering analysis in five linkage methods. 


Figure 1. Chemical Similarity Heatmap 
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Figure 2. Dunn Index of Agglomerative Clustering 

The second measurement of validation is the silhouette coefficient. The average silhouette width 

demonstrates a linear relationship with the cluster number. As shown in Figure 3, the average silhouette width 

in 𝑛 = 20 is the highest of the three methods. If we extend the cluster's upper limit, the average silhouette 

still tends to increase and decrease after around 𝑛 = 30. The method with the highest Dunn-Index depends 

on the cluster number since no single linkage method has the highest index Dunn in every cluster. Thus, 

according to this picture, for 𝑛 < 10, we indicate Ward.D2 with 𝑛 = 9 as the best method based on Average 

Silhouette Width.  

 

 
Figure 3. Average Silhouette Width of Agglomerative Clustering 

The last internal cluster validation applied in this study is the Calinski – Harabasz (CH) Index. The 

higher the CH index, the better the clustering is (see Figure 4). Based on the graph, we obtain that Ward.D1 

method is suitable for 𝑛 < 6. However, if 𝑛 > 6, Ward.D2 is the best method. Thus, according to the CH 

index graph, for 𝑛 < 10, we indicate Ward.D2 with 𝑛 = 9 as the best method based on Average Silhouette 

Width. We further applied Ward.D2 with 𝑛 = 9 in clustering chemical compounds based on chemical 

similarity. 
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Figure 4.  Calinski-Harabasz Index of Agglomerative Clustering 

3.3. Clustering of the Chemical Compound Results    

Based on the internal validation results, we applied agglomerative hierarchical clustering using 

Ward.D2 for 𝑛 = 7 and 𝑛 = 9. The dendrograms of clustering are shown in Figure 5a and Figure 5b, 

respectively. Both the ward methods are summarized in Table 2. The number of antibiotics drugs clustered 

well in both ward methods; however, Ward.D2 for 𝑛 = 9 conducted more groups for antibiotics drugs. 

Cluster 1 in 𝑛 = 7 is divided into two groups in 𝑛 = 9 (clusters 1 and 5). In further analysis, we use the nine 

clusters to predict the potential marine compounds for antibacterial activity since the antibiotics drugs are 

more clustered well. 

 

 

 

a) 
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Figure 5. a) Dendrogram of Ward.D2 Method for = 𝟕 ; b) Dendrogram of Ward.D2 Method for 𝒏 = 𝟗 

 

As demonstrated in Table 2, it can be seen clearly that cluster 1 and cluster 2 contain only antibiotics 

drugs. All the antibiotics drugs in those clusters have no similarities with 73 marine compounds. Thus, those 

clusters are not necessary to be explored further and are classified as impotent clusters 

 
Table 2. Number of Compounds in each Cluster 

 Ward D.2, 𝒏 = 𝟕  Ward D.2, 𝒏 = 𝟗  

cluster  
number of 

compounds  

 number of 

antibiotics 

drugs 

number of 

marine 

compounds  

 

cluster 
number of 

compounds  

 number of 

antibiotics 

drugs 

number of 

marine 

compounds  

1 25 10 15  1 7 7   

2 11 11    2 11 11   

3 9 7 2  3 9 7 2 

4 9 3 6  4 9 3 6 

5 28 1 27  5 18 3 15 

6 14   14  6 14 1 13 

7 9   9  7 14   14 

         8 14   14 

         9 9   9 

Total  105 32 73    105 32 73 

 

Similar to clusters 1 and 2, clusters 7, 8, and 9 contain only one type of compound. Those three clusters 

contain 37 compounds clustered with only marine compounds. There are no antibiotics drugs assigned in 

those clusters. So, we can conclude that none of the marine compounds in these clusters can have antibacterial 

activities based on this clustering of chemical similarity (See Table 3). 

 

 

 

 

 

 

 
 

b) 
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Table 3. List of most Potent, Moderately Potent, and Impotent Clusters and their Compounds 

Cluster Category Marine Compounds Similar antibiotics drugs 

1 Impotent cluster - Seven drugs (D1, D11, D13, 

D23, D28, D29, D32) 

2 Impotent cluster - 11 drugs (D10, D17, D19, D2, 

D22, D25, D26, D27, D3, D30, 

D9) 

 

3 Most potent cluster 2 compounds (C17, and C30) Seven drugs (D15, D16, D21, 

D24, D4, D7, and D8)  

4 Moderately potent 

cluster 

6 compounds (C16,C69,C70,C71,C72, 

C73) 

Three drugs (D14, D20, and 

D5) 

5 Moderately potent 

cluster 

15 compounds (C14, C15, C25,C26, C27, 

C28, C29, C35, C36, C37, C38, C39, C40, 

C67, C68)  

Three drugs (D12, D18, 

and D6) 

6 Least potent cluster 13 compounds (C1,  C12, C2, C3,C31, C32, 

C4, C41, C5, C56, C6, C66, C9) 

One drug (D31) 

7 Impotent cluster 14 compounds (C10, C11, C13,C18, C19, 

C20, C21, C22, C23, C24, C33, C34, C7, 

C8) 

- 

8 Impotent cluster 14 compounds (C42, C43, C44, C45, C46, 

C47, C48, C49, C50, C51, C52, C53, C54, 

C55) 

- 

9 Impotent cluster 9 compounds (C57, C58, C59, C60, C61, 

C62, C63,C64,C65) 

- 

 

Clusters 3, 4, 5, and 6 are the main clusters that can be analyzed to find the potent antibacterial activity 

from marine compounds since some antibiotic drugs are clustered with marine compounds. Those four 

clusters are divided into three categories: most potent cluster (cluster 3), moderately potent cluster (cluster 4 

and cluster 5), and least potent cluster (cluster 6).  The most potent cluster produces the most potent 

compound, the moderately potent cluster produces a moderate potent compound, and the least potent cluster 

produces the least potent compound of marine compounds (Figure 3).  

Two marine compounds in cluster 3 are (+)-Helicascolide (C17) and 3,5-Dibromo-4methoxyphenethyl 

amine (C30). Those two compounds are the most potent marine compounds since the marine compound lies 

in a cluster where antibiotics drugs dominate the group. In cluster 4 and cluster 5, the proportion of marine 

compounds is higher than antibiotic drugs. Thus, screening marine compounds can be applied to filter the 

most potent compound in those two groups. One of the ways to filter the potent marine compound in this 

study is to look at the nearest neighbor compound that can easily be seen in the dendrograms (See Figure 6). 

In cluster 4, after identifying the nearest compound from antibiotics drugs in Figure 6, we found that 

Callyaerin G (C16) and Cadiolide B (C14)  are the marine compounds with high similarity with Capreomycin 

(D5) and Colistin. Thus, the two marine compounds can be classified as moderately antibacterial potent 

compounds. In cluster 5, using the previous method, we found four compounds (Latonduine A (C67), 

Latonduine B (C68), Naamine G (C37), and Naamine F (C38)) that are similar to antibiotics drugs (D6 and 

D18).  
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Figure 6. Detailed Dendrograms of Clusters 4, 5, and 6 

 

As the proportion of marine compounds is more significant than antibiotics drugs in cluster 6, those 

marine compounds in this cluster are the least potent antibacterial compound. However, the most similar 

compound with the "one" antibiotics drug in cluster 6 still has the chance to be the least potent compound. 

The compound was identified using the dendrogram (See Figure 6). In dendrograms, the compound with 

close distance with antibiotics drug are (–)-Sarasinoside J (C41) and (–)-Sarasinoside K (C56). Thus, both 

compounds are classified as the least potent antibacterial compound.  

 

 

 

4. CONCLUSIONS 

Agglomerative hierarchical analysis can successfully group the compounds based on chemical 

similarity. The formed clusters can predict the antibacterial activity by combining antibiotic drug compounds 

with unknown biological activity. We found that the Ward.D2 with squared dissimilarity matrix is the best 

method in the dataset, and ten compounds from 73 compounds of the marine compound are determined as 

potential marine compounds to have antibacterial activity. The result of this study can be used as the first 

screening of researchers before applying different methodologies such as molecular docking analysis, 

molecular dynamics simulation, QSAR analysis, or in-vivo analysis to know the ability of compounds to 

antibacterial activity. This method also can be improved by adding various features as input in clustering 

modeling and improving the hierarchical clustering method to gain a better cluster. 
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