
          https://doi.org/10.30598/barekengvol17iss1pp0135-0146 

 

March 2023     Volume 17 Issue 1 Page 0135–0146 

P-ISSN: 1978-7227   E-ISSN: 2615-3017 

 

BAREKENG: Jurnal Ilmu Matematika dan Terapan 

   

 

135 
      

BAYESIAN ADDITIVE REGRESSION TREE APPLICATION FOR 

PREDICTING MATERNITY RECOVERY RATE OF GROUP LONG-TERM 

DISABILITY INSURANCE 
 

 Stevanny Budiana1, Felivia Kusnadi2*, Robyn Irawan3  

 
1,2,3Center for Mathematics and Society, Department of Mathematics, Faculty of Information 

Technology and Science, Parahyangan Catholic University 

 Jl. Ciumbuleuit No. 94, Bandung, 40141, Indonesia 

Corresponding author’s e-mail: *felivia@unpar.ac.id  

 

 

ABSTRACT 

Article History: 
Bayesian Additive Regression Tree (BART) is a sum-of-trees model used to approximate 

classification or regression cases. The main idea of this method is to use a prior distribution to 

keep the tree size small and a likelihood from data to get the posterior. By fixing the tree size 

as small as possible, the approximation of each tree would have a little effect on the posterior, 

which is the sum of all output from all the trees used. The Bayesian additive regression tree 

method will be used for predicting the maternity recovery rate of group long-term disability 

insurance data from the Society of Actuaries (SOA). The decision tree-based models, such as 

Gradient Boosting Machine, Random Forest, Decision Tree, and Bayesian Additive Regression 

Tree model, are compared to find the best model by comparing mean squared error and 

program runtime. After comparing some models, the Bayesian Additive Regression Tree model 

gives the best prediction based on smaller root mean squared error values and a relatively short 

runtime. 
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1. INTRODUCTION 

There was an increase in global disability cases by 52% in 2017 compared to 1990, with the majority 

of disabilities caused by non-communicable diseases such as respiratory infection, cancer, digestive disease, 

diabetes, musculoskeletal disorders, etc. Institute for Health Metrics and Evaluation (IHME) and The World 

Health Organization (WHO) also said that the frequency of people with disability is highest in people ranging 

from 20 to 70 years old. By gender, women are more susceptible to disability than men. One of the reasons 

why a woman has higher disability cases is pregnancy. Women are more likely to experience disability 

because of high blood pressure, high blood sugar, and higher body mass index or BMI [1].  

Disability insurance is one kind of protection given to the insured if the insured suffers from a certain 

condition that leads the insured to be unable to work and receive income. The benefit given to the insured is 

paid periodically per the insurance contract. The disability insurance that will be used for case study is group 

long-term disability insurance; this insurance gives protection to a group of people from one institute or 

company for a long time of coverage duration. The amount of benefit is around 60% to 80% of the insured's 

monthly income and the coverage duration is also diverse from 2 years to pension.  

The data used for the case study is Group Long-Term Disability (GLTD) insurance year 2008 from the 

Society of Actuaries website. The data consist of several disabilities causes such as cancer, diabetes, nervous 

system, maternity, etc. Of several disability causes, the one to be used is maternity disability. Disability 

because of maternity can happen in the form of disease or injury that might happen while still in pregnancy 

or even after giving birth and could last for several months to a lifetime. Most maternity disability case usually 

comes from excessive bleeding, anemia, infection, damage to organ, hypertension, and depression [2]. 

A company that will release a disability insurance product needs to know the risks they will bear when 

some insured makes a claim. The risks can be approximated by predicting the insured's recovery rate if the 

insured is declared to have suffered an injury or disease that caused disability. The recovery rate is predicted 

by using maternity disability data and the method will be used to predict the recovery rate is Bayesian 

Additive Regression Tree (BART). The Bayesian Additive Regression Tree method is a sum-of-trees model, 

which means the prediction is a sum of outputs from each tree, as illustrated by Tan [3]. 

The Bayesian Additive Regression Tree method is superior to the other decision tree-based methods. 

The method uses prior distribution to form a tree so the time to generate a tree is quicker than the others, said 

to give better prediction accuracy, and the approximated value is close to the real values [4]. Bayesian 

Additive Regression Tree uses the same prior distribution and step to form a tree as Bayesian Classification 

and Regression Tree [5] but uses several trees rather than using only one tree. Using several trees at once 

gives an improvement in accuracy, avoids overfitting, and gives smaller variance than just one tree [6], which 

is also the main idea of Random Forest [7]. Bayesian Additive Regression Tree also uses several iterations 

to update the current tree based on information from the former tree, which is similar to how the Gradient 

Boosting Machine method works [8]. The structure for each tree in every iteration will be formed by doing 

Bayesian Backfitting Markov Chain Monte Carlo [9] and the predicted recovery rate after the burn-in period 

using Bayesian Backfitting Markov Chain Monte Carlo will converge to the real value [10]. Bayesian 

Additive Regression Tree can be used to find an important variable by making variable selection with some 

threshold such as local threshold, global max threshold, and global SE threshold [11]. 

Besides Bayesian Additive Regression Tree, other methods will also be used to predict maternity 

recovery rates, such as Decision Tree, Random Forest, and Gradient Boosting Machine. Those methods will 

be compared to find a model that gives the most accurate and efficient result by comparing the Root Mean 

Square Error value and the program runtime for each model.  The Decision Tree method is the base of all the 

methods that will be used in this paper, it only uses one tree decision to predict the recovery rate and when 

the tree size is too big, there is a chance that the variance of prediction value is also big [6]. To minimize the 

variance for prediction, we used Random Forest, as explained before, and used several trees to predict the 

recovery rate. We could also use Gradient Boosting Machine to predict the recovery rate; note that Gradient 

Boosting Machine will give a better prediction if the chosen loss function and parameters are right [12]. And 

lastly, we will use Bayesian Additive Regression Tree to predict the recovery rate. The method is said to give 

better results by using some prior distribution for parameters and using Bayesian Backfitting Markov Chain 

Monte Carlo to determine tree size. 

Some datasets will also be used for building a model; each dataset will consist of different data and have 

its restrictions. The reason for making many datasets is that the original data for maternity recovery rate 
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consist of a very large amount of 0 and 1 value. The enormous amount of 0 value might lead to an inaccurate 

predicted value.  After building models on each dataset, it will be proven that Bayesian Additive Regression 

Tree gives the best prediction results and the analysis of the model will also be shown. 

 

 

2. RESEARCH METHODS 

The data used in this paper is group long-term disability insurance data from the year 2008 and come 

from the Society of Actuaries (SOA) website [13]. The case study will be done by using only maternity 

disability data and models will be built by using a tree decision-based method to predict the recovery rate. 

The root mean squared error and runtime for each model will also be compared to find the best model. Some 

data will be removed, such as recovery rate with 0 and 1 values, male data, and unknown values. 

 

2.1. Data Description 

The group long term disability insurance data consists of several variable such as: 

Table 1. Variables Description 

Variable Name Description Value 

Actual Recovery Rate The insured’s recovery rate [0,1] 

Age The age of insured’s in years [20,70] 

Duration Recovery time in months [2,36] 

Gender Gender or insured’s Male, Female 

Gross Indexed Benefit 

Amount 
Gross monthly benefit 

$1,000, $1,000-$1,999, $2,000-$2,999, 

$3,000-$3,999, $4,000-$4,999, $5,000-

$9,999, $10,000-$14,999, $15,000-$19,999, 

$20,000 and over, Unknown 

Integration with STD 
Integration between long-term 

insurance with short-term insurance 

Integrated with ASO of Fully-Insured STD, 

Not Integrated with STD, Unknown 

Own Occupation to Any 

Occupation Transition 

A change from own occupation to 

any occupation 
Own+1, Own+0, OwnOther 

Taxability Benefit Taxable benefit from a claim 
Non-Taxable, Partial Taxability, 100% 

Taxable 

 
Own occupation is a condition where someone with a disability unable to work in their current 

profession. While any occupation means someone with a disability unable to work in any other occupation. 

Variables described in Table 1 will be proceeded so observed data are from female population and data 

containing unknown values will be removed. The dependent variable for case study is the actual recovery 

rate and the independent variables are other variables besides the actual recovery rate. We also use several 

datasets because the original data contain a large amount of 0 and 1 values. Although data with a large amount 

of 0 value is said to have no big impact on the tree model [13], we found indications that those values still 

affect the prediction result and make a biased prediction. The dataset after removing male and unknown 

values will be called dataset 1. The second dataset, called dataset 2, consists of maternity data without 0 value. 

Dataset 3 consist of maternity data without 0 and 1 values and dataset 4 consist of maternity data without 1 

value. For each dataset, 80% of the data will be classified as training data and the others will be classified as 

test data [14]. The amount of data for each data can be seen in the following Table 2. 

Table 2. Dataset for Case Study 

Dataset Value Number of Data Training data Test data 

1 [0,1] 6.178 4.942 1.236 

2 (0,1] 2.241 1.792 449 

3 (0,1) 1.957 1.565 392 

4 [0,1) 5.894 4.715 1.174 

 
Decision tree-based models will be built for each dataset from Table 2, and the root mean squared 

error and runtime for each model will be compared to find the best method and prove that Bayesian Additive 

Regression Tree gives better prediction accuracy than other methods [4]. 
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2.2. Bayesian Additive Regression Tree 

Bayesian Additive Regression Tree is an approximation method using a sum-of-trees model. Sum-of-

trees model is an additive model with multivariate components. The main idea to build this sum-of-trees 

model is by choosing a particular prior distribution so the tree structure will stay small through many 

iterations. By keeping the tree size as small as possible, the sum-of-trees model will consist of many trees 

where each tree will have a small effect on the final output approximation and explain just a little information 

from the data. Sum-of-trees model is denoted by 

𝒀 = ∑ 𝑔𝑗(𝑥) + 𝜀𝑚
𝑗=1   

with 𝑌 symbolizing the output or predictions for the dependent variable,  𝑚 is the amount of tree, 𝑔𝑗(𝑥) is 

the information from 𝑗th tree, and 𝜀 is the error or residual assumed to be normally distributed 𝑁(0, 𝜎2). For 

sum-of-trees model, there are some parameters used to describe the tree structures denoted as 𝑇𝑗 and explain 

a set of values on each terminal node on 𝑗th tree denoted as 𝑀𝑗 = {𝜇1𝑗, 𝜇2𝑗 , … , 𝜇𝑏𝑗} with 𝑏 is the amounts of 

terminal nodes at one tree. The sum-of-trees model after knowing the tree structure and value on each terminal 

node is denoted by 

𝒀 = ∑ 𝑔(𝑥; 𝑇𝑗, 𝑀𝑗) + 𝜀𝑚
𝑗=1  (1) 

The prior for his method is assumed to be independent and symmetric so that the prior can be written as 

𝑝((𝑇1, 𝑀1), … , (𝑇𝑚, 𝑀𝑚), 𝜎) = [∏ ∏ 𝑝 (𝜇𝑖𝑗|𝑇𝑗) 𝑝(𝑇𝑗)𝑖𝑗 ] 𝑝(𝜎) (2)  

By assuming the prior independent and symmetric, the tree components, such as tree structure and 

value on each terminal node (𝑇𝑗, 𝑀𝑗), are independent with each other and with 𝜎. Also, each terminal nodes 

for every tree are independent of each other [4]. 

 

2.3. Prior 

Prior chosen in this section will affect the tree structure and makes the output of each tree small. 

Parameters prior that will be used for building the model are tree structure 𝑇𝑗, the value on each terminal node 

𝑀𝑗, standard deviation 𝜎, and the amount of tree 𝑚. Note that all the parameter chosen in this section is the 

value recommended after doing several trials and the model built using recommended values is called the 

default model, while the model built with other values combination by doing cross-validation is called the 

cross-validation model. 

 

2.3.1. Prior for Tree Structure 

To find 𝑝(𝑇𝑗) for Equation (2), we can use  

𝛼(1 + 𝑑)−𝛽, 𝛼 ∈ (0,1), 𝛽 ∈ [0, ∞)  (3) 

Equation (3) is a probability for a node at depth 𝑑 = 0, 1, 2, … is nonterminal. We 𝛼 = 0.95 and 𝛽 = 2 as 

recommended by Chipman [4]. By choosing those values, we got prior information that tree sizes of 2 or 3 

receive prior probability of 0.55 and 0.28 giving a conclusion that most trees have a depth of 2 or 3. It is also 

possible for the tree size to be bigger than 3 and grow into a big tree if the data demand so. 

 

2.3.2. Prior for Value on Terminal Nodes 

To find 𝑝(𝜇𝑖𝑗|𝑇𝑗), we use the conjugate normal distribution 𝑁(𝜇𝜇 , 𝜎𝜇
2) as prior distribution. To find 

the prediction for output which is symbolized as 𝐸(𝑌|𝑥), we sum up m terminal nodes value from all trees 

so the prediction distribution is 𝑁(𝑚𝜇𝜇 , 𝑚𝜎𝜇
2 ). Also, the 𝐸(𝑥) is likely to fall in between 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥, 

the minimum and maximum value of the dependent variable. 𝜇𝜇 and 𝜎𝜇  can be found by satisfying these 

conditions: 

𝑚𝜇𝜇 − 𝑘 √𝑚𝜎𝜇 = 𝑦𝑚𝑖𝑛,  

𝑚𝜇𝜇 + 𝑘 √𝑚𝜎𝜇 = 𝑦𝑚𝑎𝑥  
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By choosing 𝑘 = 2, it is said that 95% of prediction will fall in (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥) interval. We also assume 𝑦𝑚𝑖𝑛 =

−0.5 and 𝑦𝑚𝑎𝑥 = 0.5 and transformed 𝑦 value to fall inside (−0.5, 0.5).  By doing so, we can use 𝜇𝜇 = 0 as 

the center of prior distribution so that the value on each terminal node is small and approximate 𝜎𝜇  by solving 

𝜎𝜇 =
0.5

𝑘√𝑚
.  

 

2.3.3. Prior for Standard Deviation 

To find 𝑝(𝜎), we use conjugate inverse chi-square distribution 𝜎2~𝑣𝜆/𝜒𝑣
2 as prior distribution. By 

using a data-informed prior approach, we assign a probability to the plausible values of 𝜎. Let �̂� be the 

prediction of standard deviation, we will choose 𝑣 and 𝜆 so that the 𝑞th prior quantile will be located at �̂� or 

𝑝(𝜎 < �̂�).  The recommended (𝑣, 𝑞) value is (3;0.9). By choosing that combination, we got a distribution 

where the possible standard deviation value is not too concentrated on small values. 

 

2.3.4. Number of Trees 

The value for 𝑚 is the number of trees used for the sum-of-trees model. The bigger the value is the 

better the prediction will be, but after some point, the prediction will become stagnant and the performance 

will get worse. The number of trees to be used is 200. 

 

2.4. Backfitting Markov Chain Monte Carlo and Posterior Inference 

The Bayesian Additive Regression Tree method uses Bayesian Backfitting Markov Chain Monte Carlo 

[9] to build a tree structure. The backfitting process will be done 1,250 times to simulate the tree shape until 

the shapes converge. The tree shapes, values on terminal nodes, variance, and posterior 𝑌 at Equation (1) 
will change along with the iterations. The backfitting process uses metropolis-hasting algorithm [15] to reject 

and accept the proposal tree shape using grow, prune, and change procedure to alter the tree shape [16]. 

From 1,250 iterations, some parts of the iterations will be removed because of their inconsistency or 

instability. This part is called the burn-in period, where the result of the said period is still oscillating and has 

yet to reach the point of convergence. We assume the first 250 iterations as the burn-in period and the rest is 

categorized as the post-burn-in period [17]. We will find the posterior 𝑌 by analyzing the pattern of the 

iteration from the post-burn-in period to find the convergence of the posterior. Posterior 𝑌 from post burn-in 

period is denoted by  

𝑓∗(. ) =  ∑ 𝑔(. ; 𝑇𝑗
∗, 𝑀𝑗

∗)𝑚
𝑗=1 ,  

with 𝑓∗(. ) is the post-burn-in period, 𝑚 is the number of trees, 𝑇𝑗
∗ is tree structure post- burn-in period, and 

𝑀𝑗
∗ is value on terminal nodes post-burn-in period. Backfitting is used to find the next tree structure based on 

the current tree structure. Assume that we already know the structure of previous 𝑚 − 1 trees, assumes 

𝑇(𝑗) and 𝑀(𝑗) as information about previous trees and we want to know the 𝑚th tree structure based on 

previous information, then the 𝑚th tree structure can be denoted as (𝑇𝑗, 𝑀𝑗)|𝑇(𝑗), 𝑀(𝑗), 𝜎, 𝑦. 

Standard deviation 𝜎 is assumed to be drawn from the inverse gamma distribution and (𝑇𝑗, 𝑀𝑗) depends 

on partial residuals denoted as  

𝑅𝑗 ≡ 𝑦 −  ∑ 𝑔(𝑥; 𝑇𝑘 , 𝑀𝑘)𝑘≠𝑗 ,  

which is the residual between observed data and 𝑚 − 1 previous trees. Also, the tree structure 𝑇𝑗 can be 

obtained by using the metropolis-hastings algorithm and the value on terminal nodes can be found after 𝑇𝑗 is 

known.  

 

2.5. Other Decision Tree-Based Method 

Besides Bayesian Additive Regression Tree, other methods such as decision tree, random forest, and 

gradient boosting machine are also used to compare the performance of each method and find a model with 

the best performance. Each method will be used to build a model on every dataset explained in this subsection.  
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2.5.1. Decision Tree 

A decision tree uses only one tree to make a prediction. By using only one tree, the size of the tree will 

be big, and the variance of prediction will be large. Predictions using a decision tree can be approximated 

using 

𝑓�̂�(𝑥) =
1

𝑁𝑖
 ∑ 𝑦𝑛𝑖

(𝑥)𝑁𝑖
𝑛𝑖=1 ,   

with 𝑓�̂�(𝑥) is prediction and equal to the average of data in nodes terminal, 𝑁𝑖 is the total amount of data on 

𝑖th terminal node, and 𝑦𝑛𝑖
 is the data value on 𝑖th terminal node. 

 

2.5.2. Random Forest 

Random Forest uses more than one tree to make a prediction. By using more than one tree, the accuracy 

of prediction is much better and results in smaller prediction variance than the decision tree method. The final 

prediction for random forest is the average of prediction from each tree and is calculated by 

𝑓(𝑥) =
1

𝐵
 ∑ 𝑓𝑏(𝑥)𝐵

𝑏=1 ,  

with 𝑓(𝑥) is the final prediction, 𝐵 is the number of trees used, and 𝑓𝑏(𝑥) is the prediction of 𝑏th tree. 

 

2.5.3. Gradient Boosting Machine 

Same as random forest, the gradient boosting machine also uses more than one tree. Though, rather 

than using many trees at once like the random forest method, the gradient boosting machine uses only one 

tree for every iteration and uses the recent trees to improve the next tree. Prediction using gradient boosting 

machine is the sum of weighted prediction from each iteration. The formula for prediction is 

𝑓(𝑥) = ∑ 𝜆𝑓𝑏(𝑥)𝐵
𝑏=1 ,  

with 𝑓(𝑥) is the final prediction, B is the number of iterations, 𝜆 is the shrinkage constant, and 𝑓𝑏(𝑥) is the 

prediction from 𝑏th iteration. 

 

2.6. Root Mean Squared Error 

To know whether a model gives an accurate prediction, we use root mean squared error (RMSE) to 

test the accuracy. Root mean squared errors, as its name already states, is the root of mean squared error that 

is usually used to calculate accuracy between observed data and prediction. We use RMSE and not MSE to 

calculate accuracy because the data used is varied around 0 and 1. The smaller the RMSE value is, the better 

the accuracy will be. The root mean squared error can be calculated using  

𝑅𝑀𝑆𝐸 = √1

𝑛
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛
𝑖=1 ,   

with 𝑅𝑀𝑆𝐸 is the root mean squared error value, 𝑛 is the amount of data, 𝑦𝑖 is the observed data, and  𝑓(𝑥𝑖) 

is the prediction for observed data.  

 

2.7. Model Analysis 

Model analyses that will be used for Bayesian Additive Regression Tree are normality test, 

heteroscedasticity test, and variable selection.  

 

2.7.1. Normality Test  

A normality test is used to determine whether a model is built using normally distributed data or not. 

The hypothesis used for this test are: 

𝐻0 : The model is built using normally distributed data. 

𝐻1 : The model is built not using normally distributed data. 



BAREKENG: J. Math. & App., vol. 17(1), pp. 0135-0146, March 2023.     141 

 

Other than the hypothesis test, the normality test can also be done using a qq plot [18]. Quantile-

quantile plot or qq plot is a plot between the quantile of observed data and the theoretical quantile. If the 

points in the qq plot form a straight line, then the model is built using normally distributed data. If the line is 

not straight, then we can do some transformation to the dependent variable and build a new model using the 

transformed data. 

 

2.7.2. Heteroscedasticity Test 

The heteroscedasticity test is used to determine the value of error variance. Heteroscedasticity is a 

condition where the error for each prediction is irregular or not constant. For a model to be called a good 

model, the heteroscedasticity test shall be rejected to indicate that the prediction errors are constant or 

homoscedastic [6]. When a model has a heteroscedastic error variance, we need to build a new model that 

satisfies the null hypothesis. The hypothesis used for the heteroscedasticity test are: 

𝐻0 : Error variance is constant. 

𝐻1 : Error variance is not constant. 

Other than the hypothesis test, the visual test can be done using a scatter plot. If the scatter plot is 

dispersed without any pattern, then the error variance is constant. On the contrary, if the scatter plot shows 

any pattern, such as increasing, decreasing, or expanding, then the error variance is not constant.  

 

2.7.3. Variable Selection 

Variable selection is used to find some variables that are significant to the prediction. The significant 

variable can be determined by the variable inclusion proportion denoted as 𝑝𝐾. The variable inclusion 

proportion or 𝑝𝐾 is the proportion for 𝐾th variable. Variable selection for the Bayesian Additive Regression 

Tree model uses the permuted dependent variable as the response variable rather than just using a normal 

dependent variable. Permuted data is used to remove the initial correlation between a dependent and 

independent variables that might exist when using the original data [11].  

The significant variable is chosen by using the free-model approach to find a correlation between 

predictions and the dependent variable after being permuted [4]. The model-free approach uses backward 

elimination to find the best prediction by eliminating insignificant variables one by one [19]. After the 

inclusion proportion is found, the next step to do is to find the threshold for each variable. There are several 

thresholds, such as local threshold, global max threshold, and global SE threshold, with each of them having 

different stringency. A variable with a proportion value exceeding the threshold is called a significant 

variable. For different data, the threshold to be used is different and can be chosen by using a cross-validation 

procedure [11]. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Case Study Result 

The case study is done by building decision tree-based models such as Decision Tree (DT), Random 

Forest (RF), Gradient Boosting Machine (GBM), and Bayesian Additive Regression Tree (BART and BART-

CV) using several datasets. For each model, the root mean squared error (RMSE) and the runtime will be 

shown and compared to find a model with the best performance. 

Table 3. RMSE of Every Model on Different Dataset 

RMSE Dataset 1 Dataset 2 Dataset 3 Dataset 4 

DT 0.2215 0.2180 0.1415 0.1329 

RF 0.2327 0.3125 0.1353 0.1330 

GBM 0.2199 0.2150 0.1394 0.1318 

BART 0.2167 0.1906 0.1266 0.1263 

BART-CV 0.2169 0.1920 0.1277 0.1260 

From Table 3, the model with the best performance for every dataset is either BART or BART-CV. 

This also proves that the Bayesian Additive Regression Tree method gives better prediction accuracy than 

other methods [4].  
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Table 4. Runtime for Every Model on Different Dataset in Minutes 

RMSE Dataset 1 Dataset 2 Dataset 3 Dataset 4 

DT 0.0303 0.0474 0.0445 0.0244 

RF 23.5676 5.6763 2.7333 20.8417 

GBM 0.1784 0.2556 0.2194 0.1648 

BART 0.6999 0.4958 0.4992 0.7011 

BART-CV 68.6231 22.9564 22.3574 82.0315 

 

From Table 4, we can see that model BART-CV takes much time to build or is computationally 

expensive, and so we conclude that BART is the model with the best performance because not only does it 

give a smaller RMSE than other models, but it also takes relatively short times to build. By comparing the 

RMSE of each model, we got those models on dataset 3 and dataset 4 give similar RMSE, but if we also 

compare the runtime, dataset 4 takes more time than dataset 3. So, for model analysis, we will use the BART 

model on dataset 3. 

 

3.2. Bayesian Additive Regression Model Analysis 

The model to be analyzed is the BART model from dataset 3 with parameter combination 
(𝑘, 𝑞, 𝑣, 𝑚) = (2, 3, 0.9, 50) or the default model. The R Squared value is 0.5371. For residual analysis, the 

p-value for the normality test using the Shapiro-Wilk test is 0, and the p-value for zero-mean noise is 0.96884. 

Based on the p-value and visual test in Figure 1, we conclude that the model is not built using normally 

distributed data and the error variance is constant. The explanation for the normality test in subsection 2.7.1 

says that when the data is not normally distributed, transformation on observed data should be done, but after 

doing transformation, the result still does not improve much, so we will use the normal data without any 

transformation. 

 

Figure 1. Residual or Error Analysis for BART Model 

 

Figure 2a is partitioned into five parts by grey vertical lines where the left part is the burn-in period 

and the other four is the post-burn-in period. The blue horizontal line is the average error variance which 

converges to 0.017.  Figure 2b is also divided into two parts where the left part is the burn-in period and the 

right part is the post-burn-in period. It shows the percentage of acceptance from grow, prune, and change 

proposals with initial probability of 28%, 28%, and 44% sequentially [16]. Figure 2c illustrates the number 

of nodes for each tree on every iteration after the burn-in period, with the blue line being the average of nodes 

on every tree which is 5 nodes. Lastly, Figure 2d is the depth for every tree after the burn-in period and the 

blue line is the average depth which is 2. 

Figures 3 and 4 show the coverage probability of credible interval and prediction interval [20] for the 

BART Model. The coverage probability of the credible interval is 38.34%, which means 38.34% of observed 
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data will fall inside the credible interval. The small coverage probability for credible intervals might be 

because the data is not normally distributed. The coverage probability of the prediction interval is 95.59% 

means 95.59% of the predicted future value will fall inside the prediction interval. 

Figure 5 shows the variable inclusion proportion for every independent variable from highest to lowest 

proportion. Duration and age band are the variables mostly used as splitting variables and followed by other 

variables. These variables are deemed as material and need to be incorporated into the underwriting process. 

To process this even further, we investigate which splitting variables are chosen due to the correlation 

between variables; we make variable selection and the result is shown in Figure 6. 

In Figure 6a, the green line denotes the local threshold, the red line indicates the global maximum 

threshold, and the blue line signifies the global SE threshold, whereas in Figure 6b, solid dots represent the 

variable inclusion proportion exceeds all the threshold, hollow dots mean the variable inclusion proportion 

does not exceed all the threshold, and the asterisk mark the variable inclusion proportion exceeds the global 

SE threshold. The thresholds chosen after doing cross-validation is the local threshold and the independent 

variable that significantly affects the prediction are duration, $4,000-$4,999, $<1,000, and $1,000-$1,999. 

 

 

Figure 2. Convergence of BART Model 

 

Figure 3. Credible Interval for BART Model 
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Figure 4. Prediction Interval for BART Model 

 

Figure 5. Variable Importance for BART Model 

 

Figure 6. Variable Selection for BART Model 
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4. CONCLUSIONS 

 Based on the results obtained, the lowest RMSE values are mostly produced by the BART model. 

The computational time given is also relatively low. These signify the BART model is the best predictor for 

this given case. Variable importance and variable selection shown by the BART model also indicate which 

variables are deemed material to be incorporated in the underwriting process, which are duration, age, and 

gross indexed benefit amount. 
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