RADIO LABELING OF BANANA GRAPHS

Sarbaini ${ }^{1 *}$, Nazaruddin ${ }^{2}$, Muhammad Rizki ${ }^{3}$, Muhammad Isnaini Hadiyul Umam ${ }^{4}$, Muhammad Luthfi Hamzah ${ }^{5}$, Tegar Arifin Prasetyo ${ }^{6}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences Technology, Universitas Islam Negeri Sultan Syarif Kasim,
${ }^{2,3,4}$ Department of Industrial Engineering, Faculty of Sciences Technology, Universitas Islam Negeri Sultan Syarif Kasim,
${ }^{5}$ Department of Information System, Faculty of Sciences Technology, Universitas Islam Negeri Sultan Syarif Kasim, Jl. H.R Soebrantas No 155 Km 15 Pekanbaru, Indonesia
${ }^{6}$ Institut Teknologi Del, Toba, North Sumatera 22381, Indonesia
Corresponding author's e-mail: * sarbaini@uin-suska.ac.id

Article History:

Received: 11 $1^{\text {th }}$ September 2022
Revised: $8^{\text {th }}$ December 2022
Accepted: 21 ${ }^{\text {st }}$ January 2023

ABSTRACT

Let $G=(V, E)$ be a graph. An $L(3,2,1)$ labeling of G is a function $f: V \rightarrow \mathbb{N} \cup\{0\}$ such that for every $u, v \in V,|f(u)-f(v)| \geq 3$ if $d(u, v)=1$, $|f(u)-f(v)| \geq 2$ if $d(u, v)=2$, and $|f(u)-f(v)| \geq 1$ if $d(u, v)=3$. Let $k \in \mathbb{N}$, a $k-L(3,2,1)$ labeling is a labeling $L(3,2,1)$ where all labels are not greater than k. An $L(3,2,1)$ number of G, denoted by $\lambda_{3,2,1}(G)$, is the smallest non-negative integer k such that G has a $k-L(3,2,1)$ labeling. In this paper, we determine $\lambda_{3,2,1}$ of banana graphs.

Keywords:

Banana Graphs;
Graph Theory;
Labeling.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-ShareAlike 4.0 International License.

[^0]Sarbaini, Nazaruddin, M. Rizki, M. I. H. Umam, M. L. Hamzah and T. A. Prasetyo, "RADIO LABELING OF BANANA GRAPHS," BAREKENG.

1. INTRODUCTION

In real-world circumstances, graph theory has numerous applications. Find an assignment that satisfies various constraints and minimizes the value of the given objective function given a collection of radio transmitters to be assigned operating frequencies. The first frequency assignment issues arose as a result of the discovery that transmitters assigned to the same or closely related frequencies could interfere with one another [1]. To minimize interference, assigning different transmitters to different noninterfering frequencies, or coming as close to this as possible within the constraints, was a simple solution. Another issue is determining how to set a different frequency and minimize the frequency range used to reduce costs.

Roberts developed a new technique for frequency assignment in 1991, classifying stations as closed or very closed [2]. If the distance between two stations is one and two, they are said to be 'very close' and 'closed,' respectively. $L(2,1)$ - labeling has been extensively researched in the past,[3]-[6]. Calamoneri et al. studied $L-h, \quad k$ labeling of co-comparability, interval, and circular-arc graphs in 2009 [7]. They demonstrated that for co-comparability graphs, $\lambda_{h, k}(G) \leq \max (h, 2 k) 2 \Delta+k$ and IG $\lambda_{h, k}(G) \leq$ $\max (h, 2 k) \Delta$. They also demonstrated that $\lambda_{h, k}(G) \leq \max (h, 2 k) 2 \Delta+h w \$$ for CAG. Paulet also demonstrated that $\lambda_{2,1}(G) \leq \max \{4 \Delta-2,5 \Delta-8\}$ and $\lambda_{0,1}(G)=\Delta-1$ for permutation graphs [8].

In 1992, Griggs and Yeh [9] modeled the problem in constructing a graph by assuming the transmitter were a set of vertices, very close transmitters were assumed to be neighboring vertices, and sufficiently close transmitters were assumed to be two vertices apart on the graph. Defined labeling $L(2,1)$ as the answer to the problem of setting the frequency. In 1992, they studied the labeling number $L(2,1)$, denoted by $L(2,1)$, in several classes of graphs between other path graphs, cycle graphs, cube graphs, and tree graphs. In addition, they studied the lower and upper bounds for $L(2,1)$ on any graphs with maximum degree Δ. In 2004, Liu and Sahou defined $L(3,2,1)$ labeling. They get results about $\lambda_{3,2,1}$ in several classes of graphs, with determining boundaries for $\lambda_{3,2,1}$ on irregular graphs, Halin Graphs, and Planar Graphs with a maximum degree Δ. Then in 2005, Clipperton cs [10] studied $\lambda_{3,2,1}$ on classes of graphs like path graphs, cycle graphs, n-ary tree graph and regular caterpillar graphs.

In 2011, Chia studied some general concepts regarding labeling $L(3,2,1)$ and gave an upper bound of $\lambda_{3,2,1}$ for any graph with a maximum degree Δ. Furthermore, they also described the labeling $L(3,2,1)$ on ary tree, rooted tree, and Cartesian product of path graphs and cycle graph. In [10], Jean displayed that $\lambda_{d, 2,1}\left(K_{n}\right)=d(n-1)+1$ and $\lambda_{d, 2,1}\left(K_{m, n}\right)=d+2(m+n)-3 . L(3,2,1)$-labeling have been studied in the present year [10]. Amanathulla and Madhumangal in 2017 [11], [12], defined labeling $L(3,2,1)$ interval graphs issues. Furthermore, they also did research in 2021 to upgrade their previous studies with $L(3,2,1)$ labeling issues with trapezoids [12].

Kusbudiono and his friends, in 2022 [13], studied about $L(2,1)$ labeling of lollipop and pendulum graphs. The $L(2,1)$ creating the labeling for the lollipops $L_{-}\{m, n\}$ with $m \geq 3$ and n positive integers is discussed in this paper. The goal of this research is to find the number with the smallest possible span that comes from the labeling $L(2,1)$ on the lollipop graph $L_{m, n}$ and they may symbolize $\lambda_{2,1}-L_{m, n}$. Moreover, find the span value with the smallest range using the $L(2,1)$ labeling on the pendulum graph. Simulation software for $L(2,1)$ labeling of lollipop graphs is also produced by it with large m and n values. They found that the smallest possible length of a span for a lollipop graph is $\lambda_{2,1}-L_{m, n}=2 m-2$ and length of a pendulum graphs, P_{n}^{k} with $k \geq 4$ and $n \geq$ is $k+1$.

2. RESEARCH METHODS

The research method used is to determine the value of $\lambda_{3,2,1}$ for banana graphs. The value is obtained by specifying the lower limit for $\lambda_{3,2,1}$ and determine its upper limit. Determination of the lower limit of $\lambda_{3,2,1}$ the graph studied begins by using the lower limit of $\lambda_{3,2,1}$ by Chia et al. [14] or using contradiction techniques. While the upper limit is $\lambda_{3,2,1}$. determined by the labeling construction method $L(3,2,1)$.

Two vertices x and y on the graph G is known as a neighbor if $x y$ is the edge on G. The degree of a vertex $v, d(v)$ is many edges adjacent to v. Complement of graph G, is notated \bar{G} is a graph where $V \overline{(G)}=$ $V(G)$ and $E(\bar{G})=[V(G)]^{2} \backslash E(G)$. Star graph S_{n} is the adjacent graph with order $n+1$, where a degree of a vertex is n that is named the center vertex. The following is definitions of radio labeling.

Definition 1. Let $G=(V, E)$ be a graph and f be a mapping $\$ f: V \rightarrow \mathbb{N} . f$ is an $L(3,2,1)$ - labeling of G if, for all $x, y \in V$,

$$
|f(x)-f(y)| \geq \begin{cases}3, & \text { if } d(x, y)=1 \\ 2, & \text { if } d(x, y)=2 \\ 1, & \text { if } d(x, y)=3\end{cases}
$$

Definition 2. Let $k \in \mathbb{N} \cup\{0\}$. $k-L(3,2,1)$ labeling is labeling $L(3,2,1)$ with every label used not greater than k. $L(3,2,1)$ number on G graph, denoted as $\lambda_{3,2,1}(G)$, is the smallest number k so that G graph has the labeling $k-L(3,2,1)$.

3. RESULTS AND DISCUSSION

3.1. Bounds of $\boldsymbol{\lambda}_{3,2,1}$ Banana Graphs

The first step we should take is to determine the smallest number of Banana graphs that were obtained using the determined lowest bound and upper bound for $\lambda_{3,2,1}$. Determination is lower bound by using Chia [15] or the contradiction method. While the upper bound of $\lambda_{3,2,1}$ gets by construction method of $L(3,2,1)$ labeling. Before we discuss deep to determine the lowest bound and upper bound of $\lambda_{3,2,1}$ Banana graph, take a look at the subsequent corollary and lemma holds.

Lemma 1. If G^{\prime} subgraph of G, then $\lambda_{3,2,1}\left(G^{\prime}\right) \leq \lambda_{3,2,1}(G)$.
Proof. By contradiction, suppose $\lambda_{3,2,1}\left(G^{\prime}\right)>\lambda_{3,2,1}(G)$. Let $\lambda_{3,2,1}\left(G^{\prime}\right)=k_{1}$ and $\lambda_{3,2,1}(G)=k_{2}$, meaning that k_{1} is the smallest number, so graph G has the labeling $k_{1}-L(3,2,1)$. Let $f k_{1}-L(3,2,1)$ labeling on a graph $G . G^{\prime} \subset G, V\left(G^{\prime}\right) \subset V(G), E\left(G^{\prime}\right) \subset E(G)$ and f labeling $k_{1}-L(3,2,1)$ on graph G. Thus, for every vertices $u, v \in V\left(G^{\prime}\right) \subset V(G), \quad|f(u)-f(v)| \geq 3$ for every vertices $u, v \in V\left(G^{\prime}\right) \subset V(G)$ with $d(u, v)=1,|f(u)-f(v)| \geq 2$ for every vertices $u, v \in V\left(G^{\prime}\right) \subset V(G)$ with $d(u, v)=2$ and $|f(u)-f(v)| \geq 1$ for every vertices $u, v \in V\left(G^{\prime}\right) \subset V(G)$ with $d(u, v)=3$. This means that there is $k_{1}-L(3,2,1)$ on graph $G^{\prime} . \lambda_{3,2,1}(G)=k_{2}$ and $k_{2}>k_{1}$, meaning that there is a number smaller than k_{2} (named k_{1}) so that graph G^{\prime} has labeling $k_{1}-L(3,2,1)$. This contradicts the minimal $\lambda_{3,2,1}\left(G^{\prime}\right)$. Therefore $\lambda_{3,2,1}\left(G^{\prime}\right) \leq \lambda_{3,2,1}(G)$.

Lemma 2. For star graph $S_{n}=K_{1, n}=\{v\}+\overline{K_{n}}$ then $\lambda_{3,2,1}\left(S_{n}\right)=2 n+1$. Further, if f is $2 n+1-$ $L(3,2,1)$, labeling on S_{n} graph, then $f(v) \in\{0,2 n+1\}$.

The followings are corollaries from Lemma 2.
Corollary 1. For any graph G with $\Delta(G)=\Delta>0$, then $\lambda_{3,2,1}(G) \geq 2 \Delta+1$. If $\lambda_{3,2,1}(G)=2 \Delta+1$ and f is any labeling $2 \Delta+1-L(3,2,1)$, then for every $v \in V(G)$ where $d(v)=\Delta$ such that $f(v) \in\{0,2 \Delta+1\}$.
Proof. Based on Lemma $1, \lambda_{3,2,1}(G) \geq \lambda_{3,2,1}\left(S_{\Delta}\right)=2 \Delta+1$. If equality occurs, then by using Lemma 2 , we get for any f is $2 \Delta+1$-labelling, applies $f(v) \in\{0,2 \Delta+1\}$ for every $v \in V(G)$ with $d(v)=\Delta$.

Corollary 2. Let G be a graph with $\lambda_{3,2,1}(G)=2 \Delta+1$ and f is $2 \Delta+1-L(3,2,1)$ on graph G. If for any vertices $v \in V(G)$ with $d(v)=\Delta$ and $f(v)=0$ or $f(v)-2 \Delta+1$, then $f(N(v))=\{f(u) \mid u, v \in V(G)\}=$ $\{2 i+1 \mid 1 \leq i \leq \Delta\}$ or $f(N(v))=\{2(i-1\} \mid 1 \leq i \leq \Delta\})$.

To demonstrate that there is $2 \Delta+2-L(3,2,1)$ labeling, consider the following lemma and corollary.
Corollary 3. Let G be a graph with $\Delta \geq 1$. If there is $v_{1}, v_{2} \in V(G)$ with $d\left(v_{1}, v_{2}\right)=2$ and $d\left(v_{1}\right)=$ $d\left(v_{2}\right)=\Delta$, then $\lambda_{3,2,1}(G) \geq 2 \Delta+2$.

Proof. By contradiction, suppose $\lambda_{3,2,1}(G) \leq 2 \Delta+1$. Cause corollary 2.1, then $\lambda_{3,2,1}(G)=2 \Delta+1$ and for any $f 2 \Delta+1-L(3,2,1)$ labeling on graph $G, f(v) \in\{0,2 \Delta+1\}$ for every $v \in V(G)$ with $d(v)=\Delta$. Let $f 2 \Delta+1-L(3,2,1)$ labeling on graph G. Hence there are $v_{1}, v_{2} \in V(G)$ with $d\left(v_{1}, v_{2}\right)=2$ and $d\left(v_{1}\right)=$ $d\left(v_{2}\right)=\Delta$. Thus, $f\left(v_{1}\right) \neq f\left(v_{2}\right)$ then $\left\{f\left(v_{1}\right), f\left(v_{2}\right)\right\}=\{0,2 \Delta+1\}$. Without compromising generally, let $f\left(v_{1}\right)=0$ and $f\left(v_{2}\right)=2 \Delta+1$. Based on corollary 2.2 , we get $f\left(N\left(v_{1}\right)\right)=\left\{f(u) \mid u v_{1} \in E(G)\right\}=$ $\{2 i+1 \mid 1 \leq i \leq \Delta\}$. Since u is a neighbor of v_{1}, thus $f(u)=2 \Delta+1$, then $\left\{f(u)-f\left(v_{2}\right) \mid=0\right.$ with $d\left(u, v_{2}\right) \leq 3$. Contradiction.

Meanwhile, the Banana graph $B_{m, n}$ is a graph obtained from m of a copy of the graph S_{n} and a vertex v where $v \notin V\left(S_{n}\right)$, by connecting a leaf of each graph S_{n} with a vertex v.

Theorem 1. Let m and n be positive integers with $m \geq 3$ and $n \geq 1$. If $B_{m, n}$ is a banana graph, then

$$
\lambda_{3,2,1}\left(B_{m, n}\right)=\left\{\begin{array}{l}
2 \Delta+1, \text { for } m \neq n \\
2 \Delta+2, \text { for } m=n
\end{array}\right.
$$

Proof. Suppose $V\left(B_{m, n}\right)=\left\{v_{0}, \ldots, v_{m}\right\} \cup\left\{v_{1}^{0}, \ldots, v_{1}^{n-1}\right\} \cup \ldots \cup\left\{v_{m}^{0}, \ldots, v_{m}^{n-1}\right\}$. The determination of the lower bound for $\lambda_{3,2,1}\left(B_{m, n}\right)$ uses direct evidence by taking advantage of the consequences present in the previous. To prove it is divided into two cases.

1) Case $m \neq n$

In this case, the distance of each vertex of Δ is not equal to two. Based on corollary $\mathbf{1}$, obtained $\lambda_{3,2,1}\left(B_{m, n}\right) \geq 2 \Delta+1$ for $m \neq n$.
2) Case $m=n$

Note that if $m=n$, then Δ is located at the vertex v_{i}^{0} for $i \in\{1,2, \ldots, m\}$ and in v_{0}. Since $d\left(v_{i}^{0}\right)=\Delta=d\left(v_{i}\right)$ and $d\left(v_{i}^{0}, v_{i}\right)=2$, then based on the corollary $1, \lambda_{3,2,1}\left(B_{m, n}\right) \geq 2 \Delta+2$ for $m=n$.

Furthermore, the determination of the upper bound for $\lambda_{3,2,1}\left(B_{m, n}\right)$ is divided into two cases.

1) Case $m \neq n$

This section is subdivided into two subsections. Namely, $m>n$ and $m<n$, because the functions of each case are different.
a. For $m>n$

Claim that if $m>n$, then $\lambda_{3,2,1}\left(B_{m, n}\right)=2 \Delta+1$. To indicate that $\lambda_{3,2,1}\left(B_{m, n}\right)=2 \Delta+1$ define the labeling function $L(3,2,1)$ on $\left(B_{m, n}\right)$ with $m>n$ as follows:

$$
\begin{gathered}
f\left(v_{i}\right)=\left\{\begin{array}{cc}
0, & \text { if } i=0 ; \\
2 i+1, & \text { if } i \in[1, m]
\end{array}\right. \\
f\left(v_{i}^{0}\right)=\left\{\begin{array}{cc}
2 m, & \text { if } i=1 ; \\
2(i-1), & \text { if } i \in[2, m]
\end{array}\right. \\
f\left(v_{1}^{j}\right)=\left\{\begin{array}{cc}
1, & \text { if } j=1 ; \\
2 j+1, & \text { if } j \in[2, n-1]
\end{array}\right. \\
f\left(v_{i}^{j}\right)=\left\{\begin{array}{cl}
2 j-1, & \text { if } 1 \leq j \leq \min (i-2, n-1), i \in[2, m] ; \\
2 j+5, & \text { if } \min (i-1, n) \leq j \leq n-1, i \in[2, m]
\end{array}\right.
\end{gathered}
$$

Furthermore, with construction that f is $L(3,2,1)$ labeling for $m>n$. Take any vertex $u, v \in V\left(B_{m, n}\right)$ with $d(u, v)=1, d(u, v)=2$ and $d(u, v)=3$. Then we get f represents the labeling of $2 \Delta+1-L(3,2,1)$ on $B_{m, n}$ for $m>n$.
b. For $m<n$

Claim that if $m<n$ then $\lambda_{3,2,1}\left(B_{m, n}\right)=2 \Delta+1$. To indicate that $\lambda_{3,2,1}\left(B_{m, n}\right)=2 \Delta+1$ define the labeling function $L(3,2,1)$ on $\left(B_{m, n}\right)$ with $m<n$ as follows:

$$
\begin{aligned}
& f\left(v_{i}\right)=\left\{\begin{array}{cc}
2 n-1, & \text { if } i=0 \\
2 i-2, & \text { if } i \in[1, m]
\end{array}\right. \\
& f\left(v_{i}^{0}\right)=2 n+1, \quad \text { if } i \in[1, m]
\end{aligned}
$$

$$
f\left(v_{1}^{j}\right)=\left\{\begin{aligned}
2 j-2, & \text { if } 1 \leq j \leq \min (i-1, n-1), i \in[1, m] \\
2 j, & \text { if } \min (i, n) \leq j \leq n-1, i \in[1, m]
\end{aligned}\right.
$$

Furthermore, with construction that f is $L(3,2,1)$ labeling for $m<n$. Take any vertex $u, v \in V\left(B_{m, n}\right)$ with $d(u, v)=1, d(u, v)=2$ and $d(u, v)=3$. Then we get f represents the labeling of $2 \Delta+1-L(3,2,1)$ on $B_{m, n}$ for $m<n$.
2) Case $m=n$

Claim that if $m=n$, then $\lambda_{3,2,1}\left(B_{m, n}\right)=2 \Delta+2$. To indicate that $\lambda_{3,2,1}\left(B_{m, n}\right)=2 \Delta+2$ define the labeling function $L(3,2,1)$ on $\left(B_{m, n}\right)$ with $m=n$ as follows:

$$
\begin{gathered}
f\left(v_{i}\right)=\left\{\begin{aligned}
3, & \text { if } i=0 ; \\
0, & \text { if } i=1 \\
2 i+2, & \text { if } i \in[2, m]
\end{aligned}\right. \\
f\left(v_{i}^{0}\right)=\left\{\begin{array}{rr}
5, & \text { if } i=1 ; \\
1, & \text { if } i \in[2, m]
\end{array}\right. \\
f\left(v_{1}^{j}\right)=\left\{\begin{array}{cc}
2, & \text { if } j=1 ; \\
2 j+4, & \text { if } j \in[2, n-1]
\end{array}\right. \\
f\left(v_{i}^{j}\right)=\left\{\begin{array}{cc}
2 j-2, & \text { if } 1 \leq j \leq \min (i-1, n-1), i \in[2, m] \\
2 j+4, & \text { if } \min (i, n) \leq j \leq n-1, i \in[2, m]
\end{array}\right.
\end{gathered}
$$

Furthermore, with the construction that f is $L(3,2,1)$ labeling for $m=n$. Take any vertex $u, v \in V\left(B_{m, n}\right)$ with $d(u, v)=1, d(u, v)=2$ and $d(u, v)=3$. Then we get f represents the labeling of $2 \Delta+2-L(3,2,1)$ on $B_{m, n}$ for $m=n$.

4. CONCLUSIONS

A graph obtained from m of a copy of the graph S_{n} and a vertex v where $v \notin V\left(S_{n}\right)$ by connecting a leaf of each graph S_{n} with a vertex of v called the banana graph $B_{m, n}$. The numbers $L(3,2,1)$ of the banana graph $B_{m, n}$ with $m \geq 3$ and $n \geq 1$, are as follows:

$$
\lambda_{3,2,1}\left(B_{m, n}\right)=\left\{\begin{array}{l}
2 \Delta+1, \text { for } m \neq n ; \\
2 \Delta+2, \text { for } m=n
\end{array}\right.
$$

REFERENCES

[1] W. K. Hale, "Frequency assignment: Theory and applications," Proc. IEEE, vol. 68, no. 12, pp. 1497-1514, 1980.
[2] F. S. Roberts, "T-colorings of graphs: recent results and open problems," Discrete Math., vol. 93, no. 2-3, pp. 229-245, 1991.
[3] A. A. Bertossi and C. M. Pinotti, "Approximate L ($\delta 1, \delta 2, \ldots, \delta t)$-coloring of trees and interval graphs," Networks An Int. J., vol. 49, no. 3, pp. 204-216, 2007.
[4] D. Indriati and T. S. M. N. Herlinawati, "L (d, 2, 1)-labeling of star and sun graphs," Math. Theory Model., vol. 4, no. 11, 2012.
[5] N. Khan, M. Pal, and A. Pal, "L (0, 1)-labeling of cactus graphs," 2012.
[6] B. M. Kim, W. Hwang, and B. C. Song, "\$L(3,2,1)\$-Labeling for the Product of a Complete Graph and a Cycle," Taiwan. J. Math., vol. 19, no. 3, May 2015, doi: 10.11650/tjm.19.2015.4632.
[7] T. Calamoneri, "The L(h, k)-Labelling Problem: An Updated Survey and Annotated Bibliography," Comput. J., vol. 54, no. 8, pp. 1344-1371, Aug. 2011, doi: 10.1093/comjn1/bxr037.
[8] S. Ghosh, P. Podge, N. C. Debnath, and A. Pal, "Efficient Algorithm for L (3, 2, 1)-Labeling of Cartesian Product Between Some Graphs," in Proceedings of 32nd International Conference on, 2019, vol. 63, pp. 111-120.
[9] J. A. Gallian, "A dynamic survey of graph labeling," Electron. J. Comb., vol. 1, no. DynamicSurveys, p. DS6, 2018.
[10] J. Clipperton, "L (d, 2, 1)-labeling of simple graphs," Rose-Hulman Undergrad. Math. J., vol. 9, no. 2, p. 2, 2008.
[11] S. Amanathulla and M. Pal, "L (3, 2, 1)-and L (4, 3, 2, 1)-labeling problems on interval graphs," AKCE Int. J. Graphs Comb., vol. 14, no. 3, pp. 205-215, 2017.
[12] S. Amanathulla, B. Bera, and M. Pal, "L(2,1,1)-Labeling of Circular-Arc Graphs," J. Sci. Res., vol. 13, no. 2, pp. 537-544, May 2021, doi: 10.3329/JSR.v13i2.50483.
[13] Kusbudiono, I. A. Umam, I. Halikin, and M. Fatekurohman, "L (2,1) Labeling of Lollipop and Pendulum Graphs," 2022, doi:
[14] M.-L. Chia, D. Kuo, H. Liao, C.-H. Yang, and R. K. Yeh, "\$ L (3, 2, 1) \$-Labeling Of Graphs," Taiwan. J. Math., vol. 15, no. 6, pp. 2439-2457, 2011.
[15] M. Chia, D. Kuo, H. Liao, C. Yang, and R. K. Yeh, "L (3, 2, 1)-labeling of graphs," vol. 15, no. 6, pp. 2439-2457, 2011.

[^0]: How to cite this article: J. Math. \& App., vol. 17, iss. 1, pp. 0165-0170, March, 2023.

