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ABSTRACT 

Article History: 
Let 𝑅 be a finite ring. The bipartite graph associated to elements and cosets of subrings of 𝑅 is 

a simple undirected graph Γ(𝑅) with vertex set 𝑅 ∪ 𝑺𝑅, where 𝑺𝑅 is the set of all subrings of 

𝑅, and two vertices 𝑟 ∈  𝑅 and 𝑆 ∈ 𝑺𝑅 are adjacent if and only if 𝑟𝑆 = 𝑆𝑟. In this study, we 

investigate some basic properties of the graph Γ(𝑅). In particular, we investigate some 

properties of Γ(𝑀2(ℤ𝑛)), where 𝑀2(ℤ𝑛) is the ring of matrices over ℤ𝑛. Also, we study the 

diameter of the bipartite graph associated to the quaternion ring. 
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1. INTRODUCTION 

The study of algebraic structures and graph theory has been considerable attention over the past several 

years. There are many important notions of such interplay, for instance, see [1]–[6]. 

Let Γ be a graph with vertex set 𝑉(Γ) and edge set 𝐸(Γ). For any edge 𝑢𝑣, where 𝑢 and 𝑣 are in 𝑉(Γ), 

we call 𝑢 and 𝑣 as the end points of 𝑢𝑣. We say that Γ is connected if there is a path between every pair of 

vertices of Γ. The length of the smallest cycle contained in a graph Γ is called the girth of Γ. The distance 

between 𝑢 and 𝑣 in graph Γ is the length of the shortest path between 𝑢 and 𝑣 and denoted 𝑑(𝑢, 𝑣). The length 

of the longest path between two distinct vertices of connected graph Γ is called the diameter of Γ and it is 

denoted by diam(Γ). A bipartite graph is a graph whose vertices can be partitioned into two disjoint sets 𝐴 

and 𝐵 such that every edge connects a vertex in 𝐴 and a vertex in 𝐵. In the case that every vertex in 𝐴 is 

adjacent to every vertex in 𝐵, we call the graph as a complete bipartite graph. A cycle that meets every vertex 

in a graph exactly once is called a Hamiltonian cycle and a graph that includes a Hamiltonian cycle is called 

a Hamiltonian graph. A planar graph is a graph that can be drawn in the plane without crossings but possibly 

at the end points. By a vertex cover, we mean a set of some vertices of a graph that contains at least one of 

the end points of every edge in the graph. Moreover, a vertex cover having the smallest possible number of 

vertices for a given graph is known as a minimum vertex cover of Γ, denoted 𝛽(Γ). A matching 𝑀 of a graph 

Γ is a set of edges of Γ having no common end points. A matching of Γ is said to be maximum if Γ has no 

matching 𝑀′ with |𝑀′| > | 𝑀|. 

Throughout this article, 𝑅 denotes any finite ring. For any subring 𝑆 of 𝑅 and for any 𝑟 ∈  𝑅, the sets 

𝑟𝑆 = {𝑟𝑠|𝑠 ∈  𝑆} and 𝑆𝑟 = {𝑠𝑟|𝑠 ∈  𝑆} are called as a left coset and a right coset, respectively. The set of all 

subrings of 𝑅 is denoted by 𝑺𝑅. For further definitions and theorems of graph theory, group theory, and 

matrices over commutative theory, we refer to [7]–[14], respectively. 

This article concerns on the bipartite graph associated with elements and cosets of subrings of 𝑅 that 

is motivated by [5]. In Section 2, we introduce the bipartite graph associated with elements and cosets of 

subrings of 𝑅 and we investigate some basic properties of the graph including connectivity, diameter, girth, 

and planarity. We also study the hamiltonicity property of this graph. Moreover, we present some relations 

between graph theory and matrices over ℤ𝑛 through this graph and give some conjectures about minimum 

vertex cover and maximum matching. We close the result and discussion section by giving the diameter of 

the bipartite graph associated to quaternion ring for some cases with the definition of quaternion ring refers 

to [15]. 

 

 

2. RESULTS AND DISCUSSION 

In this section, firstly, we give definition of a bipartite graph associated to elements and cosets of 

subrings of finite rings and some basic properties of the graph. 

Definition 1. Let 𝑅 be a finite ring. The bipartite graph associated to element and cosets of subrings of 𝑅 is 

a simple undirected graph Γ(𝑅) with vertex set 𝑉(Γ(𝑅)) = 𝑅 ∪ 𝑺𝑅 where 𝑺𝑅 is the set of all subrings of 𝑅 

and two vertices 𝑟 ∈ 𝑅 and 𝑆 ∈ 𝑺𝑅 are adjacent if and only if 𝑟𝑆 = 𝑆𝑟.   

Theorem 1.  Let 𝑅 be a ring. Then 𝛤(𝑅) has no isolated vertex. 

Proof. If 𝑅 is a zero ring, i.e., 𝑅 = {0}, then trivially 0 is adjacent to 𝑅 and hence, Γ(𝑅) is a complete graph 

with two vertices. Assume that 𝑅 ≠ {0}. Then, for every vertex 𝑟 ∈ 𝑅 and 𝑆 ∈ 𝑺𝑅, 𝑟 is adjacent to {0} ∈ 𝑺𝑅 , 
since 𝑟{0} = {0} = {0}𝑟, and 𝑆 is adjacent to 0, since 0𝑆 = {0} = 𝑆0. Thus, the degree of 𝑟 and 𝑆 are at least 

1 which implies Γ(𝑅) has no isolated vertex. 

Theorem 2. For any ring 𝑅, the graph 𝛤(𝑅) is connected with diam(𝛤(𝑅)) at most 3. 

Proof. We are going to prove that for every two arbitrary vertices, there exists a path of length at most 3 

between them. We consider the following cases. 

(i) For every 𝑟1, 𝑟2, ∈ 𝑅, it is obvious that 𝑟1 and 𝑟2 have common neighbours {0} in 𝑺𝑅. Hence, we 

have a path  𝑟1 − {0} − 𝑟2 of length 2.  
(ii) Similar to case (i), two arbitrary vertices 𝑆1 and 𝑆2 in 𝑺𝑅 have common neighbors 0 in 𝑅 and we 

have path 𝑆1 − 0 − 𝑆2 of length 2. 
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(iii) For every vertex 𝑟 ∈ 𝑅 and 𝑆 ∈ 𝑺𝑅 , by the above two cases, we have a path 𝑟 − {0} − 0 − 𝑆2 of 

length 3. 

Hence, Γ(𝑅) is connected and diam(𝛤(𝑅)) ≤ 3. 

Theorem 3. If 𝑅 is a nonzero commutative ring, then diam(𝛤(𝑅)) = 2. 

Proof. Let 𝑢, 𝑣 ∈ 𝑉(Γ(𝑅)).  If 𝑢 and 𝑣 are in the same partition, then 𝑑(𝑢, 𝑣) = 2. Without losing the 

generality of the proof, let 𝑢 ∈ 𝑅 and 𝑣 ∈ 𝑺𝑅 . Since 𝑅 is a commutative ring, then we have 𝑢𝑣 = 𝑣𝑢 for any 

𝑢 ∈ 𝑅, 𝑣 ∈ 𝑺𝑅 . Thus, 𝑑(𝑢, 𝑣) = 1, implying diam(Γ(𝑅)) = 2. 

We have a conjecture for the converse of Theorem 3 as given as follows. 

Conjecture 1. If diam(𝛤(𝑅)) = 2 then 𝑅 is not necessarily a commutative ring. 

Theorem 4.  The diameter of 𝛤(𝑅) is 1 if and only if 𝑅 = {0}. 

Proof. If 𝑅 = {0} then it is clear that diam(Γ(𝑅)) = 1. For otherwise, suppose 𝑅 ≠ {0} and diam(Γ(𝑅)) =

1. Since 𝑅 ≠ {0} then there exists 𝑎 ≠ 0 such that 𝑎 ∈ 𝑅. It means that 𝑑(0, 𝑎) = 2, which contradicts 

diam(Γ(𝑅)) = 1. 

Recall that for any ring 𝑅, the set 𝑍(𝑅) = {𝑥 ∈ 𝑅|(∀𝑦 ∈ 𝑅)𝑥𝑦 = 𝑦𝑥} is called the center of 𝑅. In the 

following theorem give a sufficient condition for the graph 𝛤(𝑅) has girth 4, related to the center of 𝑅. 

Theorem 5. For any ring 𝑅, if 𝑍(𝑅) ≠ {0} and |𝑺𝑅| ≥ 2, then the girth of 𝛤(𝑅) is equal to 4. 

Proof.  First of all, note that if for any bipartite graph has no odd cycle, then the girth of Γ(𝑅) cannot be 3. 
On the other hand, since 𝑍(𝑅) ≠ {0} and |𝑺𝑅| ≥ 2,  then there exists 0 ≠  𝑥 ∈ 𝑍(𝑅) and 𝐻1, 𝐻2 ∈ 𝑺𝑅 such 

that 0 − 𝐻1 − 𝑥 − 𝐻2 − 0. Therefore, we have a cycle of length 4. Thus, we conclude that the girth of Γ(R) 

is equal to 4. 

The following theorem gives a necessary condition for the graph 𝛤(𝑅) to be Hamiltonian. 

Theorem 6. Let 𝛤(𝑅) be a Hamiltonian graph. Then |𝑅| = |𝑺𝑅|. 

Proof. Let Γ(𝑅) be a hamiltonian graph. Then, we have a cycle that meets all vertices of Γ(𝑅). Let the cycle  

begin from a vertex 𝑥1 ∈ 𝑅. Then there exists 𝑦1 ∈ 𝑺𝑅 such that 𝑥1 − 𝑦1, and also we will have 𝑥2 ∈ 𝑅 such 

that 𝑥1 − 𝑦1 − 𝑥2.  If we do this until |𝑅| steps, then we have 𝑥|𝑅| ∈ 𝑅 and 𝑦|𝑺𝑅| ∈ 𝑺𝑅 such that 𝑥1 − 𝑦1 −

𝑥2 − ⋯ − 𝑥|𝑅| − 𝑦|𝑺𝑅| − 𝑥1. Since Γ(𝑅) is Hamiltonian, then the cycle must meet all vertices in 𝑅 and 𝑺𝑹. 

Therefore, we conclude that |𝑅| = |𝑺𝑅|. 

In the following theorem we give a property of Γ(𝑅) for a particular 𝑅. 

Theorem 7. Let ℤ𝑝 be the ring of integers modulo 𝑝, where 𝑝 is a prime number. Then 𝛤(ℤ𝑝) is planar. 

Proof. From the definition of the bipartite graph 𝛤(ℤ𝑝) and the structure of ℤ𝑝 , we can see that the vertex set 

of Γ(ℤ𝑝) consists of 𝑝 elements of ℤ𝑝 and precisely two subrings (the two trivial subrings) {0} and ℤ𝑝 in 𝑺ℤ𝑝
. 

Thus, Γ(ℤ𝑝) it is complete bipartite graph which is planar as shown in Figure 1. 

 

Figure 1. The graph 𝚪(ℤ𝒑) 



670 Muhammad, et. al.     BIPARTITE GRAPH ASSOCIATED WITH ELEMENTS AND COSETS OF…  

Let 𝑅 be a commutative ring with unity and let 𝑀𝑛(𝑅) be the ring of square matrices of size 𝑛 × 𝑛 

over 𝑅. From the theory of matrices over rings, we have following theorem.  

Theorem 8. [9] Let 𝐽 be an ideal of 𝑀𝑛(𝑅). Then,  𝐽 = 𝑀𝑛(𝐼) for a unique ideal 𝐼 ⊆  𝑅. 

As an example,  (ℤ2, +,⋅) is a commutative ring with unity. Furthermore, ℤ2  is a field. Therefore, 

the only ideals of  ℤ2  are {0} and ℤ2.  By Theorem 8, the only ideals of 𝑀𝑛(ℤ2) are {0𝑛 × 𝑛} and 

𝑀𝑛(ℤ2). 

Theorem 9.  [ 9 ]  Let 𝐴 =  {𝐼 ⊆  𝑅|𝐼 ideal} and  𝐵 = { 𝐽 ⊆   𝑀𝑛(𝑅)|𝐽 ideal}. Then, there exists a 

bijective function from 𝐴 to 𝐵, mapping each 𝐼 in 𝐴 to 𝑀𝑛(𝐼) in B. 

Let ℤ𝑛 be the ring of integers modulo 𝑛.  Then  𝑀𝑛(ℤ𝑛) is a ring. 

Furthermore, in [10] Grigore Calugăreanu has determined the subrings generated by some units 

matrices.  Let 𝑅 be a commutative ring with unity.  Let 𝑁 = {1, 2, . . . , 𝑛} and let  𝜌 ⊆ 𝑁 × 𝑁.  Then 

𝑀𝜌 ⊆ 𝑀𝑛(𝑅) is defined as the set of matrices generated by {𝐸𝑖𝑗 ∶ (𝑖, 𝑗) ∈ 𝜌} where 𝐸𝑖𝑗 is a unit 

matrix. In the following lemma it is given the necessary and sufficient condition for 𝑀𝜌 to be 

subring.  

Lemma 1. [9] 𝑀𝜌 is a subring if only if 𝜌 transitive (𝑖. 𝑒 𝜌 ∘ 𝜌 ⊆ 𝜌). 

Example 1. Given 𝑀𝜌1
= {(

𝑎 𝑏
𝑐 0

) |𝑎, 𝑏, 𝑐 ∈ ℤ2} and 𝑀𝜌2
= {(

𝑎 𝑏
0 𝑐

) |𝑎, 𝑏, 𝑐 ∈ ℤ2} . Then 𝑀𝜌1
 is not a 

subring in 𝑀2(ℤ2) but 𝑀𝜌2
 is a subring in 𝑀2(ℤ2). We know that 

𝑀𝜌1
 = 〈(

1 0
0 0

) , (
0 1
0 0

) , (
0 0
1 0

)〉   

 = 〈𝐸11, 𝐸12, 𝐸21〉. 

 It means that 𝜌1 = {(1,1), (1,2), (2,1)}, on the other hand 

𝜌1 ∘ 𝜌1 = {(1,1), (1,2), (2,1), (2,2)} ⊈ 𝜌1. 

Then, according to Lemma 1, 𝑀𝜌1
 is not a subring in 𝑀2(ℤ2). Furthermore, we have  

𝑀𝜌2
 = 〈(

1 0
0 0

) , (
0 1
0 0

) , (
0 0
0 1

)〉   

 = 〈𝐸11, 𝐸12, 𝐸22〉. 

Thus,  𝜌2 = {(1,1), (1,2), (2,2)}, and 

𝜌2 ∘ 𝜌2 = {(1,1), (1,2), (2,2)} = 𝜌2, 

which implies 𝑀𝜌2
 is a subring. 

Theorem 10. The diameter of 𝛤(𝑀2(ℤ𝑛)) is 3, for any natural number 𝑛 >1. 

Proof. By Theorem 2, we have diam(Γ(𝑅)) ≤ 3 for every ring 𝑅. Then we only need to find two vertices 

𝑣1, 𝑣2 such that 𝑑(𝑣1, 𝑣2) = 3. Let 𝑣1 = (
1 1
0 0

), and 𝑣2 = 𝑀2(ℤ𝑛) then we have  

 𝑣1 ⋅ 𝑣2 =  𝑣1 ⋅ 𝑀2(ℤ𝑛) = {(
𝑎 𝑏
0 0

) |𝑎, 𝑏 ∈ ℤ𝑛}   

 𝑣2 ⋅ 𝑣1 = 𝑀2(ℤ𝑛) ⋅ 𝑣1 = {(
𝑎 𝑎
𝑏 𝑏

) |𝑎, 𝑏 ∈ ℤ𝑛}. 

We know that 𝐴 = (
1 1
1 1

) ∈ 𝑣2𝑣1 but 𝐴 ∉ 𝑣1𝑣2. It means that 𝑣1𝑣2 ≠ 𝑣2𝑣1. On the other hand, there exists 

𝑣3 = (
0 0
0 0

) , 𝑣4 = {(
0 0
0 0

)} satisfies 𝑣1 − 𝑣2 − 𝑣3 − 𝑣4. We conclude that 𝑑(𝑣1, 𝑣2) = 3 and 

diam 𝛤(𝑀2(ℤ𝑛)) = 3. 

The minimum cover of the graph 𝑀2(ℤ𝑛) is conjectured as the following. 

Conjecture 2. The minimum vertex cover of 𝑀2(ℤ𝑛) is 𝛽(𝑀2(ℤ𝑛))=|𝑆(𝑀2(ℤ𝑛))|. 
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Theorem 11. (Kőnig’s Theorem) Let  𝐺(𝑉, 𝐸)  be a bipartite graph. The size of a maximum matching in 

𝐺 equals the size of a minimum vertex cover of 𝐺. 

According to Conjecture 2 and Kőnig’s Theorem then the size of maximum matching can be conjectured 

as given below. 

Conjecture 3. The size of maximum matching in 𝑀2(ℤ𝑛) is |𝑆(𝑀2(ℤ𝑛))|. 

Now, we will discuss the bipartite graph associated to quaternion ring. Prior, we give the definition of the 

quaternion ring. 

Definition 2. [15] Let ℂ and ℝ denote the fields of the complex and real numbers, respectively. Let ℚ be a 

four dimensional vector space over ℝ with an ordered basis, denoted by 𝑒, 𝑖, 𝑗 and 𝑘. A real quaternion, simply 

called quaternion is a vector 

𝑥 = 𝑥0𝑒 + 𝑥1𝑖 + 𝑥2𝑗 + 𝑥3𝑘 ∈ ℚ 

with real coefficients 𝑥0, 𝑥1, 𝑥2, 𝑥3. 

Real numbers and complex numbers can be thought of as quaternions in the natural way. Thus 𝑥0𝑒 + 𝑥1𝑖 +
𝑥2𝑗 + 𝑥3𝑘 can simply be written as 𝑥0 + 𝑥1𝑖 + 𝑥2𝑗 + 𝑥3𝑘. Moreover, Adkin in [11] defined ℍ =
ℚ(−1, −1; ℝ) as the quaternion ring with addition and a multiplication on ℍ are given in the following 

definition. 

Definition 3. Let 𝑝, 𝑞 ∈ ℍ with 𝑝 = 𝑥0 + 𝑥1𝑖 + 𝑥2𝑗 + 𝑥3𝑘, 𝑞 = 𝑦0 + 𝑦1𝑖 + 𝑦2𝑗 + 𝑦3𝑘 and 𝑥𝑚, 𝑦𝑚 ∈ ℝ for 

𝑚 = 1,2,3. The addition of 𝑝 and 𝑞 on ℍ is given by 

𝑝 + 𝑞 = (𝑥0 + 𝑥1𝑖 + 𝑥2𝑗 + 𝑥3𝑘) + (𝑦0 + 𝑦1𝑖 + 𝑦2𝑗 + 𝑦3𝑘) 

 = (𝑥0 + 𝑦0) + (𝑥1 + 𝑦1)𝑖 + (𝑥2 + 𝑦2)𝑗 + (𝑥3 + 𝑦3)𝑘 

and multiplication of 𝑝 and 𝑞 is given by 

𝑝 ⋅ 𝑞 = (𝑥0 + 𝑥1𝑖 + 𝑥2𝑗 + 𝑥3𝑘)(𝑦0 + 𝑦1𝑖 + 𝑦2𝑗 + 𝑦3𝑘) 

= (𝑥0𝑦0 − 𝑥1𝑦1 − 𝑥2𝑦2 − 𝑥3𝑦3) + (𝑥0𝑦1 + 𝑥1𝑦0 + 𝑥2𝑦3 − 𝑥3𝑦2)𝑖 + 

 (𝑥0𝑦2 + 𝑥2𝑦0 + 𝑥3𝑦1 − 𝑥1𝑦3)𝑗 + (𝑥0𝑦3 + 𝑥3𝑦0 + 𝑥1𝑦2 − 𝑥2𝑦1)𝑘. 

Beside the addition and the multiplication above, the product of any two quaternions 𝑒, 𝑖, 𝑗, 𝑘 is defined due 

to the requirement that 𝑒 = 1 + 0𝑖 + 0𝑗 + 0𝑘 and 

𝑖2 = 𝑗2 = 𝑘2 = −1,    
and 

𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑖, 𝑘𝑖 = −𝑖𝑘 = 𝑗. 

Proposition 1. If we define set ℍ(ℤ𝑛) = ℚ(−1, −1; ℤ𝑛) with addition and multiplication as given in 

Definition 3, then ℍ(ℤ𝑛) is a ring. (We called the ring as the quaternion ring by ℤ𝑛.) 

Theorem 12. If 𝑛 > 1 and 𝑛 is odd, then the diameter of the graph associated to quaternion ring ℍ(ℤ𝑛) is 

3. 

Proof. Let ℍ(ℤ𝑛) be the quaternion ring by ℤ𝑛 with 𝑛 odd and let Γ(ℍ(ℤ𝑛)) be the associated graph of 

ℍ(ℤ𝑛).  Take 𝑥 = (𝑗 + 2𝑘) ∈ ℍ(ℤ𝑛) and 𝑦 = ℍ(ℤ𝑛) ∈ 𝑺ℍ(ℤ𝑛) as vertices of Γ(ℍ(ℤ𝑛)). Then we have 

𝑥ℍ(ℤ𝑛) = (𝑗 + 2𝑘). {𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘|𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ ℤ𝑛} 

= {(−𝑎2 − 2𝑎3) + (𝑎3 − 2𝑎2)𝑖 + (𝑎0 + 2𝑎1)𝑗 + (2𝑎0 − 𝑎1)𝑘|𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ ℤ𝑛} 

= {((𝑛 − 1)𝑎2 + (𝑛 − 2)𝑎3) + (𝑎3 + (𝑛 − 2)𝑎2)𝑖 + (𝑎0 + 2𝑎1) 

 +(2𝑎0 + (𝑛 − 1)𝑎1)𝑘|  𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ ℤ𝑛} 

and 

ℍ(ℤ𝑛)𝑥 = {𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘|𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ ℤ𝑛} ⋅ (𝑗 + 2𝑘)  

= {(−𝑎2 − 2𝑎3) + (2𝑎2 − 𝑎3)𝑖 + (𝑎0 − 2𝑎1)𝑗 + (2𝑎0 + 𝑎1)𝑘|𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ ℤ𝑛} 

= {((𝑛 − 1)𝑎2 + (𝑛 − 2)𝑎3) + (2𝑎2 + (𝑛 − 1)𝑎3)𝑖 + (𝑎0 + (𝑛 − 2)𝑎1)𝑗 

 +(2𝑎0 + 𝑎1)𝑘|𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ ℤ𝑛}. 
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Since 𝑛 is odd, there is 𝑚 ∈ ℕ such that 𝑛 = 2𝑚 + 1, so that we have 

𝑥ℍ(ℤ𝑛) = {((2𝑚)𝑎2 + (2𝑚 − 1)𝑎3) + (𝑎3 + (2𝑚 − 1)𝑎2)𝑖 + (𝑎0 + 2𝑎1)𝑗  

 +(2𝑎0 + (2𝑚)𝑎1)𝑘|𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ ℤ𝑛}  

and 

ℍ(ℤ𝑛)𝑥 = {((2𝑚)𝑎2 + (2𝑚 − 1)𝑎3) + (2𝑎2 + (2𝑚)𝑎3)𝑖 + (𝑎0 + (2𝑚 − 1)𝑎1)𝑗 

 +(2𝑎0 + 𝑎1)𝑘|𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ ℤ𝑛}. 

It is easy to see that (2𝑚 − 1)𝑗 + 𝑘 ∈ ℍ(ℤ𝑛)𝑥 as we can take 𝑎0 = 𝑎2 = 𝑎3 = 0 and 𝑎1 = 1 so that we have 

((2𝑚)𝑎2 + (2𝑚 − 1)𝑎3) + (2𝑎2 + (2𝑚)𝑎3)𝑖 + (𝑎0 + (2𝑚 − 1)𝑎1)𝑗 + (2𝑎0 + 𝑎1)𝑘 = 0 + 0𝑖 + (2𝑚 −

1)𝑗 + 𝑘 = (2𝑚 − 1)𝑗 + 𝑘. On the other hand, (2𝑚 − 1)𝑗 + 𝑘 ∉ 𝑥ℍ(ℤ𝑛) as the element of the coordinate 

bases 𝑘 always be an even number. Thus, 𝑥 and 𝑦 are not adjacent, but 𝑥 is adjacent to {0} and 𝑦 is adjacent 

to 0 so that we have path  

𝑥 = {0} − 0 − 𝑦 = ℍ(ℤ𝑛). 

We conclude that diam(Γ(ℍ(ℤ𝑛))) = 3 for 𝑛 > 1 odd. 

 

 
3. CONCLUSIONS 

According to the description above we know that the bipartite graph associated to elements and cosets 

of subrings of any ring 𝑅 has no isolated vertex and has a diameter 2 if 𝑅 is nonzero and commutative. But 

however, the complete information on the structure of the graphs in general is not yet obtained. This could 

be interesting for future works. 
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