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ABSTRACT 

Article History: 
Climate information, especially rainfall, is needed by various sectors in Indonesia, including 

the marine and fisheries sectors. Estimating high-resolution climate models continues to 

develop by involving global-scale climate variables, one of which is the global circulation 

model (GCM) output precipitation. Statistical downscaling (SD) relates global scale climate 

variables to local scales. Principal component regression (PCR) and latent root regression 

(LRR) techniques are statistical methods used in the SD model to overcome the high correlation 

between GCM data grids. PCR focuses on the variability in the predictor variables, while the 

LRR focuses on the variability between the response variables and predictors. This method was 

applied to Pangkep Regency rainfall data as a local scale response variable and GCM 

precipitation as a predictor variable (January 1999 to December 2020). This study aimed to 

obtain the number of principal components (PC) in the SD model and the forecast value of the 

2020 rainfall data. In addition, the dummy variable resulting from K-means was used as a 

predictor variable in PCR and LRR. The result is that using the first 11-15 PC has a cumulative 

diversity proportion of 98%. Furthermore, by using the data for the 1999-2019 period, adding 

a dummy variable to the PCR can increase the accuracy of the model (the coefficient of 

determination is 92.27%-92.43%). However, LRR with and without dummy variables produces 

the same model accuracy. In general, the LRR model is better at explaining the diversity of the 

Pangkep District rainfall data than the PCR model. The prediction of rainfall for the 2020 

period at LRR with 13 PC is accurate based on the highest correlation value (0.97) and the 

lowest root mean square error prediction (75.17). 
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1. INTRODUCTION 

Indonesia is one of the largest archipelagic countries in the world and has the opportunity to develop 

potential in the fisheries and marine sector, including salt production. South Sulawesi Province is included 

in the 14 salt-producing regions in Indonesia. However, salt production in South Sulawesi decreased in 

2020, reaching only 45,310 tons, with production in 2019 reaching 140,338 tons. In 2021, the salt production 

target in South Sulawesi was 46,500 tons. However, South Sulawesi's salt production until the third quarter 

only reached 466.05 tons. The salt production comes from five South Sulawesi districts: Pangkep, Selayar 

Islands, Jeneponto, Takalar, and Maros. Nationally, the national salt production from PT Garam (Persero) 

and Garam Rakyat until January 15, 2021, only reached 1.3 million tons from the targeted 3 million tons in 

2020 and 3.1 million tons in 2021. The high rainfall is one of the factors that affect the decline in national 

salt production. 

Rainfall is one of the factors that can affect the increase and decrease in salt production. The average 

rainfall intensity and rainfall pattern in a year are indicators that are closely related to the length of the dry 

season. The dry season's distance will affect the water evaporation rate at the salt production site. High levels 

of rainfall will have a negative impact on salt production. Therefore, the estimation of rainfall is used by 

salt farmers to determine the right time for making salt to minimize crop failure. Currently, many climate 

models have been developed to improve climate information, one of which is utilizing the output of the 

global circulation model (GCM). However, the GCM output climate information is still worldwide, so it has 

low accuracy in predicting local scale climates. GCM can be used to obtain local scale climate information 

using statistical downscaling techniques [1]. 

Statistical downscaling (SD) is a model that relates global scale climate variables to local scale climate 

variables. The SD approach uses a regression model to determine the functional relationship between the 

response variable in the form of local climate and the predictor variable in the form of global scale climate 

outputs of GCM [2]. The output of GCM is spatial and temporal data, creating a spatial correlation between 

grids in one domain. The larger the GCM data domain used, the more predictor variables in the SD model, 

resulting in a more complex model. Therefore, pre-processing is needed in this case to reduce dimensions 

and, at the same time, overcome multicollinearity in the data. 

Principal component regression (PCR) is a statistical method that can overcome multicollinearity by 

combining linear regression with principal component analysis (PCA) [3]. PCA focuses on diversity in 

correlated predictor variables [4]. In addition to PCR, the latent root regression (LRR) method can also 

overcome multicollinearity in the data. LRR is an extension method of PCR. The difference lies in the 

formation and selection of the principal component (PC). Data dimension reduction in PCR only involves 

predictor variables. In contrast, the LRR method combines the matrix of response variables with predictor 

variables in the formation of PC. The LRR method forms a PC by calculating the relationship between the 

predictor variable and the response variable so that the PC obtained contains more information than the PCR 

method [5].  

Previous researchers have widely used the PCR and LRR methods, including [6] comparing PCR and 

partial least squares regression (PLSR) in predicting rainfall in el-nino, la-nina, and normal conditions in 

Indramayu Regency. [7] predicted extreme rainfall data with functional principal component quantile 

regression. [8] added dummy variables based on hierarchical and non-hierarchical cluster techniques in SD 

modeling for rainfall estimation. Furthermore, [9] used LRR to predict car sales in the United States from 

1961-1990. [10] applied the application of LRR in dealing with multicollinearity in multiple linear 

regression models. In addition, [11] also uses LRR to model the factors that affect the JCI in the Indonesia 

Stock Exchange. 

This study compares the SD model with the PCR and LRR methods in estimating the Pangkep 

Regency rainfall data. In addition, dummy variables from the K-means cluster technique are used to improve 

the model's accuracy and the rainfall data's prediction results. Prediction of rainfall data using the SD model 

with dummy variables has a higher accuracy [8].  
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2. RESEARCH METHODS 

2.1 Data 

The data used in this research is the output of GCM climate model intercomparison project (CMIP5) 

precipitation data in mm/month. This data can be obtained from the web http://www.climatexp.knmi.nl/ 

(issued by KNMI Netherlands). The GCM domain used in this study is several square grids measuring 8×8 

grids (2.5°×2.5° for each grid) at 119.57°E to 129.37°E and -14.83°S to 5.17°N above the Pangkep Regency 

area. . The GCM output data is used as the predictor variable (X), and the Pangkep Regency rainfall data is 

used as a response variable (Y). The average rainfall data in Pangkep Regency, South Sulawesi, for 1999-

2020 was obtained from the BMKG station IV Makassar. The rainfall data is the average rainfall from 3 rain 

posts in Pangkep Regency, Bungoro, Ma'rang, and Labakkang. In addition, dummy variables (D) based on 

the K-Means non-hierarchical cluster technique were used in this study to improve the accuracy of the model. 

 

2.2 Analysis Method  

The analytical methods used are PCR and LRR. The PCR method begins with PCA to reduce the 

dimensions of the precipitation data. It produces some PC that is selected based on the eigenvalues and the 

proportion of diversity. Furthermore, some PC were used as predictor variables in the PCR method. 

Meanwhile, data reduction in the LRR method, in addition to involving precipitation data as a predictor 

variable, also involves rainfall data as a response variable so that several PC are obtained in the LRR method. 

The stages of analysis carried out in this study are as follows: 

1. Determine the group of rainfall data based on the K-Means cluster technique. The elbow method used to 

determine the optimum number of clusters is based on the value within the sum of squares (WSS) [12]. 

2. Identifying multicollinearity in precipitation data using variance inflation factors (VIF) with 𝑅𝑗
2 is the 

coefficient of determination of the j-th predictor variable regression with other predictor variables [13]. 

𝑉𝐼𝐹𝑗 =
1

1−𝑅𝑗
2          , 𝑗 = 1,2, … ,64 

3. Divide the data into modeling data (1999-2019) and validation data (2020). 

4. Apply the SD technique using PCR and LRR with additional dummy variables. 

The stages of data analysis using the PCR method are as follows [14]: 

a. Specifies the shape of the 𝑍𝑗 data transformation 

𝑍𝑗 =
(𝑋𝑗−𝜇𝑗)

√𝜎𝑗
2

         

The matrix notation can be written as 

 𝒁 = (𝑽1/2)
−1

(𝑿 − 𝝁)              

with 𝑽1/2 = 𝑑𝑖𝑎𝑔 (√𝜎1
2, √𝜎2

2, … , √𝜎𝑝
2) , 𝐸(𝒁) = 𝟎 dan 𝒁 is the standardized matrix of the original 

𝑿 variables.  

b. Forming the variance-covariance matrix of the 𝒁 variable, i.e 

 𝐶𝑜𝑣(𝒁) = (𝑽1/2)
−1

𝚺(𝑽1/2)
−1

= 𝑹                      

With 𝑹 is the correlation matrix of the original variable 𝑿. 

c. Calculates the value of the feature root (𝜆𝑗) and the feature vector (𝒆𝑗), as well as the PC score (𝒘𝑗) 

from the variance-covariance matrix of the original variable Z or the correlation matrix of the original 

variable 𝑋. 

𝒘𝑗 = 𝒆𝑗
′𝒁 = 𝑒𝑗1𝒛1 + 𝑒𝑗2𝒛2 + ⋯+ 𝑒𝑗𝑝𝒛𝑝   

d. Choose a PC with a 98% diversity proportion 

e. Regressing 𝑌 with selected 𝒘𝑗.    

f. Transform the regression equation from 𝒘𝑗 to 𝒛𝑗 and 𝒛𝑗 to 𝒙𝑗. 

The stages of data analysis using the LRR method are as follows [15]: 

a. Standardize the data on the response variable and predictor variable using the equation. 
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𝒁𝒚𝑖
=

(𝑦𝑖−�̅�)

𝑆𝑌
;  �̅� =

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
;  𝑆𝑌

2 =
∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
 ;  𝒁𝑥𝑖

=
(𝑥𝑖−�̅�)

𝑆𝑋
;  �̅� =

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
; 𝑆𝑋

2 =
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
  

b. Calculating the augmented correlation matrix, which is a correlation matrix that combines response 

variables and predictors that have been standardized using the equation. 

𝑹 = 𝒁∗′𝒁∗ = [

1 𝛾2𝑌 … 𝛾𝑟𝑌

𝛾2𝑌 1 … 𝛾𝑟1

⋮ ⋮ ⋱ ⋮
𝛾𝑟𝑌 𝛾𝑟1 … 1

]  

c. Calculating the eigenvalues and eigenvectors from the correlation matrix using the equation. 

|𝑹 − 𝜆𝑗𝑰| = 0 dan (𝑹 − 𝜆𝑗𝑰)𝜸𝑗 = 0  

d. Forming the principal components through principal component analysis based on the eigenvalues 

and eigenvectors formed. The principal component that will be used is the principal component which 

has the eigenvalue 𝜆𝑗 > 0.30. 

𝒘𝑗 = 𝒁∗𝜸𝑗    ;    𝒘𝑗 = 𝛾0𝑗𝒁𝒚 + 𝒁𝑥𝜸𝑗
0 

e. Estimating data free of multicollinearity using the modified least squares method on data that has 

been standardized using the equation. 

�̂�∗ =

[
 
 
 
 �̂�1

∗

�̂�2
∗

⋮

�̂�𝑝
∗
]
 
 
 
 

= 𝑐 ∑ 𝛾0𝑗𝜆𝑗
−1𝑙

𝑗=0 [

𝛾1𝑗

𝛾2𝑗

⋮
𝛾𝑝𝑗

] , 𝑗 = 1,2,… , 𝑙; 𝑙 < 𝑝 + 1    

f. Estimating the parameters of the original data using the equation. 

�̂�𝑗 =
�̂�𝑗

∗

√∑ (𝑥𝑖𝑗−�̅�𝑗)
2𝑛

𝑖=1

, 𝑗 = 1,2, … , 𝑘  

�̂�0 = �̅� − �̂�1�̅�1 − �̂�2�̅�2 − ⋯− �̂�𝑘�̅�𝑘  

5. Model validation on data for the 2020 period uses correlation statistics, and root mean squared error of 

prediction (RMSEP). 

 

 

3. RESULTS AND DISCUSSION 

3.1. Formation of Dummy Variables with the K-Means Clustering Method 

Adding dummy variables to SD modeling aims to improve model accuracy and data forecast results. 

The determination of the dummy variable is based on the grouping of rainfall data. K-means clustering is a 

non-hierarchical method of a group by specifying the number of k centroids as the basis for determining the 

number of clusters produced. The Elbow method is used to determine the optimum number of clusters by 

selecting a value within sum of square (WSS), which is not significantly different for the following k clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Determination of The Optimum K Cluster Using The Elbow Method 
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Figure 1 shows that the optimum number is 4 clusters. This is because there is a significant difference 

in the WSS value in clusters 1, 2, and 3. Meanwhile, in cluster 4 and so on, there is no significant change in 

the WSS value (the line formed is almost linear). Furthermore, the formation of rainfall data groups using the 

K-means method with a number of clusters of as many as 4. 

The K-means results show that groups 1, 2, 3, and 4 are rainfall with an intensity of 0.00-231.50 

mm/month, 231.51-607.00 mm/month, 607.01-1019.00 mm/month, and 1019.01-1540.50 mm /month. Thus 

three dummy variables are used as predictor variables in SD modeling. Table 1 is the value of the dummy 

variables 𝑫𝟏, 𝑫𝟐, and 𝑫𝟑. Group 1 with values 𝑫𝟐 = 𝟏 and 𝑫𝟏 = 𝑫𝟑 = 𝟎 totaled 139 observations. 

Furthermore, group 2 with values 𝑫𝟏 = 𝟏 and 𝑫𝟐 = 𝑫𝟑 = 𝟎 had 89 observations. Group 3 has a value of 

𝑫𝟑 = 𝟏,𝑫𝟏 = 𝑫𝟐 = 𝟎 and consists of 32 observations. Meanwhile, four observations were included in group 

4 with a value of 𝑫𝟏 = 𝑫𝟐 = 𝑫𝟑 = 𝟎. 

 
Table 1. Dummy Variables 

No Time 𝒀 𝑫𝟏 𝑫𝟐 𝑫𝟑 

1 Jan-1999 1017.50 0 0 1 

2 Feb-1999 427.00 0 1 0 

3 Mar-1999 444.00 0 1 0 

4 Apr-1999 577.00 0 1 0 

5 May-1999 202.50 1 0 0 

6 Jun-1999 61.50 1 0 0 

7 Jul-1999 96.00 1 0 0 

8 Aug-1999 0.00 1 0 0 

9 Sep-1999 0.00 1 0 0 

10 Oct-1999 248.50 0 1 0 

11 Nov-1999 443.00 0 1 0 

12 Dec-1999 1019.00 0 0 1 

13 Jan-2000 714.50 0 0 1 

⋮ ⋮ ⋮  ⋮  ⋮  ⋮  
60 Dec-2003 1252.50 0 0 0 

61 Jan-2004 526.50 0 1 0 

62 Feb-2004 863.50 0 0 1 

63 Mar-2004 693.50 0 0 1 

⋮  ⋮  ⋮  ⋮  ⋮  ⋮  
121 Jan-2009 1540.50 0 0 0 

122 Feb-2009 814.50 0 0 1 

123 Mar-2009 160.00 1 0 0 

124 Apr-2009 194.50 1 0 0 

⋮  ⋮ ⋮  ⋮  ⋮  ⋮  
260 Aug-2020 40.30 1 0 0 

261 Sep-2020 15.70 1 0 0 

262 Oct-2020 197.30 1 0 0 

263 Nov-2020 355.70 0 1 0 

264 Dec-2020 961.30 0 0 1 

 

3.2. Variance Inflation Factors 

Multicollinearity shows a strong correlation between two or more predictor variables in a multiple 

regression model. Multicollinearity must to be detected early in data analysis to improve accuracy in SD 

modeling. The VIF value can be used to determine multicollinearity in the data. If the VIF value is more than 

10, it indicates a significant multicollinearity. Table 2 shows the VIF value of the GCM precipitation variable 

(𝐗𝟏 − 𝐗𝟔𝟒) ranging from 3.54 – 2800.83. Thus, the PCR and LRR methods were used in the SD modeling of 

rainfall data in the Pangkep Regency. 

 
Table 2. VIF Values 

No Predictor VIF No Predictor VIF 

1 X1 54.76 33 X33 2350.63 

2 X2 562.56 34 X34 2785.64 
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Table 2. VIF Values 

No Predictor VIF No Predictor VIF 

3 X3 573.19 35 X35 1596.50 

4 X4 464.27 36 X36 1122.00 

5 X5 74.05 37 X37 147.46 

6 X6 24.13 38 X38 37.42 

7 X7 47.52 39 X39 12.44 

8 X8 34.32 40 X40 107.60 

9 X9 450.85 41 X41 1634.75 

10 X10 1327.54 42 X42 2800.83 

11 X11 1072.88 43 X43 1462.34 

12 X12 1150.48 44 X44 1112.93 

13 X13 159.74 45 X45 198.23 

14 X14 38.65 46 X46 13.56 

15 X15 27.26 47 X47 29.29 

16 X16 12.63 48 X48 86.86 

17 X17 1135.03 49 X49 758.39 

18 X18 1388.34 50 X50 2503.08 

19 X19 846.05 51 X51 1458.47 

20 X20 1018.00 52 X52 549.92 

21 X20 49.58 53 X53 302.09 

22 X22 3.54 54 X54 33.21 

23 X23 7.63 55 X55 40.74 

24 X24 8.19 56 X56 114.69 

25 X25 1947.69 57 X57 67.94 

26 X26 2320.58 58 X58 995.73 

27 X27 1599.96 59 X59 677.30 

28 X28 968.32 60 X60 143.15 

29 X29 163.18 61 X61 189.48 

30 X30 52.65 62 X62 28.90 

31 X31 5.37 63 X63 57.14 

32 X32 28.28 64 X64 87.92 

 

3.3. Formation of Principal Components 

The initial stage in the PCR and LRR method is done by forming a PC based on the eigenvalues and 

eigenvectors of the covariance variance matrix. PC is a linear combination of the original variables. In the 

PCR method, PC formation is only based on GCM precipitation data. Meanwhile, PC formation in the LRR 

method involves GCM precipitation data (𝑿 as predictor variable) and rainfall data for Pangkep Regency (𝒀 

as response variable). PCR focuses on the variability in the predictor variables, while the LRR focuses on the 

diversity between the predictor and response variables. 

The determination of the number of PC used in the SD model is based on the proportion of total 

diversity of about 98%. In addition, the selection of the number of PC in the LRR method is based on the 

eigenvalue 𝝀 ≥ 𝟎. 𝟏. Table 3 presents the eigenvalues and proportions of variance described by PC in the 

PCR and LRR methods. The proportion of PC cumulative diversity of 98% was achieved by more than the 

first 11 PC. In addition, the eigenvalues indicate that the first 15 PC have 𝝀 ≥ 𝟎. 𝟏. Furthermore, the SD 

model simulation is based on the number of PC involved in the model, namely 11 PC to 15 PC. 

 
Table 3. Eigenanalysis of PCR and LRR Methods 

Component  Method 
Principal Component 

𝒘𝟏 𝒘𝟐 ⋯ 𝒘𝟏𝟏 𝒘𝟏𝟐 𝒘𝟏𝟑 𝒘𝟏𝟒 𝒘𝟏𝟓 

Eigenvalue PCR 51.486 4.646 ⋯ 0.167 0.15 0.124 0.105 0.095 

(𝜆) LRR 52.099 4.667 ⋯ 0.186 0.166 0.150 0.124 0.103 

Proportion  
PCR 0.804 0.073 ⋯ 0.003 0.002 0.002 0.002 0.001 

LRR 0.802 0.072 ⋯ 0.003 0.003 0.002 0.002 0.002 

Cumulative   
PCR 0.804 0.877 ⋯ 0.981 0.983 0.985 0.987 0.988 

LRR 0.802 0.873 ⋯ 0.979 0.981 0.983 0.985 0.987 
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3.4. SD Model with PCR and LRR Methods 

The SD model uses the PCR and LRR methods to get the forecast value of the Pangkep Regency 

rainfall. The PCR method uses PCA to obtain PC as an independent predictor variable. Similar to PCR, the 

LRR method also produces PC as a predictor variable in the model. The number of PC used in each PCR and 

LRR method is 11 PC to 15 PC. The PCR1 model is the result of SD modeling using the PCR method, which 

involves 11 components, namely 𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒, 𝒘𝟓, 𝒘𝟔, 𝒘𝟕, 𝒘𝟖, 𝒘𝟗, 𝒘𝟏𝟎, 𝒘𝟏𝟏 as predictor variables. 

Likewise, other models correspond to the number of predictors used. In addition, dummy variables 𝑫𝟏, 𝑫𝟐, 

and 𝑫𝟑 were added to the PCR (PCR-dummy) and LRR (LRR-dummy) methods. 

Table 4 presents the coefficient of determination (𝑹𝟐) and root mean squared error (RMSE) of various 

SD models based on the number of PC and dummy variables. An accurate model produces the highest 𝑹𝟐 

value with the smallest RMSE value. Table 4 explains that the PCR1-PCR5 model with a dummy resulted 

in a higher coefficient of determination (𝑹𝟐) (range 92.27%-92.43%) than the model without a dummy (range 

62.43%-63.02%). Adding the dummy variable can also reduce the RMSE value to 83.98-84.82. Meanwhile, 

the LRR model shows a relatively similar model with or without a dummy. The resulting 𝑹𝟐 the value ranges 

from 94.79%-99.92%, and the RMSE ranges from 8.52-69.51. In general, based on the obtained 𝑹𝟐 value, 

the LRR method can explain the diversity of rainfall data better than the PCR method. 

 
Table 4. Values of 𝑹𝟐 and RMSE of PCR and LRR Methods 

Method Model Predictor Variable 𝑅2 RMSE 

PCR 

PCR1 𝑤1 − 𝑤11 62.71% 186.33 

PCR2 𝑤1 − 𝑤12 62.57% 186.69 

PCR3 𝑤1 − 𝑤13 62.43% 187.05 

PCR4 𝑤1 − 𝑤14 63.02% 185.57 

PCR5 𝑤1 − 𝑤15 62.88% 185.93 

PCR1-dummy 𝑤1 − 𝑤11, 𝐷1 , 𝐷2 , 𝐷3 92.29% 84.74 

PCR2-dummy 𝑤1 − 𝑤12, 𝐷1 , 𝐷2 , 𝐷3 92.29% 84.71 

PCR3-dummy 𝑤1 − 𝑤13, 𝐷1 , 𝐷2 , 𝐷3 92.27% 84.82 

PCR4-dummy 𝑤1 − 𝑤14, 𝐷1 , 𝐷2 , 𝐷3 92.33% 84.52 

PCR5-dummy 𝑤1 − 𝑤15, 𝐷1 , 𝐷2 , 𝐷3 92.43% 83.98 

LRR 

LRR1 𝑤1 − 𝑤11 99.66% 17.68 

LRR2 𝑤1 − 𝑤12 99.81% 13.12 

LRR3 𝑤1 − 𝑤13 99.82% 12.89 

LRR4 𝑤1 − 𝑤14 99.82% 12.8 

LRR5 𝑤1 − 𝑤15 99.92% 8.52 

LRR1-dummy 𝑤1 − 𝑤11, 𝐷1 , 𝐷2 , 𝐷3 94.79% 69.51 

LRR2-dummy 𝑤1 − 𝑤12, 𝐷1 , 𝐷2 , 𝐷3 98.21% 40.71 

LRR3-dummy 𝑤1 − 𝑤13, 𝐷1 , 𝐷2 , 𝐷3 98.70% 34.78 

LRR4-dummy 𝑤1 − 𝑤14, 𝐷1 , 𝐷2 , 𝐷3 99.22% 26.83 

LRR5-dummy 𝑤1 − 𝑤15, 𝐷1 , 𝐷2 , 𝐷3 99.42% 23.23 

 

3.5. Forecasting Rainfall Data with PCR and LRR Methods 

This section is the validation phase of the SD model using the PCR and LRR methods. The SD model 

obtained is then used to predict the Pangkep Regency rainfall data for January to December 2020. The 

measure of the goodness of the forecast results uses the highest correlation value and the lowest RMSEP. 

Table 5 shows the correlation and RMSEP values of the SD model with PCR and LRR methods. The addition 

of variables in the PCR model can increase the correlation value to around 0.168-0.189 and reduce the 

RMSEP value to about 96.77-104.11. The addition of dummy variables in the PCR model can increase the 

accuracy of the forecast results of rainfall data. In the LRR model, the results of the forecasted rainfall data 

show relatively similar accuracy to the model with or without a dummy variable. The resulting correlation 

values ranged from 0.77 to 0.97, and the RMSEP ranged from 75.17 to 288.71. In general, the LRR3-dummy 

model involving the variables 𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒, 𝒘𝟓, 𝒘𝟔, 𝒘𝟕, 𝒘𝟖, 𝒘𝟗, 𝒘𝟏𝟎, 𝒘𝟏𝟏, 𝒘𝟏𝟐, 𝒘𝟏𝟑, 𝑫𝟏, 𝑫𝟐, 𝑫𝟑 is the 

best model based on the highest correlation value (0.97 ) and the lowest RMSEP (75.17). 
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   Table 5. Correlation and RMSEP Values of PCR and LRR Methods 

Method Model Predictor Variable Correlation RMSEP 

PCR 

PCR1 𝑤1 − 𝑤11 0.789 180.55 

PCR2 𝑤1 − 𝑤12 0.786 181.97 

PCR3 𝑤1 − 𝑤13 0.787 181.79 

PCR4 𝑤1 − 𝑤14 0.759 195.11 

PCR5 𝑤1 − 𝑤15 0.760 195.14 

PCR1-dummy 𝑤1 − 𝑤11, 𝐷1 , 𝐷2 , 𝐷3 0.955 85.21 

PCR2-dummy 𝑤1 − 𝑤12, 𝐷1 , 𝐷2 , 𝐷3 0.953 86.62 

PCR3-dummy 𝑤1 − 𝑤13, 𝐷1 , 𝐷2 , 𝐷3 0.953 87.06 

PCR4-dummy 𝑤1 − 𝑤14, 𝐷1 , 𝐷2 , 𝐷3 0.948 91.03 

PCR5-dummy 𝑤1 − 𝑤15, 𝐷1 , 𝐷2 , 𝐷3 0.957 83.78 

LRR 

LRR1 𝑤1 − 𝑤11 0.87 136.8 

LRR2 𝑤1 − 𝑤12 0.81 163.66 

LRR3 𝑤1 − 𝑤13 0.80 166.31 

LRR4 𝑤1 − 𝑤14 0.81 166.24 

LRR5 𝑤1 − 𝑤15 0.77 182.48 

LRR1-dummy 𝑤1 − 𝑤11, 𝐷1 , 𝐷2 , 𝐷3 0.53 288.71 

LRR2-dummy 𝑤1 − 𝑤12, 𝐷1 , 𝐷2 , 𝐷3 0.93 116.11 

LRR3-dummy 𝑤1 − 𝑤13, 𝐷1 , 𝐷2 , 𝐷3 0.97 75.17 

LRR4-dummy 𝑤1 − 𝑤14, 𝐷1 , 𝐷2 , 𝐷3 0.92 104.04 

LRR5-dummy 𝑤1 − 𝑤15, 𝐷1 , 𝐷2 , 𝐷3 0.94 94.44 

 

 

 

 

 

 

 

 

 

 

Figure 2 presents the actual data plot and the forecast results of the PCR1, PCR5-dummy, LRR1, and 

LRR3-dummy models. Rainfall data for January, February, and March produce a higher estimated value than 

the actual value. Meanwhile, the estimated rainfall for the November and December periods is lower than the 

actual value. Furthermore, the predicted value of low-intensity rainfall (May to September) generally 

approaches the actual value. The LRR model can capture actual rainfall data patterns better than the PCR 

model. However, the PCR model can produce forecasts of rainfall data close to the actual value, especially 

for the January to April period. The LRR model involving 13 PC and a dummy variable (LRR3-dummy) is 

the best model because it can produce more accurate rainfall estimates. 

 

 

4. CONCLUSIONS 

Statistical downscaling is a model that connects global scale climate variables from global circulation 

model data with local scale climate variables in Pangkep Regency. Principal component and latent root 

regression methods are used in statistical downscaling models to overcome multicollinearity problems in 

precipitation data. The latent root regression method produces 11 principal components with a proportion of 

 
Figure 2. Plot of Actual Rainfall and Estimated Rainfall of PCR1, PCR5-dummy, LRR1, 

LRR3-dummy Models 
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variance of 98%. In addition, the first 15 principal components produce eigenvalues greater than 0.1. Thus, 

statistical downscaling model simulation is carried out based on the number of principal components in the 

model, namely 11-15 PC. Data modeling using data for the period January 1999 to December 2019 shows 

that adding a dummy variable can improve the accuracy of the principal component and latent root regression 

models. In addition, adding a dummy variable results in better predictions of rainfall data for the 2020 period 

than without a dummy variable. The latent root regression model involving 13 principal components and 

dummy variables is the best model because it produces the estimated rainfall value with the best accuracy 

based on the highest correlation value (0.97) and the lowest error (75.17). 
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