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1. INTRODUCTION

In 1931, Z.W. Birnbaum and W. Orlicz first introduced the Orlicz spaces as a generalization of the
Lebesgue spaces. There are two types of Orlicz spaces that have been discussed by many researchers:
continuous Orlicz spaces and Orlicz sequence spaces. Research on continuous Orlicz spaces has been carried
out by Maligranda, L. (1989), Masta, A. A. (2016), etc. [1]-[9]. While the Orlicz sequence spaces have been
studied by Maligranda, L., and Mastylo, M. (2000), and Awad A. Bakery and Rafaf R. (2020) [10]-[19].

Maligranda and Mastylo in 2000 defined that [8], if ¢ : [0,00) — [0, 00) the Orlicz function is a
continuous convex function where the value is 0 only at point 0, then the Orlicz sequence space ¢ is

where pg (A§) = Z?‘;1¢(|Ej|) for any real sequence & = {EJ-}, equipped with the Luxemburg norm that is

€1l = inf{2 > 0: pg(¢/2) < 1},

A similar definition is also used by Savas, E. (2004) in his article entitled “Some Sequence Spaces
Defined by Orlicz Functions” [12] and by Khusnussaadah, N. (2019) in his article entitled “Completeness of
Sequence Spaces Generated by an Orlicz Function” [13]. Both use the same function, namely the Orlicz
function, which is a continuous convex function. The definition of the Orlicz function is similar to the
definition of the Young function on a continuous Orlicz spaces [2], [3], [12]. Meanwhile, Prayoga, P. S.
(2020), in his article titled “Sifat Inklusi dan Perumuman Ketaksamaan Hdélder pada Ruang Barisan Orlicz”
uses the Young function in defining the Orlicz sequence spaces [14].

In this article, the authors are interested in extending the function used in the Orlicz sequence spaces
by using a function that is a continuous s-convex function where the value is 0 only at point 0. In this article,
we call such a function s-Young function. This new definition of space is called the generalized Orlicz
sequence spaces. In this generalized Orlicz sequence space, the author will show that some properties of the
Orlicz sequence spaces still apply to the generalized Orlicz sequence spaces by giving different conditions.

Before discussing the generalized Orlicz sequence space further, first recall the definitions of the
Young function and the s-Young function. A function ¢ : [0, ) — [0, ) is a Young function if ¢ is convex
function, ¢(0) = 0, gim(P(t) = oo and ¢ is continuous [2], [14]. Furthermore, before defining the s-Young

function, the definition of the s-convex function is introduced. Kuei Lin Tseng (2007) defines the s-convex
function, namely if 0 < s <1 a function ¢ : [0,0) — R is called s-convex if for every x,y € [0, ) and
a,B = 0with a® + B° = 1 satisfies p(ax + By) < a’p(x) + B¢ (y) [20]. Rian Dermawan (2020) defines
the generalization of s-Young function, namely the function ¢ : [0,00) — [0, o) is the generalization of the
s-Young function if ¢ is s-convex, ¢(0) = 0, tng(P(t) = oo, and ¢ is continuous [21].

The next topic for discussion in this article is the method used to obtain the results of the research
conducted by the author. After that, the author explains the results of the research that he obtained from his
research on the generalized Orlicz sequence spaces and the properties that apply to the sequence spaces.

2. RESEARCH METHODS

In this section, the author will explain the method used by the author in his research on generalized
Orlicz sequence spaces. By using the definitions, lemmas, and properties of the Young function and its
generalization, as well as the definition of the Orlicz sequence spaces that has been obtained by previous
researchers, the author will construct a new sequence space by replacing the Young function on the Orlicz
sequence spaces with a generalized version of the Young function, which is the s-Young function. Before
explaining further about the generalized Orlicz sequence spaces, the following will explain the definitions,
lemmas, and properties that will help the author construct a generalized Orlicz sequence spaces.

Definition 1. Let I < R is a interval. A function ¢ : I - R is said to be convex on I if for any a, 8 € [0,1]
with « + = 1 and any point x, y € I we have

¢(ax + By) < ap(x) + a, Bo(y).
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Definition 2. If 0 < s <1 afunction ¢ : [0,0) — [0, ) is called s-convex if for every x,y € [0, ) and
a, B = 0 with a® + §° = 1 satisfies

plax + By) < a*p(x) + B°p(y).
LLemma 3. If function ¢ : [0, ) — [0, ) is a convex then ¢ is s-convex function.
Definition 4. The function ¢ : [0, 00) — [0, o) is a Young function if ¢ is a convex, ¢(0) = 0, tlLTor(lj o) =
oo, and ¢ is continuous.
Definition 5. The function ¢ : [0,0) — [0, ) is an s-Young function if ¢ is an s-convex, ¢(0) =0,
tlirglo ¢(t) = oo, and ¢ is continuous.

According to Lemma 3, the s-Young function in Definition 5 has a broader function than the definition of
the Young function in Definition 4. Therefore, we call the s-Young function is a generalized Young function.
This function will be used by the author to define the Orlicz sequence spaces in the next section. Before that,
the author also explains in advance the property of the s-Young function, which is as follows:

Lemma 6. Let ¢ : [0,00) — [0, ) be an s-Young function, then

a) o(Bt) <pSp(t)foreveryt>0and0 < <1with0<s<1.
b) p(t) = % increasing forany t > 0 with0 < s < 1.
c) ¢(t) increasing for any t > 0.

Definition 7. Let ¢ be a Young function, the Orlicz sequence spaces €4 (Z) is all sequence X = (x;) of real
numbers such that Z,‘leqb(@) < oo there is a > 0 and equipped with norm ||X||€¢(Z) = inf{b >0:

2eio () < t)<en

Lemma 8. If ||X||[¢ #0,VX = (x) €Ly, thenYyly @ <M) < 1. Futhermore ||X||g¢ < 1ifand only if

1X1le,,
z;lecb( b ) <1.

1XIle,,

Lemma 9. Let ¢ : [0,00) — [0, o) is a Young function, then Y-, ¢ (%) < 1 for any € > 0 if and only if
||X||g¢ =0 forevery X = (xi) € £4.

Lemma 10. Let ¢ : [0,00) — [0, ) is a Young function and X = (x;) € €4 , then ¥}, d(a|x,]) = 0,V
a > 0 if and only if ||X||g¢ = 0.

Definition 11. The function ||-]| : X — [0, o) is said to be quasi-norm on X if for every x,y € X and a € R,
satisfies

a) x|l =o0.

b) |lx]| = 0ifandonly if x = 0.

¢) llaxll = lalllx]|.

d) Thereexist C > 1suchthat |lx + y|| < C(llx|l + llylD).

3. RESULTS AND DISCUSSION

Based on the definition of the Orlicz sequence spaces £ in Definition 7 in section 2, by replacing the
Orlicz function or Young function with a s-Young function, a new definition of the Orlicz sequence spaces
is obtained. Because the s-Young function is a generalization of the Young function, the Orlicz sequence
spaces with the s-Young function are clearly an extension from £ 4. Thus, the definition of the Orlicz sequence
spaces that the author constructs in this article is called the generalized Orlicz sequence spaces denoted by
£4.(R), where ¢, is a s-Young function. The following is the definition and properties of the sequence spaces

£, (R) constructed by the author:
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Definition 1. Let ¢ be an s-Young function. Orlicz sequence spaces £ _(R) is all sequences X = (x;) of

real numbers such that 2, ¢s ('x"') < oo there is a > 0and equipped with a function [|X|l,, &) =
inf{b >0+ ¥, ¢ (2) < 1),

Before discussing the properties of £ (R), it will be shown that the function [|-l,_c) is well defined
on the Orlicz sequence spaces ¢4 (R), that is, for every X = (x;) € £4 (R), then ”XH%S(R) =

inf{b > 0: Ti, s (B4 < 1] exists.

In this article, we suppose that

C |2 |
=1b>0: ¢S<—>31} €Y)
o 2o

it will be shown that A = @.

Takeany X = (x) € £4_(R), based on Definition 1 there is a > 0 so that Y3 ; ¢ ('%") < oo, Suppose that
Vet bs ('fo') = C, clearly C = 0. To show A # @, divide into two cases for the value of C.

Case 1 If C < 1, then

- |2 |
o, (_> —c<1

Its means a € A4, so that A # @.

Case21fC >1,for0<s < 1clearly CY/s>1o0r — < 1.

cl/s

Based on Lemma 6(a) in section 2, we have

Z o (amir) = () X (Bed)=2-c =

Its means aCl/S € A, sothat A # @.
From these two cases, A # @ is obtained so thatinfA = ||X||g¢s(R) exists forevery X = (x;) € £4_(R), thus
the function ||-ll,,, ) is well defined in the Orlicz sequence spaces £, (R). 0

The function ||'||g¢ in Definitions 7 in section 2 defines a norm function on the Orlicz sequence space
¢4, but the function ||~||f¢s(ﬂg) in the generalized Orlicz sequence spaces is define a quasi-norm function, the
following is an explanation in Theorem 2.

Theorem 2. The function |||l w): £, (R) = [0, 00) is a quasi-norm.

Proof. Take any X = (x4),Y = (yx) € £¢_(R) and a« € R. Suppose that 4 = {b >0: Y, ds (%) <

1},
1. Will be shown ||X||{)¢S(R) =>0.
Because ||X||g¢S(R) = inf A its clearly ”X”g¢s(]]g) =0,V X = (x;) € £y (R).
2. Will be shown ||X||g¢S(R) =0ifandonly if X = (x;) = 0.
(=) Assume that ||X||g¢S(R) =0.Forany0 <e<1land a > 0with0 <s <1, based on Lemma 6(a)

XCIDETS (s (“'?')) < e, (“'j"")

in section 2, we have
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SN ICOEESWACSE
k=1 k=1

Since it applies to any 0 < &€ < 1, it can be concluded that Y3, ¢s(a|x,|) =0 for any a > 0.
Therefore, it must be ¢¢(a|x|) = 0, consequently x, =0,V k € N,so X = (x;) = 0.
(<) Assume that X = (x;) = 0. Take any € > 0, we have

XA EYACEOWICRIEE
k=1 k=1 k=1

Its means € € A, consequently ||X||f¢S(R) < . Hence ¢ > 0 is arbitrary, we conclude that ||X||g¢s(m) =

0.
3. Will be shown ||aX||{;¢S(R) = |a|”X”f’¢s(R)'

When a = 0 obviously applies it. Now we consider when a # 0, note that :

X1l o = mf{b>0 qus('“x"')_l}
o (lallx]
=infib>0: gbs( > 1}
b= 2
1nf{b >0: Y 1¢S<|x"|> < 1}
lal

= inf |a|c>0:i¢<@><1 Withczi
k=1 Ne)” ' |er]

ol N, (el
= || 1nf{c>0. kz=1¢s< - )Sl}

= lalllX ey, )

Thus it is proved that IIaXIIg%(R) = |a|”X”g¢s(R).

4. Will be shown that there is € > 1 such that X + Yl g < C/° (1Xlle, @ + 1V lle, () ) With 0 <

s<1.
When X =Y = 0 obviously applies it. Now we consider when X # 0or Y # 0.
If X+ 0,Y = 0 or vice versa, by choosing C = 1, we have

X+ Ylle, ®) = IXIley ) = 11Xl gy ) =1+ ( IX1ley, ) + ||Y||£¢S(1R))
So,when X # 0,Y = 0 or vice versa, obviously applies it.

IXlle,, ) s I¥lle, ) g
If X+0and Y #0, suppose that C = s + os and B =
||X||e¢s(m<)+||y||e¢s(m<) ||X||e¢s(m<)+||y||e¢s(nx)

1
{b>0: 27, ¢ (B2) < 1} with 0 < s < 1. Will be shown that €5 (I1X1le, @) + Y lle, @) €
B. Note that, based on Lemma 6 in section 2, we have

[ee) o]

|l + Vil x| + |yl
AL < o=
k=1 Cs ( ”X”{’d)s(]R) + ||Y”€¢S(R)) k=1 Cs ( ”X”{(PSOR) + ”Y”‘F(ﬁs(R))
-Ys, XM, o0 bl 1Y 1Ly, i
= (X Ny o + ¥ Ty ) X¥Me0s® €5 (1, oy + 11y ) 1V M0
= s (R) 25 (R) s s (R) L4 (R) s
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= |xk|
Z%nm
k=1 o5 (R)
|}’k|
%um
£ps(R)

”Y”{’¢S(R)
UM%®+WMﬂ)kﬂ

X112y, Ry

ww%m+wmﬂ)

IA

+
ml»—x mlv—x /\/\/\

Y1y, m)

¢5 (11l ey, 0 + 1Y 1z, a0 )

S

X112y, Ry

IA

||X||e¢ ® T ||Y”£’¢S(R)

|Y||e¢ (R)
(X1l g + 1Y lley, w0

|X||e¢ (R)
||X||#¢ ® T ||Y||,?4, (IR)
-C =

Thus it is proved that C1/S ( 1X1le,, ®) + ”Y”%s(R)) € B.Since infB = |IX + Y, (&), We conclude
that

I+ ¥ lleg, ) < € (1K a0 + 1Y ey )

Since applies 1, 2, 3and 4, based on Definition 11 in section 2, we can be concluded that ||'||£¢S(R): £y, (R) -
[0, o0) is a quasi-norm.

[]

3.1.  Properties Applicable to Generalized Orlicz Sequence Spaces

In this section, it will be shown that the properties that apply to the Orlicz sequence spaces €4 (R) also
apply to the Orlicz sequence spaces €4_(R) by using the properties or characteristics of the s-Young function.

Recall that the s-Young function is a monotonically increasing function and the fact that if ¢ : [0, ) —
[0, o) is a s-Young function, then ¢g(at) < a®¢g(t) applies foreveryt > 0and 0 <a <1with0<s <
1. Using this fact, the following lemmas will be shown:

Lemma 3. I [IXlle, ) # 0,¥ X = (xe) € £, (R), then T2, s (nxdfkl(m) <
bs

Proof. Take any € > 0 and X = (xx) € ¢4 (R) such that ||X||£¢S(R) # 0. Since ||X||g¢S(R) = infA then

||X||g¢s(R) + € is not the lower bound of 4 (see Equation (1)) consequently, there is b; € A such that

1 1

[1X]| +e>bh @7 < —
fos®) b, ) + & T by

Since |x;| =0,V k € N then il X Baced on Lemma 6(c) in section 2 and b, € A, we have
||X||e¢s(1m)+€ by

| x| |2 |
P <||X||e¢ ® + €) ('bs( by )

A o (1l
@Z ¢S<||X||e¢ ® + €> Z¢S< >

k=1

Since € > 0 is arbitrary we can be concluded that

Z¢( | | ><1 )
IXNley om0/ —



BAREKENG: J. Math. & App., vol. 17(1), pp. 0427-0438, March 2023. 433

Lemma4. If ¢ : [0,00) — [0, ) is an s-Young function and X = (x;) € £4_(R), then ¥;°-; s (|xx]) < 1
if and only if ”X”g¢s(R) <1

Proof. Let ¢ : [0,00) — [0, ) is an s-Young function and take any X = (x;) € £4_(R).

(=) Assume ¥ ds(Ixx|) < 1 forevery X = (x;) € £4_(R). Note that

Z s (lx]) = Z os <@> <1
k=1 k=1

From Equation (1) we get 1 € A. Because ”X”%s(R) = inf A then obviously ||X”.g¢s(R) <1 forevery X =
(x1) € €4, (R).

(<) Assume ||X][,, vy <1 forevery X = (x;) € £4_(R), then we have |x;| < |
bs 1XTleg, ®
Since ¢y is increasing, then
| |
s(Uxi)) < s | o — (3)
X112y, (r)

Based on LL.emma 3 we have

| |
2 bl < Z bs <|| M, (R)> <1 )

From Equation (4) it is proved that Y32, ¢s([x]) < 1.
Corollary 5. Let ¢ : [0,00) — [0, 0) be an s-Young function and X = (x;) € £4_(R), then the following
statetments are equivalent:

a) Yreq bs (%) S% foranya = 1with0 <s<1

b) IXlley ) < 1.

Proof. (a=b) Assume Y.;_; ¢ (%) < % forevery a = 1 with 0 < s < 1, will be shown ||X”g¢s(R) <
1 forany X = (xx) € €4 (R).

Take any X = (x;) € £ (R). For a>1 and 0 <s <1 we have 0< % < % <1, so that from the

hypothesis obtained
C | | 1
kz ¢s < . < E <1

Choose @ = 1, obtained Y.;—; ¢s(|xk|) < 1. From Equation (1), its means 1 € A. Since ||X||g¢S(R) = inf A,
consequently ”X”%s(“@ <1 forevery X = (x;) € £y _(R).

(b = a). Assume ||X||[¢ m®) < 1 forevery X = (x;) € £4_(R), we will be shown Y ; ¢ ('x"l) <l

as’

From the hypothesis we know || X1|,, ) < 1 or W > 1. Based on Lemma 6(a), for every a = 1 with
s LB

0 <s <1, wehave

oo 1 o]
> o, (@) <— > ¢:llnd (5)
k=1 k=1
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From Equation (3) and Lemma 15 we obtained

|| 1 ) _i
—Z $s () < Z b (” T (R)> <= 1= ©6)

From Equation (5) and Equation (6), it is proved that Y7, ¢s ('x"l) %for every a > 1.

Lemma 6. Let ¢ : [0,00) — [0,00) be an s-Young function and X = (x;) € £4_(R), then the following
statetments are equivalent:

) Yk=19¢s (%) < 1 for every € > 0.
b) 1IXlley ) = 0.

Proof. (a = b) assume (a) is holds. Take any X = (xj) € £4_(R). Because Yz-; ¢ ('x"') < 1 applies for
every € > 0, from Equation (1) we obtained & € A. Based on Definition 13 we have 0 < ||X||g¢s(R) <
g, consequently |IX|lg, () = 0 for every X = (x;) € €4 (R).

(b = a) assume (b) is holds. By hypothesis, ||X||f¢S(R) =0 forevery X = (x;) € £4_(R), we will be shown
that Y71 ¢ (%) < 1forevery e > 0.

By contradiction, suppose there is g, > 0 such that ;- ¢s ('x"l) > 1 and consequently g, € A. Then take

any b € A (see Equation (1)), its obviously infA = ||X||f¢s(]R) < b. In this case, the relationship between g,
and b has two cases, that is

[ %k

Case 11fg, > b or gl < % , S0 that for every X = (x) € €4 (R) we obtained % <5
o 0

Since ¢y is increasing and b € A, we have

|2 | ||
bs <? < ¢s 5
X ) X el _
- S SO ~ S b —
This contradicts the statement Y.y~ ; ¢ ('x"l) > 1, so the false assumption must not exist if ¢, > 0, such that

S gs () > 1.

Case 2 If ¢y < b. Since b € A is arbitrary then &, is lower bound of A, consequently ”X”%s(R) = infA >
g > 0. This contradicts the hypothesis that ”X”g¢s(]R) = 0, so the false assumption must not exist if g, > 0,

such that Y7, ¢s (";—(’)") > 1.

From cases 1 and 2, it can be concluded that Y\, ¢ ('x"l) < 1 forevery € > 0.

Lemma 7. Let ¢ : [0,00) — [0,90) be an s-Young function and X = (x;) € €4 (R), then the following
statetments are equivalent:

a) D=y Ps(alxi|) =0 foreverya >0
b) lIX1le,, &) = 0.

Proof. (a = b) assume (a) is holds. By hypothesis, Y.z—; ¢s(a|x,|) = 0 for every a > 0, such that
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x
Zcps ll—kl =0<1
k=1 p

Its means %e A (see Equation (1)), consequently 0 < ”XH%SUR) S% . Since @ > 0 is arbitrary, we can
concluded that ”X”%s(ﬂ@ =0.

(b = a) assume (b) is holds. Forany 0 < e < 1and a > 0 with 0 < s < 1, by Lemma 6(a) in section 2 we

have
¢s(alxi]) = b, (s (“'j"')) < £, (“':"') VKEN

N COEEWAC S EE
k=1 k=1

Since 0 < & < 1 is arbitrary, we can concluded that Y-, ¢s(a|x,|) = 0 for every a > 0.

3.2. Completeness

In the following section, the author will show that the space ({’¢s (R), II'IIe¢S(R)) is a Quasi-Banach

space by showing that the generalized Orlicz sequence spaces ¢4 _(R) is complete, that is, any Cauchy
sequence in £4_(R) converges to a point in £4_(R). The following explanation is presented in Theorem 20
below.

Theorem 8 The spaces ({’¢S (R), ||'||£¢S(R)) is a Quasi-Banach space.

Proof. In Theorem 2, it has been shown that ||'||£¢S(R) defines a quasi-norm on the sequence space ¢4 (R).

We will then show that (’?qbs (R), Il ¢S(R)) is a quasi-Banach space. Take any Cauchy sequence X = (x,,)
in £4_(R), meaning that for every € > 0, there are n, € N such that for every n,m = n, holds

”xm - xnllt’d,s(]R) <e¢

Since € > 0 is arbitrary then there are n,, € N and T > 0 that holds ||x,,, — xnll%s(m < T—;k ,Ym,n = ny.
Furthermore, it can be obtained from sub-sequences (x,, ) such that for n > ny and T > 0 it satisfies

1
||xnk+1 - xnk”gd)s(R) < ﬁ (7)

Now define the sequence of functions (g,,), that is

m
Im(x) = Z|xnk+1 - xnkl < €))
k=1

It will be shown first that (g,,,) in £4_(R). From the following description, by choosing T = 2™/S and
from Equation (7) we have

m
z |xnk+1 - xnkl
k=1

lgm GO Lo, cay =

€¢S(R)
= |||xn2 - xn1| + |X3 - le + e+ |xnm+1 - x”ml”{d)s(]]g)
m m m
<:2%l251”x —-Xx ” < 2% ! = ;L
- N1 Nk ftbs(R) o] 2%2" o] Zk
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When m — oo, then Z,;”:lik is a geometric series with a ratio of % , S0 that Z,‘?:lzik = ﬁ — 1= 1. It means
2

”gm(X)”gd)S(R) <Y #s 1 Based on Lemma 16, we obtained Y3 ¢s(1gm (x)]) < 1, so that (g,,,) €
£4,(R). Next, suppose

r}li—r}(l;o(gm(x)) = g(x) = z|xnk+1 - xnkl (9)
k=1

Because g,,(x) — g(x) in R and ¢; is continuous function, then ¢s(g, (x)) = ¢s(g(x)) in R, such that

z ¢s(g(x)) = nlll—lgoz ¢s(gm(x)) <1
k=1 k=1

It means g(x) € £4_(R).

Now, consider that

m
xnm+1 = Z(xnk+1 - xnk) + an
k=1

‘:’Jl‘iréoxn - z:(xnk+1 - xnk) + xp, = g(x) + X,
Suppose g(x) + x,, = x, itis obviously x € £4_(R). Because (xnm+1) is sub-sequences of X = (x,,) that
converges to x, and X = (x,,) is a Cauchy sequence, it is can concluded that X = (x,) converges to x.
Consequently for 0 < & < min{1, Y3, ¢s(1)}, there is K € N such that

142
Ixn—x|<L1 ,Vn=>K (10)
Q=1 Ps(D)s

Suppose B = {b >0: YO, b ('x”+x|) 1}. Also note that for every n > K, that holds

1
15

i ¢S<Ixn —x|> i (TR, 6s(D)s 1¢>s(1))s
n=1 n=1

I
3M8

£ s
2, s <2;:°=1¢s(1)>

g [ee]
= <2§°=1 @(1)) Z #s(V)

=e<1
It means we obtained € € B, consequently inf B = ||x,, — xll%s(ﬂg) < ¢,Vn = K, we can write x,, - x.

Thus, every Cauchy sequence in €4 (R) converges to a point in £4_(R), therefore the spaces £4_(R) is
complete, and it is proven that the space ({’¢S(IR1), ||'||{¢S(R)) is a Quasi-Banach space.

4. CONCLUSIONS

Based on the research results obtained by the author regarding the Orlicz sequence spaces £4_(R) and
the characteristics of the sequence in that spaces, the author concludes that the generalized Orlicz sequence
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spaces €4 (R) is an extension of the Orlicz sequence spaces 4. The generalized Orlicz sequence spaces
£, (R) is equipped with the ||'||£’¢S(R) function, which defines a quasi-norm function on £4_(R). In addition,

the lemmas or properties of the Orlicz sequence spaces also apply to the generalized Orlicz sequence spaces
under several different conditions. And finally, the author concludes that the generalized Orlicz sequence

space is a complete space, and as a result, the space (€¢,S (R), ||'||e¢S(R)) is a Quasi-Banach space.
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