
          https://doi.org/10.30598/barekengvol17iss1pp0427-0438 

 

March 2023     Volume 17 Issue 1 Page 0427–0438 

P-ISSN: 1978-7227   E-ISSN: 2615-3017 

 

BAREKENG: Journal of Mathematics and Its Applications 
 

    

 

427 
      

GENERALIZED ORLICZ SEQUENCE SPACES 
 

Cece Kustiawan1*, Al Azhary Masta2, Dasep3, Encum Sumiaty4,  

Siti Fatimah5, Sofihara Al Hazmy6 

 
1,2,3,4,5Mathematics Study Program, Universitas Pendidikan Indonesia 

Jl. Dr. Setiabudi, Bandung, 40154, Indonesia 
 6Faculty of Mathematics and Military Natural Sciences, Universitas Pertahanan Republik Indonesia,  

Bogor,16810,  Indonesia 

 

Corresponding author’s e-mail: * cecekustiawan@upi.edu 

 

 

ABSTRACT 

Article History: 
Orlicz spaces were first introduced by Z. W. Birnbaum and W. Orlicz as an extension of 

Labesgue space in 1931. There are two types of Orlicz spaces, namely continuous Orlicz spaces 

and Orlicz sequence spaces. Some properties that apply to continuous Orlicz spaces are known, 

as are Orlicz sequence spaces. This study aims to construct new Orlicz sequence spaces by 

replacing a function in the Orlicz sequence spaces with a wider function. In addition, this study 

also aims to show that the properties of the Orlicz sequence spaces still apply to the new Orlicz 

sequence spaces under different conditions. The method in this research uses definitions and 

properties that apply to the Orlicz sequence spaces in the previous study and uses the 𝒔-Young 

function in these new Orlicz sequence spaces. Furthermore, the study results show that the new 

Orlicz sequence spaces are an extension of the Orlicz sequence spaces in the previous study. 

And with the characteristics of the 𝑠-Young function, it shows that the properties of the Orlicz 

sequence spaces still apply. 
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1. INTRODUCTION 

In 1931, Z.W. Birnbaum and W. Orlicz first introduced the Orlicz spaces as a generalization of the 

Lebesgue spaces. There are two types of Orlicz spaces that have been discussed by many researchers: 

continuous Orlicz spaces and Orlicz sequence spaces. Research on continuous Orlicz spaces has been carried 

out by Maligranda, L. (1989), Masta, A. A. (2016), etc. [1]-[9]. While the Orlicz sequence spaces have been 

studied by Maligranda, L., and Mastylo, M. (2000), and Awad A. Bakery and Rafaf R. (2020) [10]-[19]. 

Maligranda and Mastylo in 2000 defined that [8], if 𝜙 ∶ [0,∞) → [0,∞) the Orlicz function is a 

continuous convex function where the value is 0 only at point 0, then the Orlicz sequence space ℓ𝜙 is  

ℓ𝜙 = { 𝜉 = (𝜉𝑗) ∶ ∃ 𝜆 > 0 ∋  𝜌𝜙(𝜆𝜉) < ∞ } 

where 𝜌𝜙(𝜆𝜉) = ∑ 𝜙(|𝜉𝑗|)
∞
𝑗=1  for any real sequence 𝜉 = {𝜉𝑗}, equipped with the Luxemburg norm that is 

‖𝜉‖𝜙 = inf{𝜆 > 0 ∶  𝜌𝜙(𝜉/𝜆) ≤ 1}. 

A similar definition is also used by Savas, E. (2004) in his article entitled “Some Sequence Spaces 

Defined by Orlicz Functions” [12] and by Khusnussaadah, N. (2019) in his article entitled “Completeness of 

Sequence Spaces Generated by an Orlicz Function” [13]. Both use the same function, namely the Orlicz 

function, which is a continuous convex function. The definition of the Orlicz function is similar to the 

definition of the Young function on a continuous Orlicz spaces [2], [3], [12]. Meanwhile, Prayoga, P. S. 

(2020), in his article titled “Sifat Inklusi dan Perumuman Ketaksamaan Hölder pada Ruang Barisan Orlicz” 

uses the Young function in defining the Orlicz sequence spaces [14]. 

In this article, the authors are interested in extending the function used in the Orlicz sequence spaces 

by using a function that is a continuous 𝑠-convex function where the value is 0 only at point 0. In this article, 

we call such a function 𝑠-Young function. This new definition of space is called the generalized Orlicz 

sequence spaces. In this generalized Orlicz sequence space, the author will show that some properties of the 

Orlicz sequence spaces still apply to the generalized Orlicz sequence spaces by giving different conditions. 

Before discussing the generalized Orlicz sequence space further, first recall the definitions of the 

Young function and the 𝑠-Young function. A function 𝜙 ∶ [0,∞) → [0,∞) is a Young function if 𝜙 is convex 

function, 𝜙(0) = 0, 𝑙𝑖𝑚
𝑡→∞

𝜙(𝑡) = ∞ and 𝜙 is continuous [2], [14]. Furthermore, before defining the 𝑠-Young 

function, the definition of the 𝑠-convex function is introduced. Kuei Lin Tseng (2007) defines the 𝑠-convex 

function, namely if 0 < 𝑠 ≤ 1  a function 𝜙 ∶ [0,∞) → ℝ is called 𝑠-convex if for every 𝑥, 𝑦 ∈ [0,∞) and 

𝛼, 𝛽 ≥ 0 with 𝛼𝑠 + 𝛽𝑠 = 1 satisfies 𝜙(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑠𝜙(𝑥) + 𝛽𝑠𝜙(𝑦) [20]. Rian Dermawan (2020) defines 

the generalization of 𝑠-Young function, namely the function 𝜙 ∶ [0,∞) → [0,∞) is the generalization of the 

𝑠-Young function if 𝜙 is 𝑠-convex, 𝜙(0) = 0, lim
𝑡→∞

𝜙(𝑡) = ∞, and 𝜙 is continuous [21]. 

The next topic for discussion in this article is the method used to obtain the results of the research 

conducted by the author. After that, the author explains the results of the research that he obtained from his 

research on the generalized Orlicz sequence spaces and the properties that apply to the sequence spaces. 

 

 

2. RESEARCH METHODS 

 In this section, the author will explain the method used by the author in his research on generalized 

Orlicz sequence spaces. By using the definitions, lemmas, and properties of the Young function and its 

generalization, as well as the definition of the Orlicz sequence spaces that has been obtained by previous 

researchers, the author will construct a new sequence space by replacing the Young function on the Orlicz 

sequence spaces with a generalized version of the Young function, which is the 𝑠-Young function. Before 

explaining further about the generalized Orlicz sequence spaces, the following will explain the definitions, 

lemmas, and properties that will help the author construct a generalized Orlicz sequence spaces. 

Definition 1. Let 𝐼 ⊆ ℝ is a interval. A function 𝜙 ∶ 𝐼 → ℝ is said to be convex on 𝐼 if for any 𝛼, 𝛽 ∈ [0,1] 
with 𝛼 + 𝛽 = 1 and any point 𝑥, 𝑦 ∈ 𝐼 we have 

𝜙(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝜙(𝑥) + 𝛼, 𝛽𝜙(𝑦). 
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Definition 2. If  0 < 𝑠 ≤ 1  a function 𝜙 ∶ [0,∞) → [0,∞) is called 𝑠-convex if for every 𝑥, 𝑦 ∈ [0,∞) and 

𝛼, 𝛽 ≥ 0 with 𝛼𝑠 + 𝛽𝑠 = 1 satisfies 

𝜙(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑠𝜙(𝑥) + 𝛽𝑠𝜙(𝑦). 

Lemma 3. If function 𝜙 ∶ [0,∞) → [0,∞) is a convex then 𝜙 is 𝑠-convex function. 

Definition 4. The function  𝜙 ∶ [0,∞) → [0,∞) is a Young function if 𝜙 is a convex, 𝜙(0) = 0, 𝑙𝑖𝑚
𝑡→∞

 𝜙(𝑡) =

∞, and 𝜙 is continuous. 

Definition 5. The function  𝜙 ∶ [0,∞) → [0,∞) is an s-Young function if 𝜙 is an 𝑠-convex, 𝜙(0) = 0, 

𝑙𝑖𝑚
𝑡→∞

 𝜙(𝑡) = ∞, and 𝜙 is continuous. 

According to Lemma 3, the 𝑠-Young function in Definition 5 has a broader function than the definition of 

the Young function in Definition 4. Therefore, we call the 𝑠-Young function is a generalized Young function. 

This function will be used by the author to define the Orlicz sequence spaces in the next section. Before that, 

the author also explains in advance the property of the 𝑠-Young function, which is as follows: 

Lemma 6. Let 𝜙 ∶ [0,∞) → [0,∞) be an 𝑠-Young function, then 

a) 𝜙(𝛽𝑡) ≤ 𝛽𝑠𝜙(𝑡) for every 𝑡 ≥ 0 and 0 ≤ 𝛽 ≤ 1 with 0 < 𝑠 ≤ 1. 

b) 𝜌(𝑡) =
𝜙(𝑡)

𝑡𝑠
 increasing for any 𝑡 > 0 with 0 < 𝑠 ≤ 1. 

c) 𝜙(𝑡) increasing for any 𝑡 ≥ 0.  

Definition 7. Let  𝜙 be a Young function, the Orlicz sequence spaces ℓ𝜙(ℤ) is all sequence 𝑋 = (𝑥𝑘) of real 

numbers such that ∑ 𝜙(
|𝑥𝑘|

𝑎
)∞

𝑘=1 < ∞ there is 𝑎 > 0 and equipped with norm ‖𝑋‖ℓ𝜙(ℤ) = inf {𝑏 > 0 ∶

 ∑ 𝜙 (
|𝑥𝑘|

𝑏
) ≤ 1∞

𝑘=1 } < ∞.  

Lemma 8. If ‖𝑋‖ℓ𝜙 ≠ 0, ∀ 𝑋 = (𝑥𝑘) ∈ ℓ𝜙, then ∑ 𝜙(
|𝑥𝑘|

‖𝑋‖ℓ𝜙
)∞

𝑘=1 ≤ 1. Futhermore ‖𝑋‖ℓ𝜙 ≤ 1 if and only if 

∑ 𝜙(
|𝑥𝑘|

‖𝑋‖ℓ𝜙
)∞

𝑘=1 ≤ 1. 

Lemma 9. Let 𝜙 ∶ [0,∞) → [0,∞) is a Young function, then ∑ 𝜙(
|𝑥𝑘|

𝜀
)∞

𝑘=1 ≤ 1 for any 𝜀 > 0 if and only if 

‖𝑋‖ℓ𝜙 = 0  for every 𝑋 = (𝑥𝑘) ∈ ℓ𝜙. 

Lemma 10. Let 𝜙 ∶ [0,∞) → [0,∞) is a Young function and 𝑋 = (𝑥𝑘) ∈ ℓ𝜙 , then ∑ 𝜙(𝛼|𝑥𝑘|)
∞
𝑘=1 = 0, ∀ 

𝛼 > 0 if and only if ‖𝑋‖ℓ𝜙 = 0. 

Definition 11. The function ‖⋅‖ ∶ 𝑋 → [0,∞) is said to be quasi-norm on 𝑋 if for every 𝑥, 𝑦 ∈ 𝑋  and 𝛼 ∈ ℝ, 

satisfies 

a) ‖𝑥‖ ≥ 0. 

b) ‖𝑥‖ = 0 if and only if 𝑥 = 0. 

c) ‖𝛼𝑥‖ = |𝛼|‖𝑥‖.  

d) There exist 𝐶 ≥ 1 such that ‖𝑥 + 𝑦‖ ≤ 𝐶(‖𝑥‖ + ‖𝑦‖).  
 

 

3. RESULTS AND DISCUSSION 

Based on the definition of the Orlicz sequence spaces ℓ𝜙 in Definition 7 in section 2, by replacing the 

Orlicz function or Young function with a 𝑠-Young function, a new definition of the Orlicz sequence spaces 

is obtained. Because the 𝑠-Young function is a generalization of the Young function, the Orlicz sequence 

spaces with the 𝑠-Young function are clearly an extension from ℓ𝜙. Thus, the definition of the Orlicz sequence 

spaces that the author constructs in this article is called the generalized Orlicz sequence spaces denoted by 

ℓ𝜙𝑠(ℝ), where 𝜙𝑠 is a 𝑠-Young function. The following is the definition and properties of the sequence spaces 

ℓ𝜙𝑠(ℝ) constructed by the author: 
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Definition 1. Let 𝜙𝑠 be an 𝑠-Young function. Orlicz sequence spaces ℓ𝜙𝑠(ℝ) is  all sequences  𝑋 = (𝑥𝑘) of 

real numbers such that ∑  𝜙𝑠 (
|𝑥𝑘|

𝑎
)∞

𝑘=1 < ∞ there is 𝑎 > 0 and equipped with a function ‖𝑋‖ℓ𝜙𝑠(ℝ) =

inf {𝑏 > 0 ∶  ∑ 𝜙𝑠 (
|𝑥𝑘|

𝑏
) ≤ 1∞

𝑘=1 }.   

Before discussing the properties of  ℓ𝜙𝑠(ℝ), it will be shown that the function ‖⋅‖ℓ𝜙𝑠(ℝ) is well defined 

on the Orlicz sequence spaces ℓ𝜙𝑠(ℝ), that is, for every 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ), then ‖𝑋‖ℓ𝜙𝑠(ℝ) =

inf {𝑏 > 0 ∶  ∑ 𝜙𝑠 (
|𝑥𝑘|

𝑏
) ≤ 1∞

𝑘=1 } exists. 

In this article, we suppose that 

 𝐴 = {𝑏 > 0 ∶  ∑𝜙𝑠 (
|𝑥𝑘|

𝑏
) ≤ 1

∞

𝑘=1

}                                               (1) 

it will be shown that 𝐴 ≠ ∅. 

Take any 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ), based on Definition 1 there is 𝑎 > 0 so that ∑ 𝜙𝑠 (
|𝑥𝑘|

𝑎
) < ∞∞

𝑘=1 . Suppose that 

∑ 𝜙𝑠 (
|𝑥𝑘|

𝑎
)∞

𝑘=1 = 𝐶, clearly 𝐶 ≥ 0. To show 𝐴 ≠ ∅, divide into two cases for the value of 𝐶. 

Case 1 If 𝐶 ≤ 1, then 

∑𝜙𝑠 (
|𝑥𝑘|

𝑎
)

∞

𝑘=1

= 𝐶 ≤ 1 

Its means 𝑎 ∈ 𝐴, so that 𝐴 ≠ ∅. 

Case 2 If 𝐶 > 1, for 0 < 𝑠 ≤ 1 clearly 𝐶1/𝑠 > 1 or  
1

𝐶1/𝑠
< 1. 

Based on Lemma 6(a) in section 2, we have 

∑𝜙𝑠 (
|𝑥𝑘|

𝑎𝐶1/𝑠
)

∞

𝑘=1

≤ (
1

𝐶1/𝑠
)
𝑠

∑𝜙𝑠 (
|𝑥𝑘|

𝑎
)

∞

𝑘=1

=
1

𝐶
∙ 𝐶 = 1 

Its means 𝑎𝐶1/𝑠 ∈ 𝐴, so that 𝐴 ≠ ∅. 

From these two cases, 𝐴 ≠ ∅  is obtained so that inf 𝐴 = ‖𝑋‖ℓ𝜙𝑠(ℝ) exists for every 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ), thus 

the function ‖⋅‖ℓ𝛷𝑠(ℝ) is well defined in the Orlicz sequence spaces ℓ𝛷𝑠(ℝ).     

The function ‖⋅‖ℓ𝜙  in Definitions 7 in section 2 defines a norm function on the Orlicz sequence space 

ℓ𝜙, but the function ‖⋅‖ℓ𝜙𝑠(ℝ) in the generalized Orlicz sequence spaces is define a quasi-norm function, the 

following is an explanation in Theorem 2. 

Theorem 2. The function ‖⋅‖ℓ𝜙𝑠(ℝ): ℓ𝜙𝑠
(ℝ) → [0,∞) is a quasi-norm. 

Proof. Take any 𝑋 = (𝑥𝑘), 𝑌 = (𝑦𝑘) ∈ ℓ𝜙𝑠(ℝ) and 𝛼 ∈ ℝ. Suppose that 𝐴 = {𝑏 > 0 ∶  ∑ 𝜙𝑠 (
|𝑥𝑘|

𝑏
) ≤∞

𝑘=1

1}. 

1. Will be shown ‖𝑋‖ℓ𝜙𝑠(ℝ) ≥ 0. 

Because ‖𝑋‖ℓ𝜙𝑠(ℝ) = inf 𝐴 its clearly ‖𝑋‖ℓ𝜙𝑠(ℝ) ≥ 0,∀ 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ). 

2. Will be shown ‖𝑋‖ℓ𝜙𝑠(ℝ) = 0 if and only if 𝑋 = (𝑥𝑘) = 0. 

(⇒) Assume that ‖𝑋‖ℓ𝜙𝑠(ℝ) = 0. For any 0 < 𝜀 < 1 and  𝛼 > 0 with 0 < 𝑠 ≤ 1, based on Lemma 6(a) 

in section 2, we have 

𝜙𝑠(𝛼|𝑥𝑘|) = 𝜙𝑠 (𝜀 (
𝛼|𝑥𝑘|

𝜀
)) ≤ 𝜀𝑠𝜙𝑠 (

𝛼|𝑥𝑘|

𝜀
) 
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⇔  ∑𝜙𝑠(𝛼|𝑥𝑘|) 

∞

𝑘=1

≤ 𝜀𝑠∑𝜙𝑠 (
𝛼|𝑥𝑘|

𝜀
) 

∞

𝑘=1

≤ 𝜀𝑠 

Since it applies to any 0 < 𝜀 < 1, it can be concluded that ∑ 𝜙𝑠(𝛼|𝑥𝑘|) 
∞
𝑘=1 = 0  for any 𝛼 > 0. 

Therefore, it must be 𝜙𝑠(𝛼|𝑥𝑘|) = 0, consequently 𝑥𝑘 = 0, ∀ 𝑘 ∈ ℕ, so 𝑋 = (𝑥𝑘) = 0. 

(⇐) Assume that 𝑋 = (𝑥𝑘) = 0. Take any 𝜀 > 0, we have  

∑𝜙𝑠 (
|𝑥𝑘|

𝜀
) 

∞

𝑘=1

=∑𝜙𝑠 (
0

𝜀
) 

∞

𝑘=1

=∑𝜙𝑠(0) 

∞

𝑘=1

= 0 < 1 

Its means 𝜀 ∈ 𝐴, consequently ‖𝑋‖ℓ𝜙𝑠(ℝ) ≤ 𝜀. Hence 𝜀 > 0 is arbitrary, we conclude that ‖𝑋‖ℓ𝜙𝑠(ℝ) =

0. 

3. Will be shown ‖𝛼𝑋‖ℓ𝜙𝑠(ℝ) =
|𝛼|‖𝑋‖ℓ𝜙𝑠(ℝ). 

When  𝛼 = 0 obviously applies it. Now we consider when 𝛼 ≠ 0, note that : 

‖𝛼𝑋‖ℓ𝜙𝑠(ℝ) = inf {𝑏 > 0 ∶  ∑𝜙𝑠 (
|𝛼𝑥𝑘|

𝑏
) ≤ 1

∞

𝑘=1

} 

= inf {𝑏 > 0 ∶  ∑𝜙𝑠 (
|𝛼||𝑥𝑘|

𝑏
) ≤ 1

∞

𝑘=1

} 

= inf {𝑏 > 0 ∶  ∑ 𝜙𝑠 (
|𝑥𝑘|
𝑏

|𝛼|

) ≤ 1∞
𝑘=1 }  

= inf {|𝛼|𝑐 > 0 ∶  ∑𝜙𝑠 (
|𝑥𝑘|

𝑐
) ≤ 1

∞

𝑘=1

}    , with 𝑐 =
𝑏

|𝛼|
 

= |𝛼| ∙ inf {𝑐 > 0 ∶  ∑𝜙𝑠 (
|𝑥𝑘|

𝑐
) ≤ 1

∞

𝑘=1

} 

= |𝛼|‖𝑋‖ℓ𝜙𝑠(ℝ) 

Thus it is proved that ‖𝛼𝑋‖ℓ𝜙𝑠(ℝ) =
|𝛼|‖𝑋‖ℓ𝜙𝑠(ℝ). 

4. Will be shown that there is 𝐶 ≥ 1 such that ‖𝑋 + 𝑌‖ℓ𝜙𝑠(ℝ) ≤ 𝐶
1/𝑠 ( ‖𝑋‖ℓ𝜙𝑠(ℝ) +

‖𝑌‖ℓ𝜙𝑠(ℝ)) with 0 <

𝑠 ≤ 1. 

When  𝑋 = 𝑌 = 0 obviously applies it. Now we consider when 𝑋 ≠ 0 or  𝑌 ≠ 0. 

If 𝑋 ≠ 0 , 𝑌 = 0 or vice versa, by choosing 𝐶 = 1, we have 

‖𝑋 + 𝑌‖ℓ𝜙𝑠(ℝ) =
‖𝑋‖ℓ𝜙𝑠(ℝ) = 1 ∙

‖𝑋‖ℓ𝜙𝑠(ℝ) = 1 ∙ ( 
‖𝑋‖ℓ𝜙𝑠(ℝ) +

‖𝑌‖ℓ𝜙𝑠(ℝ)) 

So,when 𝑋 ≠ 0 , 𝑌 = 0 or vice versa, obviously applies it. 

If 𝑋 ≠ 0 and  𝑌 ≠ 0, suppose that 𝐶 = (
‖𝑋‖ℓ𝜙𝑠(ℝ)

‖𝑋‖ℓ𝜙𝑠(ℝ)
+‖𝑌‖ℓ𝜙𝑠(ℝ)

)

𝑠

+ (
‖𝑌‖ℓ𝜙𝑠(ℝ)

‖𝑋‖ℓ𝜙𝑠(ℝ)
+‖𝑌‖ℓ𝜙𝑠(ℝ)

)

𝑠

 and 𝐵 =

{𝑏 > 0 ∶  ∑ 𝜙𝑠 (
|𝑥𝑘+𝑦𝑘|

𝑏
) ≤ 1∞

𝑘=1 } with 0 < 𝑠 ≤ 1. Will be shown that 𝐶
1

𝑠 ( ‖𝑋‖ℓ𝜙𝑠(ℝ) +
‖𝑌‖ℓ𝜙𝑠(ℝ)) ∈

𝐵. Note that, based on Lemma 6 in section 2, we have 

∑𝜙𝑠 (
|𝑥𝑘 + 𝑦𝑘|

𝐶
1

𝑠 ( ‖𝑋‖ℓ𝜙𝑠(ℝ) +
‖𝑌‖ℓ𝜙𝑠(ℝ))

)

∞

𝑘=1

≤ ∑𝜙𝑠 (
|𝑥𝑘| + |𝑦𝑘|

𝐶
1

𝑠 ( ‖𝑋‖ℓ𝜙𝑠(ℝ) +
‖𝑌‖ℓ𝜙𝑠(ℝ))

)

∞

𝑘=1

 

=∑𝜙𝑠 (
‖𝑋‖ℓ𝜙𝑠(ℝ)

𝐶
1

𝑠 ( ‖𝑋‖ℓ𝜙𝑠(ℝ) +
‖𝑌‖ℓ𝜙𝑠(ℝ))

∙
|𝑥𝑘|

‖𝑋‖ℓ𝜙𝑠(ℝ)
+

‖𝑌‖ℓ𝜙𝑠(ℝ)

𝐶
1

𝑠 ( ‖𝑋‖ℓ𝜙𝑠(ℝ) +
‖𝑌‖ℓ𝜙𝑠(ℝ))

∙
|𝑦𝑘|

‖𝑌‖ℓ𝜙𝑠(ℝ)
)

∞

𝑘=1
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≤ (
‖𝑋‖ℓ𝜙𝑠(ℝ)

𝐶
1

𝑠 ( ‖𝑋‖ℓ𝜙𝑠(ℝ) +
‖𝑌‖ℓ𝜙𝑠(ℝ))

)

𝑠

∑𝜙𝑠 (
|𝑥𝑘|

‖𝑋‖ℓ𝜙𝑠(ℝ)
)

∞

𝑘=1

  

+(
‖𝑌‖ℓ𝜙𝑠(ℝ)

𝐶
1

𝑠 ( ‖𝑋‖ℓ𝜙𝑠(ℝ) +
‖𝑌‖ℓ𝜙𝑠(ℝ))

)

𝑠

∑𝜙𝑠 (
|𝑦𝑘|

‖𝑌‖ℓ𝜙𝑠(ℝ)
)

∞

𝑘=1

 

≤ (
‖𝑋‖ℓ𝜙𝑠(ℝ)

𝐶
1

𝑠 ( ‖𝑋‖ℓ𝜙𝑠(ℝ) +
‖𝑌‖ℓ𝜙𝑠(ℝ))

)

𝑠

+(
‖𝑌‖ℓ𝜙𝑠(ℝ)

𝐶
1

𝑠 ( ‖𝑋‖ℓ𝜙𝑠(ℝ) +
‖𝑌‖ℓ𝜙𝑠(ℝ))

)

𝑠

 

=
1

𝐶
[(

‖𝑋‖ℓ𝜙𝑠(ℝ)

( ‖𝑋‖ℓ𝜙𝑠(ℝ) +
‖𝑌‖ℓ𝜙𝑠(ℝ))

)

𝑠

+(
‖𝑌‖ℓ𝜙𝑠(ℝ)

( ‖𝑋‖ℓ𝜙𝑠(ℝ) +
‖𝑌‖ℓ𝜙𝑠(ℝ))

)

𝑠

] 

=
1

𝐶
∙ 𝐶 = 1 

Thus it is proved that 𝐶1/𝑠 ( ‖𝑋‖ℓ𝜙𝑠(ℝ) +
‖𝑌‖ℓ𝜙𝑠(ℝ)) ∈ 𝐵. Since inf 𝐵 =  ‖𝑋 + 𝑌‖ℓ𝜙𝑠(ℝ), we conclude 

that 

‖𝑋 + 𝑌‖ℓ𝜙𝑠(ℝ) ≤ 𝐶
1/𝑠 ( ‖𝑋‖ℓ𝜙𝑠(ℝ) +

‖𝑌‖ℓ𝜙𝑠(ℝ)) 

Since applies 1, 2, 3 and 4, based on Definition 11 in section 2, we can be concluded that ‖⋅‖ℓ𝜙𝑠(ℝ): ℓ𝜙𝑠
(ℝ) →

[0,∞) is a quasi-norm.   

        

3.1. Properties Applicable to Generalized Orlicz Sequence Spaces 

In this section, it will be shown that the properties that apply to the Orlicz sequence spaces ℓ𝜙(ℝ) also 

apply to the Orlicz sequence spaces ℓ𝜙𝑠(ℝ) by using the properties or characteristics of the 𝑠-Young function. 

Recall that the 𝑠-Young function is a monotonically increasing function and the fact that if 𝜙𝑠 ∶ [0,∞) →
[0,∞) is a 𝑠-Young function, then 𝜙𝑠(𝛼𝑡) ≤ 𝛼

𝑠𝜙𝑠(𝑡) applies for every 𝑡 ≥ 0 and 0 ≤ 𝛼 ≤ 1 with 0 < 𝑠 ≤
1. Using this fact, the following lemmas will be shown: 

Lemma 3. If ‖𝑋‖ℓ𝜙𝑠(ℝ) ≠ 0, ∀ 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ), then ∑ 𝜙𝑠 (
|𝑥𝑘|

‖𝑋‖ℓ𝜙𝑠(ℝ)
)∞

𝑘=1 ≤ 1. 

Proof. Take any 𝜀 > 0 and 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ) such that ‖𝑋‖ℓ𝜙𝑠(ℝ) ≠ 0. Since ‖𝑋‖ℓ𝜙𝑠(ℝ) = inf 𝐴 then 

‖𝑋‖ℓ𝜙𝑠(ℝ) + 𝜀 is not the lower bound of 𝐴 (see Equation (1)) consequently, there is 𝑏1 ∈ 𝐴 such that  

‖𝑋‖ℓ𝜙𝑠(ℝ) + 𝜀 ≥ 𝑏1   ⇔
1

‖𝑋‖ℓ𝜙𝑠(ℝ) + 𝜀
≤
1

𝑏1
 

Since |𝑥𝑘| ≥ 0, ∀ 𝑘 ∈ ℕ  then 
|𝑥𝑘|

‖𝑋‖ℓ𝜙𝑠(ℝ)
+𝜀
≤
 |𝑥𝑘|

𝑏1
. Based on Lemma 6(c) in section 2 and 𝑏1 ∈ 𝐴, we have 

𝜙𝑠 (
 |𝑥𝑘|

‖𝑋‖ℓ𝜙𝑠(ℝ) + 𝜀
) ≤ 𝜙𝑠 (

 |𝑥𝑘|

𝑏1
) 

⇔∑𝜙𝑠 (
|𝑥𝑘|

‖𝑋‖ℓ𝜙𝑠(ℝ) + 𝜀
)

∞

𝑘=1

≤∑𝜙𝑠 (
|𝑥𝑘|

𝑏1
) ≤ 1

∞

𝑘=1

 

Since 𝜀 > 0 is arbitrary we can be concluded that 

∑𝜙𝑠 (
|𝑥𝑘|

‖𝑋‖ℓ𝜙𝑠(ℝ)
)

∞

𝑘=1

≤ 1                                                                     (2) 
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Lemma 4.  If 𝜙𝑠 ∶ [0,∞) → [0,∞) is an 𝑠-Young function and 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ), then ∑ 𝜙𝑠(|𝑥𝑘|)
∞
𝑘=1 ≤ 1 

if and only if ‖𝑋‖ℓ𝜙𝑠(ℝ) ≤ 1. 

Proof. Let 𝜙𝑠 ∶ [0,∞) → [0,∞) is an 𝑠-Young function and take any 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ). 

( ⇒ ) Assume ∑ 𝜙𝑠(|𝑥𝑘|)
∞
𝑘=1 ≤ 1 for every 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ). Note that 

∑𝜙𝑠(|𝑥𝑘|)

∞

𝑘=1

=∑𝜙𝑠 (
|𝑥𝑘|

1
)

∞

𝑘=1

≤ 1 

From Equation (1) we get 1 ∈ 𝐴. Because ‖𝑋‖ℓ𝜙𝑠(ℝ) = inf 𝐴 then obviously ‖𝑋‖ℓ𝜙𝑠(ℝ) ≤ 1  for every 𝑋 =

(𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ). 

( ⇐ ) Assume ‖𝑋‖ℓ𝜙𝑠(ℝ) ≤ 1  for every  𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ), then we have |𝑥𝑘| ≤
|𝑥𝑘|

‖𝑋‖ℓ𝜙𝑠(ℝ)
. 

Since 𝜙𝑠 is increasing, then  

𝜙𝑠(|𝑥𝑘|) ≤ 𝜙𝑠 (
|𝑥𝑘|

‖𝑋‖ℓ𝜙𝑠(ℝ)
)                                                               (3) 

Based on Lemma 3 we have 

∑𝜙𝑠(|𝑥𝑘|)

∞

𝑘=1

≤∑𝜙𝑠 (
|𝑥𝑘|

‖𝑋‖ℓ𝜙𝑠(ℝ)
)

∞

𝑘=1

≤ 1                                          (4) 

From Equation (4) it is proved that ∑ 𝜙𝑠(|𝑥𝑘|)
∞
𝑘=1 ≤ 1. 

Corollary 5. Let 𝜙𝑠 ∶ [0,∞) → [0,∞) be an 𝑠-Young function and 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ), then the following 

statetments are equivalent: 

a) ∑ ϕs (
|xk|

α
)∞

k=1 ≤
1

αs
  for any α ≥ 1 with 0 < s ≤ 1 

b) ‖X‖ℓϕs(ℝ) ≤ 1. 

Proof.  (a ⇒ b) Assume ∑ 𝜙𝑠 (
|𝑥𝑘|

𝛼
)∞

𝑘=1 ≤
1

𝛼𝑠
  for every 𝛼 ≥ 1 with 0 < 𝑠 ≤ 1, will be shown ‖𝑋‖ℓ𝜙𝑠(ℝ) ≤

1  for any 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ). 

Take any 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ). For 𝛼 ≥ 1 and 0 < 𝑠 ≤ 1 we have  0 <
1

𝛼
≤

1

𝛼𝑠
≤ 1, so that from the 

hypothesis obtained 

∑𝜙𝑠 (
|𝑥𝑘|

𝛼
)

∞

𝑘=1

≤
1

𝛼𝑠
≤ 1 

Choose 𝛼 = 1, obtained ∑ 𝜙𝑠(|𝑥𝑘|)
∞
𝑘=1 ≤ 1. From Equation (1), its means 1 ∈ 𝐴. Since ‖𝑋‖ℓ𝜙𝑠(ℝ) = inf𝐴, 

consequently ‖𝑋‖ℓ𝜙𝑠(ℝ) ≤ 1  for every 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ). 

(b ⇒ a). Assume ‖𝑋‖ℓ𝜙𝑠(ℝ) ≤ 1 for every 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ), we will be shown ∑ 𝜙𝑠 (
|𝑥𝑘|

𝛼
)∞

𝑘=1 ≤
1

𝛼𝑠
.   

From the hypothesis we know ‖𝑋‖ℓ𝜙𝑠(ℝ) ≤ 1 or  
1

‖𝑋‖ℓ𝜙𝑠(ℝ)
≥ 1. Based on Lemma 6(a), for every 𝛼 ≥ 1 with 

0 < 𝑠 ≤ 1, we have 

∑𝜙𝑠 (
|𝑥𝑘|

𝛼
)

∞

𝑘=1

≤
1

𝛼𝑠
∑𝜙𝑠(|𝑥𝑘|)

∞

𝑘=1

                                                           (5) 
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From Equation (3) and Lemma 15 we obtained 

1

𝛼𝑠
∑𝜙𝑠(|𝑥𝑘|)

∞

𝑘=1

≤
1

𝛼𝑠
∑𝜙𝑠 (

|𝑥𝑘|

‖𝑋‖ℓ𝜙𝑠(ℝ)
)

∞

𝑘=1

≤
1

𝛼𝑠
∙ 1 =

1

𝛼𝑠
               (6) 

From Equation (5) and Equation (6), it is proved that ∑ 𝜙𝑠 (
|𝑥𝑘|

𝛼
)∞

𝑘=1 ≤
1

𝛼𝑠
 for every 𝛼 ≥ 1. 

Lemma 6.  Let 𝜙𝑠 ∶ [0,∞) → [0,∞) be an 𝑠-Young function and 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ), then the following 

statetments are equivalent: 

a) ∑ 𝜙𝑠 (
|𝑥𝑘|

𝜀
)∞

𝑘=1 ≤ 1 for every 𝜀 > 0. 

b) ‖𝑋‖ℓ𝜙𝑠(ℝ) = 0. 

Proof. (a ⇒ b) assume (a) is holds. Take any 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ). Because ∑ 𝜙𝑠 (
|𝑥𝑘|

𝜀
)∞

𝑘=1 ≤ 1 applies for 

every 𝜀 > 0, from Equation (1) we obtained  𝜀 ∈ 𝐴. Based on Definition 13 we have 0 ≤ ‖𝑋‖ℓ𝜙𝑠(ℝ) ≤

𝜀, consequently ‖𝑋‖ℓ𝜙𝑠(ℝ) = 0 for every 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ). 

(b ⇒ a) assume (b) is holds. By hypothesis, ‖𝑋‖ℓ𝜙𝑠(ℝ) = 0  for every 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ), we will be shown 

that ∑ 𝜙𝑠 (
|𝑥𝑘|

𝜀
)∞

𝑘=1 ≤ 1 for every 𝜀 > 0. 

By contradiction, suppose there is 𝜀0 > 0  such that ∑ 𝜙𝑠 (
|𝑥𝑘|

𝜀0
)∞

𝑘=1 > 1 and consequently 𝜀0 ∉ 𝐴. Then take 

any 𝑏 ∈ 𝐴 (see Equation (1)), its obviously inf 𝐴 = ‖𝑋‖ℓ𝜙𝑠(ℝ) ≤ 𝑏. In this case, the relationship between 𝜀0 

and 𝑏 has two cases, that is 

Case 1 If 𝜀0 > 𝑏 or  
1

𝜀0
<
1

𝑏
 , so that for every 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ) we obtained 

|𝑥𝑘|

𝜀0
<
|𝑥𝑘|

𝑏
.  

Since 𝜙𝑠 is increasing and 𝑏 ∈ 𝐴, we have  

𝜙𝑠 (
|𝑥𝑘|

𝜀0
) < 𝜙𝑠 (

|𝑥𝑘|

𝑏
) 

⇔∑𝜙𝑠 (
|𝑥𝑘|

𝜀0
)

∞

𝑘=1

<∑𝜙𝑠 (
|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤ 1 

This contradicts the statement ∑ 𝜙𝑠 (
|𝑥𝑘|

𝜀0
)∞

𝑘=1 > 1, so the false assumption must not exist if 𝜀0 > 0, such that 

∑ 𝜙𝑠 (
|𝑥𝑘|

𝜀0
)∞

𝑘=1 > 1. 

Case 2 If 𝜀0 < 𝑏. Since 𝑏 ∈ 𝐴 is arbitrary then 𝜀0 is lower bound of 𝐴, consequently ‖𝑋‖ℓ𝜙𝑠(ℝ) = inf 𝐴 ≥

𝜀0 > 0. This contradicts the hypothesis that ‖𝑋‖ℓ𝜙𝑠(ℝ) = 0, so the false assumption must not exist if 𝜀0 > 0, 

such that ∑ 𝜙𝑠 (
|𝑥𝑘|

𝜀0
)∞

𝑘=1 > 1. 

From cases 1 and 2, it can be concluded that ∑ 𝜙𝑠 (
|𝑥𝑘|

𝜀
)∞

𝑘=1 ≤ 1 for every 𝜀 > 0. 

Lemma 7. Let 𝜙𝑠 ∶ [0,∞) → [0,∞) be an 𝑠-Young function and 𝑋 = (𝑥𝑘) ∈ ℓ𝜙𝑠(ℝ), then the following 

statetments are equivalent: 

a) ∑ 𝜙𝑠(𝛼|𝑥𝑘|)
∞
𝑘=1 = 0 for every 𝛼 > 0 

b) ‖𝑋‖ℓ𝜙𝑠(ℝ) = 0. 

Proof. (a ⇒ b) assume (a) is holds. By hypothesis, ∑ 𝜙𝑠(𝛼|𝑥𝑘|)
∞
𝑘=1 = 0 for every 𝛼 > 0, such that 
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∑𝜙𝑠 (
|𝑥𝑘|
1

𝛼

) 

∞

𝑘=1

= 0 < 1 

Its means  
1

𝛼
∈ 𝐴 (see Equation (1)), consequently  0 ≤ ‖𝑋‖ℓ𝜙𝑠(ℝ) ≤

1

𝛼
 . Since 𝛼 > 0 is arbitrary, we can 

concluded that ‖𝑋‖ℓ𝜙𝑠(ℝ) = 0. 

(b ⇒ a) assume (b) is holds. For any 0 < 𝜀 < 1 and 𝛼 > 0 with 0 < 𝑠 ≤ 1, by Lemma 6(a) in section 2 we 

have 

𝜙𝑠(𝛼|𝑥𝑘|) = 𝜙𝑠 (𝜀 (
𝛼|𝑥𝑘|

𝜀
)) ≤ 𝜀𝑠𝜙𝑠 (

𝛼|𝑥𝑘|

𝜀
)   , ∀ 𝑘 ∈ ℕ 

⇔∑𝜙𝑠(𝛼|𝑥𝑘|) 

∞

𝑘=1

≤ 𝜀𝑠∑𝜙𝑠 (
𝛼|𝑥𝑘|

𝜀
)

∞

𝑘=1

≤ 𝜀𝑠 

Since 0 < 𝜀 < 1 is arbitrary, we can concluded that ∑ 𝜙𝑠(𝛼|𝑥𝑘|) 
∞
𝑘=1 = 0 for every 𝛼 > 0. 

 

3.2. Completeness 

In the following section, the author will show that the space (ℓ𝜙𝑠(ℝ), ‖∙‖ℓ𝜙𝑠(ℝ)) is a Quasi-Banach 

space by showing that the generalized Orlicz sequence spaces ℓ𝜙𝑠(ℝ) is complete, that is, any Cauchy 

sequence in ℓ𝜙𝑠(ℝ) converges to a point in ℓ𝜙𝑠(ℝ). The following explanation is presented in Theorem 20 

below. 

Theorem 8 The spaces (ℓ𝜙𝑠(ℝ), ‖∙‖ℓ𝜙𝑠(ℝ)) is a Quasi-Banach space. 

Proof. In Theorem 2, it has been shown that ‖∙‖ℓ𝜙𝑠(ℝ) defines a quasi-norm on the sequence space ℓ𝜙𝑠(ℝ). 

We will then show that (ℓ𝜙𝑠(ℝ), ‖∙‖ℓ𝜙𝑠(ℝ)) is a quasi-Banach space. Take any Cauchy sequence 𝑋 = (𝑥𝑛) 

in ℓ𝜙𝑠(ℝ), meaning that for every 𝜀 > 0, there are 𝑛0 ∈ ℕ such that for every 𝑛,𝑚 ≥ 𝑛0 holds 

‖𝑥𝑚 − 𝑥𝑛‖ℓ𝜙𝑠(ℝ) < 𝜀 

Since 𝜀 > 0 is arbitrary then there are 𝑛𝑘 ∈ ℕ and 𝑇 > 0 that holds ‖𝑥𝑚 − 𝑥𝑛‖ℓ𝜙𝑠(ℝ) <
1

𝑇2𝑘
  , ∀ 𝑚, 𝑛 ≥ 𝑛𝑘. 

Furthermore, it can be obtained from sub-sequences (𝑥𝑛𝑘) such that for 𝑛 ≥ 𝑛𝑘 and 𝑇 > 0 it satisfies 

‖𝑥𝑛𝑘+1 − 𝑥𝑛𝑘‖ℓ𝜙𝑠(ℝ)
<

1

𝑇2𝑘
                                                                 (7) 

Now define the sequence of functions (𝑔𝑚), that is 

𝑔𝑚(𝑥) = ∑|𝑥𝑛𝑘+1 − 𝑥𝑛𝑘|

𝑚

𝑘=1

< ∞                                                          (8) 

It will be shown first that (𝑔𝑚) in ℓ𝜙𝑠(ℝ). From the following description, by choosing 𝑇 = 2𝑚/𝑠  and 

from Equation (7) we have 

‖𝑔𝑚(𝑥)‖ℓ𝜙𝑠(ℝ) = ‖∑|𝑥𝑛𝑘+1 − 𝑥𝑛𝑘|

𝑚

𝑘=1

‖

ℓ𝜙𝑠(ℝ)

 

= ‖|𝑥𝑛2 − 𝑥𝑛1| + |𝑥3 − 𝑥2| + ⋯+ |𝑥𝑛𝑚+1 − 𝑥𝑛𝑚|‖ℓ𝜙𝑠(ℝ)
 

< 2
𝑚

𝑠 ∑‖𝑥𝑛𝑘+1 − 𝑥𝑛𝑘‖ℓ𝜙𝑠(ℝ)

𝑚

𝑘=1

< 2
𝑚

𝑠 ∑
1

2
𝑚

𝑠 2𝑘

𝑚

𝑘=1

=∑
1

2𝑘

𝑚

𝑘=1
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When 𝑚 → ∞, then ∑
1

2𝑘
∞
𝑘=1  is a geometric series with a ratio of  

1

2
 , so that ∑

1

2𝑘
∞
𝑘=1 =

1

1−
1

2

− 1 = 1. It means 

‖𝑔𝑚(𝑥)‖ℓ𝜙𝑠(ℝ) <
∑

1

2𝑘
𝑚
𝑘=1 ≤ 1. Based on Lemma 16, we obtained ∑ 𝜙𝑠(|𝑔𝑚(𝑥)|)

∞
𝑘=1 ≤ 1, so that (𝑔𝑚) ∈

ℓ𝜙𝑠(ℝ). Next, suppose 

lim
𝑚→∞

(𝑔𝑚(𝑥)) = 𝑔(𝑥) = ∑|𝑥𝑛𝑘+1 − 𝑥𝑛𝑘|

∞

𝑘=1

                                        (9) 

Because 𝑔𝑚(𝑥) → 𝑔(𝑥) in ℝ and 𝜙𝑠 is continuous function, then 𝜙𝑠(𝑔𝑚(𝑥)) → 𝜙𝑠(𝑔(𝑥)) in ℝ, such that  

∑𝜙𝑠(𝑔(𝑥))

∞

k=1

= lim
𝑚→∞

∑𝜙𝑠(𝑔𝑚(𝑥))

∞

𝑘=1

≤ 1 

It means 𝑔(𝑥) ∈ ℓ𝜙𝑠(ℝ). 

Now, consider that 

𝑥𝑛𝑚+1 =∑(𝑥𝑛𝑘+1 − 𝑥𝑛𝑘)

𝑚

𝑘=1

+ 𝑥𝑛1 

⇔ lim
𝑚→∞

𝑥𝑛𝑚+1 =∑(𝑥𝑛𝑘+1 − 𝑥𝑛𝑘)

∞

𝑘=1

+ 𝑥𝑛1 = 𝑔(𝑥) + 𝑥𝑛1 

Suppose 𝑔(𝑥) + 𝑥𝑛1 = 𝑥, it is obviously 𝑥 ∈ ℓ𝜙𝑠(ℝ). Because (𝑥𝑛𝑚+1) is sub-sequences of 𝑋 = (𝑥𝑛) that 

converges to 𝑥, and 𝑋 = (𝑥𝑛)  is a Cauchy sequence, it is can concluded that 𝑋 = (𝑥𝑛) converges to 𝑥. 

Consequently for  0 < 𝜀 < min{1, ∑ 𝜙𝑠(1)
∞
𝑘=1 }, there is 𝐾 ∈ ℕ such that 

|𝑥𝑛 − 𝑥| <
𝜀1+

1

𝑠

(∑ 𝜙𝑠(1)
∞
𝑘=1 )

1

𝑠

    , ∀ 𝑛 ≥ 𝐾                                                (10) 

Suppose 𝐵 = {𝑏 > 0 ∶  ∑ 𝜙𝑠 (
|𝑥𝑛+𝑥|

𝑏
) ≤ 1∞

𝑛=1 }. Also note that for every 𝑛 ≥ 𝐾, that holds  

∑𝜙𝑠 (
|𝑥𝑛 − 𝑥|

𝜀
)

∞

𝑛=1

< ∑𝜙𝑠

(

  
 

𝜀
1+
1
𝑠

(∑ 𝜙𝑠(1)
∞
𝑘=1 )

1
𝑠

𝜀

)

  
 

∞

𝑛=1

 

= ∑𝜙𝑠 ((
𝜀

∑ 𝜙𝑠(1)
∞
𝑘=1

)

1

𝑠

)

∞

𝑛=1

 

≤ (
𝜀

∑ 𝜙𝑠(1)
∞
𝑘=1

)∑𝜙𝑠(1)

∞

𝑛=1

 

= 𝜀 < 1 

It means we obtained 𝜀 ∈ 𝐵, consequently inf 𝐵 = ‖𝑥𝑛 − 𝑥‖ℓ𝜙𝑠(ℝ) ≤ 𝜀 , ∀ 𝑛 ≥ 𝐾, we can write 𝑥𝑛 → 𝑥. 

Thus, every Cauchy sequence in ℓ𝜙𝑠(ℝ) converges to a point in ℓ𝜙𝑠(ℝ), therefore the spaces ℓ𝜙𝑠(ℝ) is 

complete, and it is proven that the space (ℓ𝜙𝑠(ℝ), ‖∙‖ℓ𝜙𝑠(ℝ)) is a Quasi-Banach space. 

 

 
4. CONCLUSIONS 

Based on the research results obtained by the author regarding the Orlicz sequence spaces ℓ𝜙𝑠(ℝ) and 

the characteristics of the sequence in that spaces, the author concludes that the generalized Orlicz sequence 
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spaces ℓ𝜙𝑠(ℝ) is an extension of the Orlicz sequence spaces ℓ𝜙. The generalized Orlicz sequence spaces 

ℓ𝜙𝑠(ℝ) is equipped with the ‖∙‖ℓ𝜙𝑠(ℝ) function, which defines a quasi-norm function on ℓ𝜙𝑠(ℝ). In addition, 

the lemmas or properties of the Orlicz sequence spaces also apply to the generalized Orlicz sequence spaces 

under several different conditions. And finally, the author concludes that the generalized Orlicz sequence 

space is a complete space, and as a result, the space (ℓ𝜙𝑠(ℝ), ‖∙‖ℓ𝜙𝑠(ℝ)) is a Quasi-Banach space. 
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