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ABSTRACT 

Article History: 
This study aims to forecast the number of passengers departing at the domestic departure 

terminal at Domine Eduard Osok Sorong Airport in 2022 using the Autoregressive Integrated 

Moving Average (ARIMA) method, ARIMA with Step Function Intervention, and Extreme 

Learning Machine (ELM). The knowledge of the number of passengers can help the airport 

prepare facilities. The residual ARIMA model (0,1,0) has no serial correlation (random walk) 

based on the Ljung-Box test. The MAPE value of the ARIMA model (0,1,0) is 65.47% which 

means poorly fitted. Because of it, the researchers propose an intervention in the ARIMA model. 

The RMSE and MAPE ARIMA Intervention (1,0,0) (0,1,0) [12] were 9,027.671 and 35.86%, 

respectively. Besides, this study also employed the ELM method, which has a MAPE error 

measurement value of 30.64%. The ELM method has the lowest error measurement results 

among the three methods. Therefore, the ELM method is suitable for forecasting the number of 

passengers with predicted values from June to September 2022 as follows: 47985, 37821, 

31247, and 33578. On the other hand, intervention in ARIMA can reduce MAPE by 45%. 
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1. INTRODUCTION 

Time series data consist of stochastic and deterministic (trends, seasonal fluctuations, irregular cycles, 

or jumps) and are sometimes disturbed by interventions at point changes that cause shifts in levels or trends 

[1]. Time series analysis generally obtains time series data patterns using past data. Data patterns from time 

series analysis can be used to predict future data [2], [3]. The Covid-19 pandemic has caused a drastic decline 

in data on the number of passengers at Domine Eduard Osok Sorong Airport, and it was quite significant in 

April 2020 after the enactment of Government Regulation Number 21 of 2020 concerning Large-Scale Social 

Restrictions (PSBB) and Presidential Decree Number 12 of 2020 regarding the Covid-19 pandemic as a 

national disaster [4]. Therefore, forecasting the number of passengers is crucial to predicting the passengers 

in 2022. 

The researcher initially approached time series analysis using the Autoregressive Integrated Moving 

Average (ARIMA) method. However, due to drastic changes caused by the Covid-19 pandemic, the ARIMA 

method was carried out with intervention and compared with the Extreme Learning Machine (ELM) method. 

The results of this research are expected to help the management of Domine Eduard Osok Sorong Airport 

and the government, more specifically the Ministry of Civil Aviation, in adopting and evaluating policies 

during the Covid-19 pandemic and anticipating an increase in the number of passengers after the Covid-19 

pandemic by preparing additional prayer facilities, check-in counters, airport lounges, parking lots, and other 

public facilities.  

Several related studies include research by Alfiyatin et al. [5] using the ELM and backpropagation 

methods to predict Indonesia's inflation rate. Fransiska [6] forecasts monthly rainfall in Bengkulu City with 

the Seasonal Autoregressive Integrated Moving Average (SARIMA). Intervention modeling to analyze and 

forecast the number of airplane passengers at Soekarno-Hatta airport due to the Covid-19 pandemic was used 

by Rianda [4]. The results of this study found that the Covid-19 pandemic in Indonesia significantly impacted 

on reducing the number of airplane passengers at Soekarno-Hatta Airport by 43.48%. The analysis results 

produce a prediction of the Mean Absolute Percentage Error (MAPE) value of 7.79% on the training data and 

the MAPE value of 14.07% on the testing data. 

The research conducted by Bayu Galih Prianda and Edy Widodo [7] used the Seasonal ARIMA and 

ELM Methods in forecasting the number of foreign tourists to Bali. The error value is 4.97%, and with the 

ELM method, an error value of 7.62% is obtained. The research by Syifania Putri forecast the Number of 

Departures of Domestic Sailing Passengers at the Port of Tanjung Perak Using the ARIMA and SARIMA 

Methods. The results of this study show that the analysis using the ARIMA method has a lower accuracy 

value than the SARIMA method, which is 16.15% [8]. 

 

 
2. RESEARCH METHODOLOGY 

2.1  Autoregressive Integrated Moving Average (ARIMA) 

The data in this study is the number of passengers departing at Domine Eduard Osok Sorong Airport, 

Indonesia. The data source comes from the airport from January 2017 to May 2022. The ARIMA model is 

used on stationary data or data experiencing differentiation to meet stationary. The ARIMA(p,d,q) model is 

a combination of the ARMA(p,q) model, and the differentiation equation is stated in the following equation 

[9][10]. 

𝑋𝑡(1 − 𝐵)(1 − 𝜙1𝐵) = 𝜇′ + (1 − 𝜃1𝐵)𝑒𝑡 (1) 

where 𝑋𝑡: the value of the t-period response variable, (1 − ф1): the AR value, (1 −𝜃1𝐵): the MA value, and 

𝑒𝑡: forecast error (error). The analysis steps using the ARIMA method (Nurjanah et al., 2018) are: (1) 

identifying the model and carry out the stationarity test, (2) forming possible ARIMA models, (3) estimating 

parameters and test the significance of parameters, (4) selecting the ARIMA model based on the smallest 

AIC value, (5) conducting a residual assumption test. 
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2.2 Seasonal Autoregressive Integrated Moving Average (SARIMA) 

Time series data often have seasonal patterns that form specific interval patterns (months, weeks, and 

others). One way to represent data like this is to assume that the model has two components, is stated in the 

following equation. 

𝑋𝑡 = 𝑆𝑡 + 𝑁𝑡 (2) 

where 𝑋𝑡 is a component with a seasonal factor 𝑆𝑡, and 𝑁𝑡is a stochastic component which may be an ARMA 

model (Tantika et al., 2018), the general form of SARIMA (p,d,q) (P,Q,S) is stated in the following equation. 

 

𝑋𝑡(1 − 𝐵)𝑑(1 − 𝐵𝑆) = (1 − 𝐵𝛷1)(1 − 𝜃1𝐵𝑆)𝑒𝑡 (3) 

 

with (1 − 𝐵)𝑑: non-seasonal differentiator, (1 − 𝐵𝑆): seasonal differentiator, 𝜃1𝐵: MA non seasonal, 𝐵𝑆: 
MA seasonal, et: residual term. The steps in the SARIMA method are (Kafara et al., 2017): (1) model 

identification and stationarity test, (2) parameter estimation and significance test carried out on the 

parameters, (3) selection of several possibilities SARIMA models based on the lowest AIC value, (4) model 

diagnostic tests, and (5) determining the SARIMA model for forecasting. 

 
2.3  Modeling Procedure 

The first step in constructing an ARIMA model is plotting the time series data. The plot shows the 

pattern of time series data, which can be horizontal, trend, cyclical, or seasonal. Making time series data plots 

aims to investigate the stationarity of time series data. The stationarity of time series data is the first thing 

that must be considered because the AR and MA aspects of the ARIMA model are only related to time series 

data, which are stationary in variance and mean. The second step is Parameter estimation. Maximum 

likelihood estimation is used in parameter estimation. This method uses the principle of maximizing the 

likelihood function to estimate the parameters θ and ϕ in the ARIMA model. The ARIMA (p,q) model is 

stated in the following equation. 

𝑍𝑡 = 𝜙1𝑧𝑡−1 + 𝜙2𝑧𝑡−2 + ⋯ + 𝜙𝑝𝑧𝑡−𝑝 + 𝛼𝑡 − 𝜃1𝛼𝑡−1 − 𝜃2𝛼𝑡−2 − ⋯ − 𝜃𝑞𝛼𝑡−𝑞 (4) 

 

with Zt = Zt -µ and {αt}~N (0,σα
2), the probability density function of α = α1, α2,…, αn is stated in the 

following equation. 

𝑃(𝛷, 𝜇, 𝜎𝜀2) = (2𝜋𝜎𝜀2)
𝑛
2 𝑒𝑥𝑝 𝑒𝑥𝑝 [−

1

2𝜋𝜎𝜀2
∑ 𝜀𝑡2

𝑛

𝑡=1

]  (5) 

Next is the function of the parameter (𝛷, 𝜎𝜀2  ) 
 

𝑛𝐿(𝛷, 𝜇, 𝜎𝛼
2) = −

𝑛

2
𝑙𝑛 𝑙𝑛 2𝜋𝜎𝛼

2 −
𝑠(𝛷, 𝜇, 𝜃 )

2𝜎𝛼
2   (6) 

with 

𝑠(𝛷, 𝜇, 𝜃) =  ∑ 𝛼𝑡
2

𝑛

𝑡=1

(𝛷, 𝜇, 𝜃|𝑍∗, 𝛼∗, 𝑍) 

𝑠(𝛷, 𝜇, 𝜃) is the sum square function. The estimator value 𝜙, �̂�, and 𝜃 is obtained when maximizing the 

maximum likelihood estimator equation. After obtaining the estimator value, it can also be calculated from 

𝜎𝜀2  from 𝜎𝜀2 =
𝑠(�̂�, �̂�,�̂�)

𝑑𝑓
, with df = (𝑛 − 𝑝) − (𝑝 + 𝑞 + 1) = 𝑛 − (2𝑝 + 𝑞 + 1) (Tantika et al., 2018).  

The third step is a diagnosis of the provisional ARIMA model to prove that the provisional model that 

has been set is sufficient. The next step is model selection, and the model selection criteria are based on the 

AIC value and the parsimony principle. The smallest value is used in selecting the best model. At the same 

time, the principle of parsimony is a criterion for selecting the best model by choosing a simpler AR(p) or 

MA(q) order value. Finally, forecasting using the best ARIMA model before intervention. 

 
2.4 Intervention Analysis 

Time series data can be affected by external events that can cause changes in time series data patterns. 

External events are called 'intervention,' such as natural disasters, government policies, promotions, wars, 

holidays, and others. A method is needed to model time series data and describe response patterns from 
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existing interventions. The method that can be used is intervention analysis [11]. According to Box [12], the 

intervention event is assumed to occur at a known time point T and causes a change in the time series data 

pattern. Generally, intervention events impact two conditions: intervention events have a temporary impact 

and occur only within a specific time (pulse function), and intervention events have a long-term impact (step 

function). In general, there are two intervention models: The pulse function and the Step function. 

The form of the intervention model or the intervention ARIMA model is presented by Box [12] as 

follows: 

𝑌𝑡 =
𝜔𝑠(𝐵)𝐵𝑏

𝛿𝑟(𝐵)
𝐼𝑡 +

𝜃(𝐵)

𝜙(𝐵)(1 − 𝐵)𝑑
𝜀𝑡 (7) 

where 𝑌𝑡: response variable at t, 𝐼𝑡: intervention variable, B: time delay or start time of intervention effect,  

𝜔𝑠(𝐵): 𝜔0 − 𝜔1𝐵 − ⋯ − 𝜔𝑠𝐵𝑠 (s indicates the length of time to stabilize), 𝛿𝑟(𝐵): 1 − 𝛿1(𝐵) − ⋯ − 𝛿𝑟𝐵𝑟 

(r pattern of intervention effects occurring since the intervention event at time T),  
𝜃(𝐵)

𝜙(𝐵)(1−𝐵)𝑑 𝜀𝑡: ARIMA 

model without intervention effect [13]. 

 

2.5 Extreme Learning Machine 

Extreme learning machine (ELM) is an algorithm for Single Hidden Layer Feedforward Neural 

Network (SLFN) that converges much faster than traditional methods because it does not require iteration 

[14]. SLFN consists of three layers of neurons: input, hidden layer, and output. The name Single refers to one 

layer of the non-linear neuron model, which is a hidden layer. The input layer offers data features but does 

not perform any calculations, while the output layer is linear with no transformation function and no bias. 

The ELM method is the development of a feedforward artificial neural network. The algorithm of the ELM 

method does not train input weights or bias, but the ELM method is used to obtain output weights using the 

norm-least-squares solution and moore-penrose inverse in general linear systems. ELM has a fast-learning 

speed and produces good generalization performance by finding nodes that provide maximum output values. 

Parameters, such as input weight and bias, are chosen randomly [15].  

Huang et al. [16] state three stages in the ELM method, including training data, activation function 

g(x), and m hidden unit, then: (1) determining the input weight vector Wj and bias bj the influence factor for 

the j-th hidden unit, bj, j =1, …, m, (2) calculating the output matrix in the hidden layer Hnxm, and (3) 

calculating the output weight β. The neural network model of the ELM is presented in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Neural Network Model of the Extreme Learning Machine 

 

Based on Figure 1 the ELM technique assigns the input layer weight w, and bias b randomly and never 

adjusts accordingly. Since the input weights (w) are fixed, the output weights (𝛽) do not depend on them and 

have an immediate solution that does not require iteration. The training data is 𝑆  =   {(𝑥𝑖,  𝑡𝑖)| 𝑥𝑖   =
 (𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑛)𝑇  ∈   𝑅𝑛 ,  𝑡𝑖   =   (𝑡𝑖1 , 𝑡𝑖2 , … , 𝑡𝑖𝑚)𝑇  ∈   𝑅𝑚}  where 𝑥𝑖 is the input vector, and  𝑡𝑖 is the target 

vector. Output 𝑜 from ELM with �̂� hidden neurons is as follows [6], [13], [17]: 

Data Data Data 

Xn Xn Xn Input layer 

Zn Zn Zn 
Hidden layer 

y Output layer 
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∑ 𝛽𝑖𝑔(𝑤𝑖𝑥𝑗 + 𝑏𝑖)

�̂�

𝑖=1

= 𝑜𝑗,  𝑗 = 1,  2,  … 𝑁 (8) 

𝑔(∙) is the activation function on the hidden layer. The notation 𝑡𝑖 indicates the target on the actual 

data, while the output (𝑜) is the predicted NN data. The activation function in ELM is a non-linear function 

to provide a non-linear mapping of the system. Several activation functions are widely used, including the 

sigmoid, radial basis function, and hyperbolic tangent function. The training aims to minimize the error 

between the target and the ELM output. The most used object function is Mean Squared Error (MSE) [16]. 

𝑀𝑆𝐸 = ∑(𝑡𝑖𝑗 − 𝑜𝑖𝑗)
2

𝑁

𝑖=1

,  𝑗 = 1,  2,  … 𝑚 (9) 

where 𝑁 is the number of samples (training), 𝑖,  𝑗 are the indices for the sample data (training) and the output 

layer nodes. Sufficient (optimal) 𝑤𝑖, 𝑏𝑖,  𝛽𝑖 values should be found to predict the target value [16]. 

∑ 𝛽𝑖𝑔(𝑤𝑖𝑥𝑗 + 𝑏𝑖)

�̂�

𝑖=1

= 𝑡𝑗,  𝑗 = 1,  2,  … 𝑚 (10) 

 

The formula is written in matrix form: 𝐻𝛽 = 𝑇. Therefore, training the SLFN is to find the best 𝑤𝑖 , 𝑏𝑖,  𝛽𝑖. 

Determine 𝛽 from 𝐻𝛽 = 𝑇 with inverse Moore Penrose so that  𝛽 = 𝐻+𝑇, where 𝐻+ is a generalization 

matrix of Moore Penrose inverse H  [14], [16]. 

2.6  Research Flow 

Presents the flow of this research is presented in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Research Stages Flowchart 
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Based on Figure 2, this research begins with descriptive statistics. Then, the researcher divides into 

the analysis based on the method, namely: (1) ARIMA, (1) SARIMA with Intervention, and (3) ELM. In the 

ARIMA Model, the process of parameter estimation and the best model of the ARIMA model is carried out. 

In the SARIMA method with intervention, the data is initially divided into 2, namely data before and after 

the intervention. In the data before the intervention, parameter estimation was carried out for the SARIMA 

model before the intervention. The results of SARIMA before the intervention was used to estimate the 

parameters of the SARIMA Intervention model. 

Meanwhile, in the ELM method, the researcher carried out parameter iterations and took the smallest 

metric values, namely the Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root 

Mean Square Error (RMSE) values. From the best ELM and the SARIMA method with intervention, a 

comparison was made to choose the best method. The results of the best method are used for future 

predictions. 

 

 

3. RESULTS AND DISCUSSION 

The time series plot on the number of passengers descrice in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The plot of Passengers Departing January 2017 - May 2022 

 

Figure 3 presents 65 data plots of passengers departing at the domestic departure terminal at Domine 

Eduard Osok Sorong Airport from January 2017 to May 2022. In 2020 the Covid-19 pandemic occurred, 

which resulted in a significant decrease in the number of passengers in April 2020 at Domine Eduard Osok 

Sorong Airport. Data at t = 1, 2, …, 39 is data before the intervention, January 2017 to March 2020. 

As a result of the Covid-19 pandemic, the government issued instruction to enforce public activity 

restrictions at villages/sub-districts (PPKM). Moreover, the government's policy that regulates travel by 

airplane during PPKM also caused a drastic decrease in the number of airplane passengers and flight activity 

in April 2020 at Domine Eduard Osok Airport in Sorong. 

 
3.1  Autoregressive Integrated Moving Average (ARIMA) 

3.1.1 Model identification and parameter estimation 

The data used to build the ARIMA model is 65 data on the number of passengers departing at the 

domestic departure terminal at Domine Eduard Osok Sorong Airport from January 2017 to May 2022. The 

Augmented Dickey-Fuller test (unit root test) was used to test the stationarity of the data. The p-value of the 

Augmented Dickey-Fuller test with drift on passenger data is 0.01. Using α = 5%, the researchers reject H0 

(null hypothesis). Thus, the data does not contain unit roots (stationer). The researchers differentiated the data 

to develop another alternative model. Based on the smallest AIC value, the ARIMA (0,1,0) model is the best. 

Yt = 𝜙 ̂𝑦𝑡−1 + 𝑒𝑡  

Yt = 0 + 𝑒𝑡 
(11) 

 

Departing Passenger Data in Domine Osok Sorong Airport 
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3.1.2 ARIMA Model Diagnostic Test and Error Measure 

The p-value of the Ljung-Box test on residual ARIMA (0,1,0) is 0.9851. By using α = 5%, the 

researchers fail to reject the null hypothesis. Thus, the residual ARIMA (0,1,0) has no serial correlation. The 

normality test for residuals using the Kolmogorov-Smirnov test has a p-value of 0.2893, more significant 

than α = 5%. The researchers failed to reject the null hypothesis on the normality test. Thus, the residuals are 

normally distributed. The ARIMA (0,1,0) model has an RMSE of 11,513.47 and a MAPE value of 65.47%. 

 

3.2  Intervention Analysis 

3.2.1 Seasonal ARIMA Modeling before Intervention 

a. Model Identification 

The data used to form the ARIMA model before the intervention was 39 data on the number of 

passengers departing at the domestic departure terminal at Domine Eduard Osok Sorong Airport from January 

2017 to March 2020. A check will be carried out using the Augmented Dickey-Fuller test (unit root test) to 

find out precisely the stationarity of the data. 

Augmented Dickey-Fuller test (unit root test) was used to test the stationarity of the 39 data. The p-

value of the Augmented Dickey-Fuller test is 0.004201. Using α = 5%, the researchers reject H0 (null 

hypothesis). Thus, data on the number of passengers before the pandemic did not contain unit roots or 

stationary data. Researchers form several alternative models by incorporating seasonal elements. Based on 

the smallest AIC value, the best model is ARIMA (1,0,0) (0,1,0) [12]. The model only differentiates data on 

seasonal lag, and the order for auto-regressive is p=1. 

b. ARIMA Seasonal Model Diagnostic Test 

Based on the calculation results of the test statistics for the Ljung-Box test is P-value = 0.7699 > α = 

5% (0.05), which means no serial correlation, and the Kolmogorov-Smirnov test is P-value = 0.2027 > α = 

5% (0.05) ), which means that the data is normally distributed; it shows that at α = 0.05 fails to reject H0, 

which means that the residual value for the ARIMA (1,0,0) (0,1,0) [12] model fulfills the white noise and 

normality assumptions. By the fulfillment of the white noise assumptions used by the Ljung-Box Test and 

normality used by the Kolmogorov-Smirnov Test, the ARIMA (1,0,0) (0,1,0) [12] model is adequate and can 

be used for forecasting. 

c. ARIMA Seasonal Modeling Before Intervention 

After obtaining the best Seasonal ARIMA model and fulfilling the assumptions for the Ljung-Box test 

and the Kolmogorov-Smirnov test, seasonal ARIMA modeling is obtained before systematic intervention as 

follows: 

Yt = 𝜙 ̂𝑦𝑡−1 + 𝑒𝑡 

Yt = 0.6472𝑦𝑡−1 + 𝑒𝑡 
(12) 

 

Based on the ARIMA (1,0,0) (0,1,0) [12] model equation, the RMSE accuracy value is 7270,498, and the 

MAPE value is 7,946344. 

 

3.2.2 Intervention ARIMA Seasonal Analysis 

a. Intervention Parameter Estimation 

The next step is to estimate the known intervention parameters. Using the software R, the value of the 

parameter ω0 is -0.00052990, and the parameter δ0 is 0. 

b. Intervention ARIMA Seasonal Model Diagnostic Test 

Based on the calculation of the test statistics for the Ljung-Box test, P-value = 0.9298 > α = 5% (0.05), 

which means no serial correlation, and the Kolmogorov-Smirnov test, P-value = 0.1728 > α = 5% (0.05) ), 

which means that the data is typically distributed. It shows that at α = 0.05 fails to reject H0, which means 

that the residual value for the Intervention ARIMA (1,0,0) (0,1,0) [12] model fulfills the white noise and 

normality assumptions. The fulfillment of the white noise assumptions using the Ljung-Box Test and 

normality using the Kolmogorov-Smirnov Test concludes that the Intervention ARIMA (1,0,0) (0,1,0) [12] 

model is adequate and can be used for forecasting. 
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c. Intervention ARIMA Seasonal Modeling 

After obtaining the best Seasonal ARIMA model and fulfilling the test assumptions for the Ljung-Box 

test and the Kolmogorov-Smirnov test, the Intervention Seasonal ARIMA model equation is stated in the 

following equation 

𝑌𝑡 =
𝜔𝑠(𝐵)𝐵𝑏

𝛿𝑟(𝐵)
𝐼𝑡 + �̂�𝑦𝑡−1 + 𝑒𝑡 

𝑌𝑡 = −52990.044𝑃40 + 0.6472𝑦𝑡−1 + 𝑒𝑡 
 

(13) 

Based on forecasting using the Intervention ARIMA (1,0,0) (0,1,0) [12] model, the RMSE accuracy value is 

9027,671, and the MAPE value is 35,86186.  

 
3.3  Extreme Learning Machine 

In order to optimize the ELM model, we involved the parameter such as hidden nodes, type of 

estimation, and replication (ensemble). The hidden nodes are the number of nodes located in hidden layer. 

Type of estimation is methods used to estimate output layer weights. The input of replication is the number 

of networks to train, the result is the ensemble forecast. The values of parameters are presented in Table 1. 

 

Table 1. Presents The Trials By Combining Several Parameters to Obtain Optimal ELM Parameters. 

No Parameter Value 

1 Hidden nodes 5, 10 

2 Types Lasso, ridge, linear model 

3 Replication 10, 20 

 

In addition to using these parameters, some parameters are fixed, i.e., the median aggregating the 

several NN models. The input lags used are the latest six lags considering ACF and PACF and the period for 

significant declines during the pandemic. This lag is maintained (not trimmed) until the end of modeling. 

Because seasonality is challenging to identify, the ELM model does not accommodate seasonality. Table 2 

shows the five combinations with the lowest MAPE values. 

 
Table 2. Results of the Extreme Machine Learning Method Combination 

No Hidden layer Type Replication MSE RMSE MAPE 

1 20 lm 10 62607013.57 7912.46 30.64% 

2 20 lm 20 61916445.11 7868.70 30.81% 

3 20 lm 5 64356338.36 8022.24 31.18% 

4 10 lm 10 94651843.57 9728.92 52.65% 

5 10 lm 20 93054698.71 9646.49 53.39% 

 
Based on Table 2, the smallest error measurement value is obtained by a combination of 20 hidden 

layers, weight optimization with a linear model, and 10 replications. The network architecture with this model 

in the first iteration is as follows: 
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Figure 4. Plot Extreme Machine Learning 

The model is constructed using the latest 6 lags on input. However, based on Figure 4, only 2 lags are 

kept in the final process (4 lags are trimmed). In this model, there are 20 nodes in the hidden layer; then, there 

is 1 output as forecasting data. A comparison of the error measurement values obtained from the ARIMA, 

Intervention Analysis, and ELM methods is presented in Table 3. 

 
Table 3. Comparison of ARIMA Methods, Intervention Analysis, and Extreme Machine Learning  

Analysis Method RMSE Value MAPE Value (%) 

ARIMA 11513.47  65.47001 

Intervention Analysis 9027.671  35.86186 

Extreme Learning Machine  7912.46 30.64 

 

Table 3 shows that the error measurement results using the ARIMA method are 65.47%, ARIMA 

Intervention is 35.86%, and ELM is 30.64%. Among these methods, the ELM method has smallest error 

measurement results. Therefore, the model is considered responsive to the significant change of pandemic. 

Thus, the ELM method was chosen as a suitable method for forecasting the number of airplane passengers at 

Domine Eduard Osok Sorong Airport. The forecast from ELM method is presented in Figure 5. 

Figure 5. Plot for forecasting the number of airplane passengers using the ELM method 

Figure 5 presents that the black line is the plot line for the number of airplane passengers at Domine 

Eduard Osok Sorong Airport from January 2017 to May 2022. The red line is the plot line for the fitted value 

overshadowing the actual data because there is a gap for the model to follow the actual data pattern. The blue 

lines are forecasting data plot lines with predicted values from June to September 2022 as follows: 47985, 

37821, 31247, and 33578, respectively. 
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4. CONCLUSION 

Based on the discussion that has been explained, the conclusions obtained in this study are as follows.  

1. Based on the three methods used in forecasting the number of departing passengers at the domestic 

departure terminal at Domine Eduard Osok Sorong Airport, the ARIMA, ARIMA intervention, and ELM 

methods, the MAPE error measurement values were 65.47%, 35.86%, and 30.64%, respectively. The 

ELM method has the lowest error measurement results. Even though it does not divide data before and 

after the pandemic, the ELM model is quite responsive when significant trend changes occur. In this 

case, the ELM method was chosen to forecast the number of airplane passengers at Domine Eduard Osok 

Sorong Airport.  

2. The MAPE value between the ARIMA intervention and ELM is not significant. Meanwhile, the value 

of MAPE between ARIMA and ARIMA intervention is quite significant. It proves that the intervention 

successfully reduced the level of forecasting errors appropriately. Future research can add a hidden layer 

to the neural network to address significant changes to the data. In addition, data pre-processing of 

transformation or normalization can be applied to reduce the error value. 
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