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ABSTRACT 

Article History: 
The Covid-19 pandemic has led to income degradation of the Indonesian population, which 

potentially triggers poverty. According to the Indonesian Central Statistics Agency, the 

Province of Central Java is one of the areas that is most affected by Covid-19, especially on the 

economic aspect. In 2020, the percentage of poor people has increased by 0.6% from 2019. If 

this condition is ignored for the long term, it will have a negative impact on hampering national 

development. As a first step in designing a strategy for mitigating the impact of poverty, it is 

necessary to carry out an appropriate profiling of the areas affected by the economic aspect 

based on poverty indicators. This study compares the K-Means Clustering and Gaussian 

Mixture Model (GMM) in providing the best data grouping based on clustering indices, 

including connectivity, Dunn, and silhouette. GMM is a generalization of K-Means clustering 

to include information about the covariance structure of the data as well as latent Gaussian 

centers. We used poverty indicators data from the Central Statistics Agency of Central Java, 

such as poverty line, percentage of poor population, poverty depth index, and poverty severity 

index.  The results obtained from this study indicate that the GMM gives the best results with 

the 3 clusters, with the number of members for the first, second, and third being 10, 19, and 6, 

respectively. 
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1. INTRODUCTION 

Various indicators influence poverty in different areas. Appropriate measurement of poverty can help 

in knowing the number of poor people, distribution, and conditions of poverty. The method of calculating the 

poor population carried out by BPS uses the basic needs approach. Based on this approach, poverty is seen 

as an inability from an economic standpoint, so poverty status is measured according to the poverty line. 

According to the basic needs approach, the Head Count Index (HCI) indicator is used. Apart from the 

headcount index (P0), other indicators are used to measure poverty levels, namely the poverty gap index or 

P1 and the distributionally sensitive index or P2 formulated by Foster-Greer-Thorbecke [1]. This method is 

the basis for calculating the percentage of poor people in all districts or cities. 

When viewed by island, the percentage of poor people on the island of Java in 2020 the number of 

poor people in Java is 14.05 million people. This number shows that over half of Indonesia’s poor population 

is on Java. The increase in the number of poor people in Java is because the area of Java has found many 

cases of Covid-19 compared to other islands in Indonesia [2]. Central Java is one of the provinces in Java 

that has been most affected by Covid-19. In 2020 the percentage of poor people was 11.41%. This percentage 

had increased from the previous 2019 when the percentage of poor people was 10.80%. According to the 

Socio-Demographic Survey on the impact of Covid-19, almost 50% of respondents in the low-income group 

(<1.8 million) said they had experienced a decline in income. This decrease causes poverty to increase 

because more and more people have an average expenditure below the poverty line. This condition will 

undoubtedly be a big challenge for the Central Java Provincial government to overcome the increasing 

poverty rate. 

The poverty that occurs in a region in the long term will have an impact on hampering national 

development. The government needs to get an overview of the poverty of each district/city in Central Java to 

adopt poverty alleviation policies. In order to support the successful implementation of development 

programs to reduce poverty in Central Java Province, a study is needed to classify districts/cities in Central 

Java with almost the same or homogeneous characteristics or characteristics of poverty. As a solution to dig 

up poverty description information, one of the methods that can be used is clustering. Clustering aims to 

group data with the same characteristics into one group. With this grouping, the position of data distribution 

in actual conditions and finding a solution to a problem. One clustering method is the K-Means and the 

Gaussian Mixture Model. K-Means is a non-hierarchical cluster analysis that seeks to divide data with the 

same characteristics into one cluster. The K-means algorithm is performed by minimizing the sum squares 

distance between the data of each cluster center (centroid-based). Meanwhile, the Gaussian Mixture Model 

is a method that assumes that each Gaussian distribution number represents a cluster. A combination of means 

and variance will represent each Gaussian. 

Several previous studies on poverty, as in [3] – [5], used K-Means and Average Linkage to map the 

characteristics of each group formed based on the value of each poverty indicator. Meanwhile, research that 

compares the performance of K-Means and GMM can be seen in [6]. The results of this study indicate that 

the GMM algorithm is superior to the K-Means algorithm based on the accuracy and speed of computation. 

Based on the results of previous studies, researchers want to use the K-Means and GMM algorithms 

for grouping poverty data. The use of the GMM algorithm is relatively new for poverty indicator data. This 

study aims to classify poverty based on districts/cities in Central Java Province in 2020 using the K-Means 

algorithm and the Gaussian Mixture Model (GMM). Furthermore, profiling of the cluster results was carried 

out to map poverty in Central Java. 

 

 

2. RESEARCH METHODS 

2.1  Cluster Assumption 

There are two assumptions that must be fulfilled in cluster analysis [7], which are as follows. 

1) Representative of the Sample 
A representative sample is a sample with the same characteristics as the population. Using a 
representative sample will provide maximum results and be under the conditions of the existing 
population. If the research uses population data, it can be concluded that representative assumptions are 
met [7]. 
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Another way to see whether a sample is representative is to use the Kaiser-Meyer Olkin (KMO) test. 

The KMO is conducted to see whether the sample is representative of the existing population so that the 

clustering or grouping process can be carried out correctly. This KMO test measures sample adequacy for 

each indicator. The KMO has a value of 0 to 1. If the KMO value is more than 0.5, the sample can be said to 

represent the population or a representative sample [8]. The following equation describes the KMO test [7]. 

𝐾𝑀𝑂 =
∑ ∑ 𝑟𝑖𝑗

2  
𝑝
𝑗=1

𝑝
𝑖=1

∑ ∑ 𝑟𝑖𝑗
2𝑝

𝑗=1
𝑝
𝑖=1 +  ∑ ∑ 𝑎𝑖𝑗

2𝑝
𝑗=1

𝑝
𝑖=1

 
(1)  

 

where: p is the number of variables, 𝑟𝑖𝑗  is correlation between variables 𝑖 and 𝑗, and 𝑎𝑖𝑗 is partial correlation 

between variables 𝑖 and 𝑗. 
 

2) Impact of Multicollinearity  
The assumption in clusters is that there is no multicollinearity between variables. One way to determine 
the presence of multicollinearity is to look at the VIF value, 

𝑉𝐼𝐹 =
1

(1 − 𝑅𝑖
2)

 
(2)  

 

where 𝑅𝑖
2 is coefficient of determination If the VIF value exceeds 10, it can be concluded that there is 

multicollinearity among variables [9]. 
 

2.2 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a solution in cluster analysis if multicollinearity occurs in the 

data. PCA aims to reduce variables to fewer than the previous number of variables, where the number of new 

variables will be less than the original variables. The principal component (PC) is a linear combination of the 

original variables. The formation of the principal component is based on two methods, namely the covariance 

matrix and the correlation matrix [10]. The stages of PCA are as follows. 

1) Create an 𝑀 matrix that contains data from variable 𝑋 that has been standardized. 

2) Make a correlation matrix from 𝑀, namely 𝑀′𝑀. Principal component reduction begins by finding the 

eigenvalues obtained from the equation: 
|𝑀′𝑀 − 𝜆𝐼| = 0 (3)  

 

The number of selected principal components is based on the eigenvalue (𝜆). The number of principal 

components selected is the value of 𝜆 > 1 [11]. 
 

2.3 Determination of the Optimum Number of Clusters 

There are several approaches to determining the optimum number of clusters: the connectivity index, 

Dunn index, and silhouette index. The formula for each of these indices is as follows [12]. 

1) Connectivity Index 

𝐶𝑜𝑛𝑛 (𝐶) =  ∑ ∑ 𝑋𝑖,𝑛𝑛𝑖(𝑗)

𝐿

𝑗=1

𝑁

𝑖=1

 

(4)  

where 𝑛𝑛𝑖(𝑗) is the closest neighbor observation, 𝑖 to 𝑗, and 𝐿 is a parameter that determines the number 

of neighbors contributing to connectivity measurements. 

2) Dunn Index 

Dunn index is the ratio of the smallest distance between observations in different clusters with the most 

significant distance in each data cluster. 

𝐷 =  
𝑚𝑖𝑛1≤𝑖<𝑗≤𝑛𝑑(𝑖, 𝑗)

𝑚𝑎𝑥1≤𝑘≤𝑛𝑑′(𝑘)
 

(5)  

where 𝒊, 𝒋, and 𝒌 are indices for each cluster, 𝒅 measures the distance between clusters, and 𝒅′ measures 

the differences between clusters. 
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3) Silhouette Index 

Silhouette index used to measure the confidence level in the clustering process. The clustering results 

are said to be good if the index value is close to 1 and vice versa if the index value is close to -1. 

(𝑖) =  
𝑏𝑖−𝑎𝑖

max (𝑏𝑖,𝑎𝑖)
  (6)  

where 𝒂𝒊 is the average distance between 𝒊 and other data in the same cluster, and 𝒃𝒊 is the average 

distance between 𝒊 and other data in different clusters. 

 

2.4 K-Means Algorithm 

The K-Means algorithm was first proposed by McQueen (1967) [13] and developed by Hartigan and 

Wong in 1979 [14], which aims to divide 𝑀 data points in 𝑁 dimensions into several 𝑘 clusters. The clustering 

steps using the K-Means algorithm are as follows [15]. 

1) Determine the number of clusters; 

2) Randomly allocate the initial and centroid of the cluster; 

3) Find the distance for each centroid using the Euclidean distance with the formula 

𝑑𝑖𝑗= √∑ (𝑥𝑖𝑘 − 𝑐𝑗𝑘)2𝑛
𝑖=1 ; 

(7)  

4) Calculate the new centroid of the average data in each cluster 

𝐶𝑘𝑗 =
𝑥1𝑗+𝑥2𝑗+𝑥𝑛𝑗

𝑛
;  (8)  

5) Allocate each data to the nearest centroid, 

𝑎𝑖𝑗 = {
1, 𝑠 = min{𝑑(𝑥𝑖 , 𝐶𝑘𝑗)} ;

0,                               𝑜𝑡ℎ𝑒𝑟.
   

(9)  

 

6) If data is still moving clusters, return to step 3. 

 

2.5 Gaussian Mixture Model Algorithm 

McLachlan and Basford (1989) provide an approach by paying attention to data distribution, namely 

model-based analysis [16]. The model-based clustering method is a cluster group algorithm using statistical 

analysis to analyze group results. The model-based clustering method assumes that the data is generated by 

a mix of probability distributions, with each component representing a different cluster. If the model is a 

mixture of 𝐺 Gaussian components, it is called the Gaussian Mixture Model. The Gaussian mixture model is 

a method that assumes that each Gaussian distribution number represents a cluster. A combination of means 

and variance will represent each Gaussian. The purpose of grouping using the Gaussian mixture model is to 

find the model parameters (mean and covariance matrices of each distribution and weight) so that the resulting 

model best fits the data. 

Fraley and Raftery (2003) identified several models used to group data with various geometric 

properties obtained through Gaussian components with different parameters [17], as seen in Table 1. 

Characteristics of geometric distribution (orientation, volume, and shape) are obtained from various shapes 

groups or limited to the same group. The variance matrix for all components can be equal or variance.  

 
Table 1. Covariance matrix and geometric interpretation of MCLUST in the multivariate Gaussian mixture 

Model 

Symbol Model Volume Geometry shape Orientation Shape 

EII 𝜆𝐼 Same Same - Spherical 

VII 𝜆𝑘𝐼 Different Same - Spherical 

EEI 𝜆𝐴 Same Same Coordinate axes Diagonal 

VEI 𝜆𝑘𝐴 Different Same Coordinate axes Diagonal 

EVI 𝜆𝐴𝑘 Same Different Coordinate axes Diagonal 

VVI 𝜆𝑘𝐴𝑘 Different Different Coordinate axes Diagonal 

EEE 𝜆𝐷𝐴𝐷𝑇 Same Same Identity Ellipsoidal 

EEV 𝜆𝐷𝑘𝐴𝐷𝑘
𝑇 Same Same Different Ellipsoidal 

VEV 𝜆𝑘𝐷𝑘𝐴𝐷𝑘
𝑇 Different Same Different Ellipsoidal 

VVV 𝜆𝑘𝐷𝑘𝐴𝑘𝐷𝑘
𝑇 Different Different Different Ellipsoidal 
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In one dimension, only two models are available: E for the same variance and V for different variances. 

For more than one dimension, the geometric characteristics of the model are identified. For example, in the 

EVI model, where the volume of all clusters is the same (E), the shape of the clusters varies (V), and the 

orientation is identity (I). clusters with the EVI model have a diagonal covariance and orientation parallel to 

the coordinate axes. 

 

Figure 1. Illustration of cluster forms based on the variance covariance matrix in the MCLUST package [18] 

The explanation of Figure 1 is as follows. 

1) ∑𝑘 =  ∑ = 𝜆𝐼 (EII) produces all spherical clusters with the same volume between clusters. 

2) ∑𝑘 =  ∑ = 𝜆𝐷𝐴𝐷𝑇 (EEE) produces clusters with the same shape, volume, and orientation. 

3) ∑𝑘 =  ∑ = 𝜆𝑘𝐷𝑘𝐴𝑘𝐷𝑘
𝑇 (VEV) produces clusters that differ in shape, volume, and orientation. 

4) ∑𝑘 =  ∑ = 𝜆𝑘𝐷𝑘𝐴𝐷𝑘
𝑇 (VVV) produces clusters that differ only in orientation. 

 

To get the best results, the thing that must be done is to maximize the possibilities of the data from the 

GMM model. This can be achieved using the expectation maximization (EM) algorithm. In each iteration 

using the EM algorithm, there are two stages: the expectation stage (E-Step) and the maximization stage      

(M-Step). 

The clustering steps using the EM algorithm in the Gaussian Mixture Model are as follows. 

1) Initialize 𝝁𝒌, 𝝈𝒌, and 𝝅𝒌 values randomly for all clusters. 𝝁 is the mean, 𝝈 is the variance, 𝝅 is the 

coefficient of the mixture, 𝒌 is the number that refers to a mixture in the Gaussian distribution, and the 

equivalent 𝒌 is the value that refers to a cluster. 

2) E-Step: Evaluate the log-likelihood results using the parameters 𝝁𝒌, 𝝈𝒌, and 𝝅𝒌. Suppose cluster 𝑪𝒌 is 

represented by a Gaussian distribution (𝝁𝒌, 𝝈𝒌), then the probability of 𝑿𝒊 belonging to cluster 𝑪𝒌 is 

calculated from the equation: 

𝑧𝑖𝑘  / 𝜌(𝐶𝑘|𝑥𝑖) =  
𝜌(𝑥𝑖|𝐶𝑘) 𝜌(𝐶𝑘) 

𝜌(𝑥𝑖)
   

(10)  

Then calculate the likelihood value and evidence: 

(𝑥𝑖|𝐶𝑘) =  
1 

√2𝜋𝑘𝜎
exp (

−(𝑥𝑖− 𝜇𝑘)2

2𝜎2 )   

 

(11)  

𝜌(𝑥𝑖) = ∑ 𝜌(𝑥𝑖|𝐶𝑘) 𝜌(𝐶𝑘)

𝑘

 
(12)  

3) M-Step: Change the value of 𝝁𝒌, 𝝈𝒌, 𝝆(𝑪𝒌) by calculating with the following equations: 

𝜇𝑘 =  
∑ (𝐶𝑘|𝑥𝑖) 𝑥𝑖𝑖  

∑ 𝜌(𝐶𝑘|𝑥𝑖)𝑖
  

 

(13)  

𝜎𝑘 =  
∑ (𝐶𝑘|𝑥𝑖) (𝑥𝑖 − 𝜇𝑘  )2

𝑖  

∑ 𝜌(𝐶𝑘|𝑥𝑖)𝑖
 

 

(14)  

𝜋𝑘 =  
∑ (𝐶𝑘|𝑥𝑖) 𝑖

𝑛
 

(15)  
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4) Repeat steps 2 and 3 until the convergence criteria are met. For convergence, determine specific 

threshold values for changes in means and variance in successive iterations, so that cluster members can 

be grouped using the Maximum a Posteriori (MAP) classification method with the following conditions: 

𝑀𝐴𝑃 {�̂�𝑖𝑘} =  {
1     𝑖𝑓 𝑚𝑎𝑥{�̂�𝑖𝑘} 𝜖 𝑘𝑒 𝑘  
0                               𝑜𝑡ℎ𝑒𝑟

  
(16)  

The selection of the best model in the Gaussian Mixture Model (GMM) method uses a commonly used 

approach, Bayes Information Criterion (BIC). Fraley and Raftery (1998) took a mixed model approach 

through the Bayes factor (BIC) with a systematic selection for model parameterization and the number of 

groups [19]. Generally, the greater the BIC value, the more substantial the evidence for the best model and 

number of clusters. The equation can obtain the value for BIC: 

2 log 𝑃(𝑦|𝑀𝑘)  ≈ 2 log 𝑃(𝑦|𝜃𝑘 , 𝑀𝑘) − 𝑉𝑘 log(𝑛) =  𝐵𝐼𝐶𝑘  (17)  

 

where: 

𝑃(𝑦|𝑀𝑘)  : integration of likelihoods for 𝑀𝑘 model, 

𝑃(𝑦|𝜃𝑘 , 𝑀𝑘)  : integrated maximum mixed likelihood for 𝑀𝑘 model, 

Vk   : the number of independent parameters estimated in the 𝑀𝑘 model. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Materials 

The data source in this study came from the Central Bureau of Statistics (BPS) official website of 

Central Java [20]. At the same time, the type of data is secondary data from BPS, which refers to concepts in 

the Handbook on Poverty and Inequality published by the World Bank. We calculate the poor population 

using the basic needs approach by the BPS. 

This study uses poverty indicators which consist of 4 variables, namely poverty line (GK), percentage 

of poor population (P0), poverty depth index (P1), and poverty severity index (P2). Since each variable has 

a different unit, the data is standardized using the Z-score method before carrying out the cluster analysis. 

 

3.2. Cluster Assumptions 

Based on the results of the KMO test, a KMO value of 0.53 was obtained, which exceeded the 

threshold. It means that the sample represents the population or a representative sample so that the analysis 

can proceed to the next stage. Next is the multicollinearity test, and we used VIF to evaluate each variable. 

Table 2. VIF value 

Variables VIF 

GK 1.783 

P0 14.845 

P1 85.700 

P2 45.352 
 

Based on the VIF value of each variable in Table 2, there is a VIF value of more than 10. Thus, there 

is an indication of multicollinearity in the independent variables in the data used. Therefore, it is necessary 

to do PCA before cluster analysis to overcome this condition. 
 

3.3. Overcoming Multicollinearity with PCA 

PCA aims to reduce variables to fewer than the previous number of variables, where the number of 

new variables will be less than the old variables. The principal component (PC) is a linear combination of the 

original variables. The number of selected principal components is seen based on the eigenvalue (𝜆) obtained 

from Equation (3), and the resulting eigenvalues are 2.820, 1.041, 0.132, and 0.007. Based on those results, 

eigenvalues of more than one are found in factors 1 to 2, which means that the number of factors to be formed 

is two factors (PC1 and PC2). 
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The next step is to retest the cluster assumption using the result of PCA, and it was found that all cluster 

assumptions had been fulfilled. 

 

3.4. Determination of the Optimum Number of Clusters 

Several approaches to a clustering algorithm intend to find the best number of clusters. This study used 

the connectivity, Dunn, and silhouette indices, which were calculated based on equations 4-6. The best 

number of clusters is determined based on the smallest connectivity index value, the most extensive Dunn 

index, and the silhouette index close to 1. Table 3 shows the results of several index values obtained from 

the district/city poverty indicators in Central Java in 2020. 

Table 3. Index value comparison 

Algorithm Index 
Number of Cluster 

3 4 5 

K-Means Connectivity 13.346 16.461 22.259 

 Dunn 0.181 0.282 0.216 

 Silhouette 0.485 0.458 0.393 

GMM Connectivity 12.348 19.260 27.868 

 Dunn 0.243 0.208 0.176 

 Silhouette 0.497 0.425 0.333 

 

We compare the number of clusters based on the respective index criteria applied to both algorithms. It was 

found that almost all indices were fulfilled for the best number of clusters of three. 

 

3.5. K-Means Clustering 

The K-means algorithm starts with choosing 𝑘, where 𝑘 is the number of clusters that want to form. 

Then set the value of 𝑘; temporarily, the value becomes the center of the cluster or can be referred to as the 

centroid. The value of 𝑘 is 3, and the initial centroid value was selected, as shown in Table 4 below. 

Table 4. Initial centroid 

Cluster Centroid PC1 Centroid PC2 

1 -3.320 -1.789 

2 0.436 -0.164 

3 2.792 1.936 

 

After selecting the initial centroid randomly, the Euclidean distance is calculated with Equation (7), 

and after getting the cluster results in the first iteration, proceed with the second iteration’s calculation with 

a new centroid derived from the average value of the data in each cluster. In this study, five iterations were 

carried out until there were no more data-moving clusters. 

 
Figure 2. K-Means result plot 
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Based on the above results using the K-means algorithm, it is found that Cluster 1 includes ten 

districts/cities, Cluster 2 includes 17 districts/cities, and Cluster 3 includes eight districts/cities, each of which 

can be seen in Figure 2 above. 

 

3.6. GMM Clustering  

In data clustering using the GMM, nine models were identified to group data with various geometric 

properties, which can be seen in Table 1. The best model can be determined based on the BIC. This study 

uses R with the help of the MCLUST package, which provides nine models with several components from 1 

to 9. The best model is EII, with an optimal number of components of 3, as shown in Figure 3 below. 

 

 
Figure 3. BIC value of GMM result 

 

The GMM in R moves based on the Expectation Maximization (EM) algorithm. The final result is a mixing 

proportion, means vector, and covariance matrix. 
 

Mixing Proportion: 

Cluster 1 Cluster 2 Cluster 3 

0.287 0.517 0.196 

 

Means Vector: 

Cluster 1 Cluster 2 Cluster 3 
 𝑃𝐶1
𝑃𝐶2

=  [
−2.309
0.225

] 
 𝑃𝐶1
𝑃𝐶2

=  [
0.701

−0.624
] 

 𝑃𝐶1
𝑃𝐶2

=  [
1.529
1.316

] 

 

Covariance Matrix: 

Cluster 1 Cluster 2 Cluster 3 

          𝑃𝐶1    𝑃𝐶2 
𝑃𝐶1
𝑃𝐶2

[
0.477 0

0 0.477
] 

          𝑃𝐶1    𝑃𝐶2 
𝑃𝐶1
𝑃𝐶2

[
0.477 0

0 0.477
] 

Sete 

          𝑃𝐶1    𝑃𝐶2 
𝑃𝐶1
𝑃𝐶2

[
0.477 0

0 0.477
] 

 

 

Then we also get the probability data for each cluster, and we get Cluster 1 covering 10 districts/cities, 

Cluster 2 covering 19 districts/cities, and Cluster 3 covering 6 districts/cities, which can be seen in Figure 4 

below. 
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Figure 4. GMM result plot 

 

In Figure 4, members of Cluster 1 are indicated by blue dots, Cluster 2 is colored red, and Cluster 3 is colored 

green. 

After carrying out the clustering analysis, it is continued by looking at the best method of cluster 

analysis using the K-Means algorithm and the Gaussian Mixture Model. This study uses three indices, 

connectivity, Dunn, and silhouette, as shown in Table 3 above. With a total of 3 clusters, all indices show 

that the GMM algorithm produces better cluster analysis results than the K-Means algorithm. 

 

3.7. Cluster Outcome Profiling 

After performing cluster analysis using the K-Means and GMM algorithms, the best results were 

obtained using GMM. Furthermore, cluster profiling is carried out for the best results by looking at the 

average of each cluster. 

Table 5. Average of each variable 

Cluster GK P0 P1 P2 

1 384,948.400 15.432 2.453 0.537 

2 379,241.895 10.016 1.178 0.206 

3 491,534.833 6.810 1.082 0.252 

 

Based on Table 6, the characteristics of each cluster are different. From the smallest unit value to the 

most significant unit value for each variable, the smallest average unit value is obtained successively as low, 

medium, and high values for the largest average unit. Green indicates low, yellow indicates medium, and red 

indicates high. 

 
Figure 5. Cluster result mapping of province of Central Java using Gaussian Mixture Model 
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In general, the districts/cities included in Cluster 1 are groups with a moderate poverty line, a high 

percentage of poor people, a poverty depth index, and a poverty severity index. The distribution of Cluster 1 

can be seen on the map in Figure 5, which is shown in blue. Districts included in Cluster 2 are groups with 

a low poverty line and poverty severity index, an average percentage of poor people, and a poverty depth 

index—the distribution of Cluster 2 groups is shown in red. Furthermore, the districts included in Cluster 3 

are groups with a high poverty line, a low percentage of poor people, a poverty depth index, and a moderate 

poverty severity index. The distribution of Cluster 3 groups is shown in green. 

                   

 

4. CONCLUSIONS 

The fact that GMM provides estimates of the likelihood that each data point belongs to each cluster is 

one of their key advantages. Compared to the solo cluster assignment that most other clustering algorithms 

offer, this offers much more contextual information. The advantage of GMM models over others, such as K-

Means clustering, is that they do not presuppose all clusters have sphere-like shapes. Instead, clusters with 

different shapes can be accommodated using GMM. 

Based on a comparison between the K-Means and GMM, all clustering indices (connectivity, Dunn, 

silhouette) show the best clustering results with GMM, with the number of clusters being 3. 
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