
 https://doi.org/10.30598/barekengvol17iss1pp0581-0592

March 2023 Volume 17 Issue 1 Page 0581–0592

P-ISSN: 1978-7227 E-ISSN: 2615-3017

BAREKENG: Journal of Mathematics and Its Applications

581

OUTPUT VISUALIZATION FROM RESULT OF DISCRETE EVENT

SYSTEM SIMULATION WITH ‘simmer’ R PACKAGE

 I Gusti Agung Anom Yudistira1*, Rinda Nariswari 2, Samsul Arifin 3

1,2,3 Statistics Department, School of Computer Science, Bina Nusantara University,

Jl. Kebon Jeruk Raya No. 27, Kebon Jeruk, Jakarta Barat 11530, Indonesia

Corresponding author’s e-mail: * i.yudistira@binus.ac.id

ABSTRACT

Article History:
This study aims to describe the various capabilities of the simmer package on R, especially in

running a discrete event simulation model of a circular system, then develop a DES simulation

model building technique, which is effective and can represent real systems well, and explore

the simulation output on this simmer, both in statistical summary form and parameter

estimation. The method used in this research is the literature study with descriptive and

exploratory approaches. Model development is more effective when it is carried out starting

from simple models, to more complex forms step by step, and describing the system using a flow

chart. Replication for simulations is easy to perform so as to get standard error values for model

parameter estimators. The stages in developing a discrete event simulation model with a

simmer, start with compiling a simple flowchart to a more complex form, and replication is

carried out. The simmer output in the form of a data frame makes it very easy to process the

output further. The simple R API on Simmer will also make it easier to simulate.

Received: 29th November 2022

Revised: 11th February 2023

Accepted: 20th February 2023

Keywords:

Discrete Event System

Simulation;

R programming;

Simmer;

Simulation;

Visualization.

This article is an open access article distributed under the terms and conditions of the

Creative Commons Attribution-ShareAlike 4.0 International License.

How to cite this article:

I. G. A. A. Yudistira, R. Nariswari and S. Arifin., “OUTPUT VISUALIZATION FROM RESULT OF DISCRETE EVENT SYSTEM SIMULATION

WITH ‘simmer’ R PACKAGE,” BAREKENG: J. Math. & App., vol. 17, iss. 1, pp. 0581-0592, March 2023.

Copyright © 2023 Author(s)

Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/

Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id

Research Article • Open Access

http://creativecommons.org/licenses/by-sa/4.0/
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id

582 Yudistira, et. al. Output Visualization From Result Of Discrete Event System Simulation …

1. INTRODUCTION

 Simulation models are used to study a system, especially if it is difficult / expensive or dangerous to

study the system directly [1]. Besides that, real systems are complex, almost impossible to study with

analytical models, for that simulation is the last option that can't be bargained anymore. Furthermore, Shannon

[2] provides a definition of simulation, which is a process for designing a model of a real system and

conducting experiments on the model, for the purpose of understanding the behavior of the system or

evaluating various strategies or a set of criteria. Simulations are run with various scenarios, to study various

obstacles and find solutions to the studied system. The simulation results are usually in the form of a data set,

which need to be analyzed further in order to obtain the important information, Stark [3] states that: "Data

visualization gives us a clear interpretation of what information means by providing a visual context through

maps or graphs". This makes the data more natural for the human mind to understand and therefore makes it

easier to identify the presence of trends, patterns and outliers in larger data sets. Data visualization is needed

because the human brain is not capable of taking so much raw, unorganized information and turning it into

something usable and understandable. Visualization is usually in the form of graphs, charts and summary

tables [4].

 R is a functional programming language, which is based on open source (open source), so it can be

accessed for free. The R language is very well known among scientists and statisticians, even reaching its use

in various applied fields. Among academics, R is widely used to assist in the computational aspects of solving

research problems. In terms of simulation studies, R has the power of static stochastic simulation techniques.

The main weakness of R before 2017, was the unavailability of a package to solve reliable discrete event

simulation (DES) problems. So programming DES using R becomes very difficult. Since 2017 developed

package simmer which is a DES package for R that allows high-level process-oriented modeling [5], in

line with other modern simulators. The simmer package makes it easy to build discrete-event simulation

models in R [6]. The package is designed as a generic yet reliable process-oriented framework, written in

C++, so execution is relatively fast and robust. The simmer package also has automatic monitoring

capabilities, with the default output in tabular form. This package also provides a rich and flexible API for R,

centered around the concept of paths, common in simulation models for entity paths. Function 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦()
used to generate an object with class trajectory. However, the technique for building simmer-based DES

models has not yet been developed, so it is effective for representing complex systems [7], [8].

The R program has excellent visualization capabilities [9]. There are four main R packages for graphics

processing, namely (1) graphics packages, which are automatically loaded during standard R installation.

The graphics system produced by this graph is called the base graphics system; (2) the grid package provides

low-level graphics functions, so this package does not completely plot graphs, but only provides additional

graphic features; In addition to the basic graphics system, there are two important packages that provide high-

level graphics functions and are based on the grid package, namely (3) the lattice package created by

Deepayan Sarkar's, this package provides a better view than the basic graphics system, it just has a more

complicated syntax; (4) the ggplot2 package, an R chart system based on the grid package as well, created

by Hadley Wickham, is similar in some respects to lattice charts, but with a fundamentally different basis

and structure. In this study, the visualization of discrete event simulation results will be discussed, using both

the basic graphics system (graphics), grid and ggplot2. The dplyr package will be used to generate statistics

summary tables, to support visualization results, by utilizing both the basic graphics system (graphics), grid

and ggplot2. The dplyr package will be used to generate statistics summary tables, to support visualization

results, by utilizing both the basic graphics system (graphics), grid and ggplot2 [10].

This study aims to 1) describe the various capabilities of R packages for visualization of discrete event

simulation outputs, 2) develop user defined R functions, for visualizing simulation outputs using the simmer

package. which is effective and can provide complete information in the form of trends, patterns or outliers.

And 3) explore and interpret simulation outputs based on visualizations generated using homemade functions

(objective 2). R, which has strength in statistical and graphical analysis, will be very interesting when

combined with simmer and synergize with packages for visualization, especially ggplot2 and dplyr. The

simmer main competitors are SimPy and SimJulia, which were developed for Python and Julia, respectively.

[11], [12].

BAREKENG: J. Math. & App., vol. 17(1), pp. 0581-0592, March 2023. 583

2. RESEARCH METHODS

The method used in this study is the library method, with a descriptive and exploratory approach [7].

The steps in this research are:

1) Review the library to get a complete understanding of the R API (application programming interface).

The R APIs for simmer, ggplot2 and dplyr are in the form of R functions;

2) Review the literature to get a complete understanding of the environmental structure of simmer, ggplot2

and dplyr classes;

3) Build a chart or flowchart that describes the system, and examine the results (output) of the simulation to

be studied;

4) Build an R script that starts in its simplest form;

5) Increase the complexity of the system one level and beyond;

6) Is it sufficient to represent the system, if not go back to step 5);

7) Run the simulation and generate the desired output for further analysis;

8) Done

The modeling and simulation process presented in this paper starts from problem formulation to

decision making. This research is limited only to the aspect of model development, especially the

development of discrete event simulation models. Aspects of data collection, testing model assumptions and

carrying out experiments on the model are outside the scope of this research [13].

3. RESULTS AND DISCUSSION

 The simplest Discrete Event System is a queuing system with a single server (single queue). The

description of the system is as follows: A system has a single server that serves the entity for a transaction.

Yudistira introduces a chart to illustrate the system, which is as follows [7]:

Figure 1. A Simple System (Single Server)

Figure 1. This chart depicts a trajectory of entities originating from an environment, with a certain

interarrival time and generally a random variable with a certain probability distribution, for example

exponential, with 𝑟𝑎𝑡𝑒 = 𝜆 (arrivals / unit time) [14]. The entity enters the system to get service from the

"Server", but if the "Server" is in a "busy" status, then the entity enters the queue, so there will be a change

in the status of the queuing subsystem, namely the queue length is increased by 1 unit. The entity will remain

in the queue, until it has a turn to be served. When the entity gets service (enters the service subsystem), then

at that point in time there will also be a change in the status of the queue and "Server" subsystem, namely the

queue length is reduced by 1 unit, and the "Server" status is "busy". Entity will get service for time t, which

is also a random variable and as long as “Server” is running, no other entity will be served. So “Server” is

controlled by that entity during time t. After the service is finished, the entity will leave the system and return

to its environment. The exit of the entity from the system will trigger status changes in the system, that is, if

there is no other entity that will be served next, then the "Server" status becomes "Idle", and the status of the

number of entities that are still in the system, decreases by 1 unit [15].

3.1 Simulation Without Replication (Single Replication)

The previously discussed system is modeled with an R script. Then by using the simmer package, the

generic form is as follows:

 # 𝑅 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ
 𝑟𝑒𝑞𝑢𝑖𝑟𝑒(𝑠𝑖𝑚𝑚𝑒𝑟); 𝑟𝑒𝑞𝑢𝑖𝑟𝑒(𝑔𝑔𝑝𝑙𝑜𝑡2; 𝑟𝑒𝑞𝑢𝑖𝑟𝑒(𝑑𝑝𝑙𝑦𝑟)

584 Yudistira, et. al. Output Visualization From Result Of Discrete Event System Simulation …

 𝑟𝑒𝑞𝑢𝑖𝑟𝑒(𝑔𝑟𝑖𝑑)
 𝑠𝑒𝑡. 𝑠𝑒𝑒𝑑(𝑠𝑒𝑒𝑑)
 𝑒𝑛𝑣 < − 𝑠𝑖𝑚𝑚𝑒𝑟("𝑠𝑖𝑛𝑔𝑙𝑒_𝑠𝑒𝑟𝑣𝑒𝑟")

 # 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 (𝐴𝐾)
 𝐴𝐾 < − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛() 𝑟𝑜𝑢𝑛𝑑(𝑟𝑒𝑥𝑝(𝑛 = 1, 𝑟𝑎𝑡𝑒 = 𝑟𝑎𝑡𝑒1),3)
 # 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑒𝑟𝑣𝑒𝑟 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑖𝑚𝑒 (𝐿𝑎𝑚𝑎)
 𝐿𝑎𝑚𝑎 < − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛() 𝑟𝑜𝑢𝑛𝑑(𝑟𝑒𝑥𝑝(𝑛 = 1, 𝑟𝑎𝑡𝑒 = 𝑟𝑎𝑡𝑒2),3)

 # 𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦
 𝑙𝑖𝑛𝑡𝑎𝑠 < − 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦() % > %

 𝑠𝑒𝑖𝑧𝑒("𝑆𝑒𝑟𝑣𝑒𝑟") % > %

 𝑡𝑖𝑚𝑒𝑜𝑢𝑡(𝐿𝑎𝑚𝑎) % > %

 𝑟𝑒𝑙𝑒𝑎𝑠𝑒("𝑆𝑒𝑟𝑣𝑒𝑟")

 # 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑛𝑑 𝑒𝑛𝑡𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 𝑒𝑛𝑣 % > %

 𝑎𝑑𝑑_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒("𝑆𝑒𝑟𝑣𝑒𝑟", 1) % > %

 𝑎𝑑𝑑_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟("𝑒𝑛𝑡", 𝑙𝑖𝑛𝑡𝑎𝑠, 𝐴𝐾, 𝑚𝑜𝑛 = 2) % > %

 𝑟𝑢𝑛(𝑅𝑈𝑁) % > % 𝑖𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒

There is in the last line there, is a 𝑟𝑢𝑛(𝑅𝑈𝑁) command, the 𝑅𝑈𝑁 object in that command provides a

simulation time limit. The simulation process is run only for 𝑡𝑖𝑚𝑒 ≤ 𝑅𝑈𝑁. However, entities that enter the

system at 𝑡𝑖𝑚𝑒 ≤ 𝑅𝑈𝑁, but exit the system greater than 𝑅𝑈𝑁, are not considered by the script. In the case

of real systems, what generally applies is the time limit for the entry of new entities into the system.

Meanwhile, entities that are already in the system are guaranteed to get "Server" services until all of them

leave the system.

Suppose the input parameters in the model are as follows, 𝑟𝑎𝑡𝑒1 = 0.40; 𝑟𝑎𝑡𝑒2 = 0.45; 𝑅𝑈𝑁 = 100;

𝑠𝑒𝑒𝑑 = 𝑁𝑈𝐿𝐿. Then the simulation is run and the output of the arrival simulation of the entity is as follows:

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑜𝑟 𝑒𝑛𝑡𝑖𝑡𝑦 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑠𝑡𝑎𝑡𝑒, 𝑤𝑖𝑡ℎ 𝑜𝑛𝑔𝑜𝑖𝑛𝑔 = 𝑇𝑅𝑈𝐸
𝑜𝑢𝑡 < − 𝑒𝑛𝑣 % > %

𝑔𝑒𝑡_𝑚𝑜𝑛_𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠(𝑜𝑛𝑔𝑜𝑖𝑛𝑔 = 𝑇𝑅𝑈𝐸)% > %

𝑠𝑢𝑏𝑠𝑒𝑡(𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 > 0) % > %

 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑠𝑒𝑟𝑣_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 = 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 − 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑡𝑖𝑚𝑒)

The function 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑠𝑒𝑟𝑣_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 = 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 − 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑡𝑖𝑚𝑒) will add a new column

with the name 𝑠𝑒𝑟𝑣_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒, which is the time the entity was served. The parameter of 𝑜𝑛𝑔𝑜𝑖𝑛𝑔 =
𝑇𝑅𝑈𝐸 in 𝑔𝑒𝑡_𝑚𝑜𝑛_𝑎𝑟𝑟𝑖𝑣𝑎𝑙, will record the last entities outside the 𝑅𝑈𝑁 simulation range time. In this study,

the 𝑅𝑈𝑁 value is equal to 100 units of time is used, so that the simulation is only processed for the time value

(in this case the 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 𝑣𝑎𝑙𝑢𝑒) is ≤ 100. So that the simulation output stored in the 𝑜𝑢𝑡 object, which is

written in the last lines, is as follows:

> out

 name start_time end_time activity_time finished replication serv_start_time

1 ent0 0.486 13.018 12.532 TRUE 1 0.486

2 ent1 4.096 15.688 2.670 TRUE 1 13.018

3 ent2 5.366 15.824 0.136 TRUE 1 15.688

 …… dst ……

37 ent36 80.021 80.348 0.327 TRUE 1 80.021

38 ent37 80.948 91.062 10.114 TRUE 1 80.948

39 ent38 83.131 95.830 4.768 TRUE 1 91.062

40 ent39 85.112 NA NA FALSE 1 NA

41 ent40 85.295 NA NA FALSE 1 NA

42 ent41 92.779 NA NA FALSE 1 NA

Entities "𝑒𝑛𝑡39" to "𝑒𝑛𝑡41" (lines 40 to 42) have a value of 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 𝐹𝐴𝐿𝑆𝐸, meaning that in the

simulation time range 𝑅𝑈𝑁 = 100, the entity has not finished processing, so 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 (time out of the

BAREKENG: J. Math. & App., vol. 17(1), pp. 0581-0592, March 2023. 585

system) and 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑡𝑖𝑚𝑒 (the length of time the entity is served) all three have 𝑁𝐴 values, in this simulation

it happens that there are only three entities that have not been processed. It is possible that in the next

simulations, more or less than three entities will have not been processed, or none of the entities have been

processed. Note that the entities “𝑒𝑛𝑡39”, “𝑒𝑛𝑡40” and “𝑒𝑛𝑡41”, enter the system before 100 units of time,

i.e., their 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 values are 85,112, 85,295 and 92,779, respectively. So the three entities are already in

the system, so that this research will get the values of 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒, 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑡𝑖𝑚𝑒, and 𝑠𝑒𝑟𝑣_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒, the

three entities. The following script will get the value of 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 for the entity “𝑒𝑛𝑡39”.

𝑟𝑜𝑤. 𝑛𝑎𝑚𝑒𝑠(𝑜𝑢𝑡) < − 1: 𝑑𝑖𝑚(𝑜𝑢𝑡)[𝟏]
𝑝𝑥 < − 𝑒𝑛𝑣 % > % 𝑝𝑒𝑒𝑘(𝐼𝑛𝑓, 𝑣𝑒𝑟𝑏𝑜𝑠𝑒 = 𝑇𝑅𝑈𝐸)
𝑝𝑥
 time process

1 100.337 ent39

2 102.474 ent42

3 102.474 ent

The result of the script above is, the line numbers are sorted more regularly and most importantly we

get the 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 for the entity "𝑒𝑛𝑡39", which is 100,337. It is also shown that “𝑒𝑛𝑡42” entered the system

(𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒) at the 102.474th time, so we do not count it because its arrival exceeds 100. The service start

time for the “𝑒𝑛𝑡39” (𝑠𝑒𝑟𝑣_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒) entity is when the previous entity “𝑒𝑛𝑡38” left the system, i.e. at

𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 95,830. This last time value will be the service start time (𝑠𝑒𝑟𝑣_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒) “𝑒𝑛𝑡39”, by

obtaining the 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 and 𝑠𝑒𝑟𝑣_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 values, the 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑡𝑖𝑚𝑒 value can be obtained. The process

for entities "𝑒𝑛𝑡40" and "𝑒𝑛𝑡41", is carried out in the same way so that all 𝑁𝐴 values are filled in. Click on

the following link to see the full script, Appendix single.pdf . The final result is given as follows (only the

last 7 lines are displayed).

 name start_time end_time activity_time finished replication serv_start_time

36 ent35 78.456 79.370 0.058 TRUE 1 79.312

37 ent36 80.021 80.348 0.327 TRUE 1 80.021

38 ent37 80.948 91.062 10.114 TRUE 1 80.948

39 ent38 83.131 95.830 4.768 TRUE 1 91.062

40 ent39 85.112 100.337 4.507 FALSE 1 95.830

41 ent40 85.295 104.864 4.527 FALSE 1 100.337

42 ent41 92.779 106.827 1.963 FALSE 1 104.864

3.2 Visualization of Simulation Results Without Replication

The 𝑠𝑖𝑛𝑔𝑙𝑒 function is a user-defined function, the full script for this function is in this link Appendix

single.pdf. This function produces four graphs, namely “Utility”, “Queue”, “System”, and “All”. The

“Utility” graph depicts the relationship between simulation time and server status (0 = “𝑖𝑑𝑙𝑒” 𝑎𝑛𝑑 1 =
“𝑏𝑢𝑠𝑦”). The server status "𝑖𝑑𝑙𝑒" means the server is not serving, while the server status "𝑏𝑢𝑠𝑦" means the

server is working. The graph is shown in Figure 2 below [16], [17].
.

https://binusianorg-my.sharepoint.com/personal/i_yudistira_binus_ac_id/_layouts/15/guestaccess.aspx?docid=0f9dd7909e2d044d99d10bf51c8f8b099&authkey=Af6FiCKLE80to_4TJZwCOlI&e=gxJJBY
https://binusianorg-my.sharepoint.com/personal/i_yudistira_binus_ac_id/_layouts/15/guestaccess.aspx?docid=0f9dd7909e2d044d99d10bf51c8f8b099&authkey=Af6FiCKLE80to_4TJZwCOlI&e=yd5DFX
https://binusianorg-my.sharepoint.com/personal/i_yudistira_binus_ac_id/_layouts/15/guestaccess.aspx?docid=0f9dd7909e2d044d99d10bf51c8f8b099&authkey=Af6FiCKLE80to_4TJZwCOlI&e=yd5DFX

586 Yudistira, et. al. Output Visualization From Result Of Discrete Event System Simulation …

Figure 2. Utility Graph from Result of Function 𝒔𝒊𝒏𝒈𝒍𝒆(𝒈𝒓𝒂𝒑𝒉 = ”𝑼𝒕𝒊𝒍𝒊𝒕𝒚”)

Based on Figure 2, The area of this graph shows the utility level of the server. The second graph

“Queue” depicts a 𝑠𝑡𝑒𝑝 function, which relates the simulation time and queue length, the area under the curve

for this graph is the queue rate. An image of the “Queue” graph generated by a 𝑠𝑖𝑛𝑔𝑙𝑒 function, is given in

Figure 3.

Figure 3. Graph from Result of Function single(graph=”Queue”)

Figure 4 is the relationship between the simulation time, and the number of entities in the current

system. Just as before that the area under the curve, is the 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒, or the flow rate of entities in the system.

The "System" graph at a glance looks similar to the "Queue" graph, it is because the number of entities in the

system is equal to the number of entities in the queue subsystem (shown by the "Queue" graph) plus one more

entity being served by the server. The graph is shown by Figure 4 below

Figure 4. Graph from Result of Function 𝒔𝒊𝒏𝒈𝒍𝒆(𝒈𝒓𝒂𝒑𝒉 = ”𝑺𝒚𝒔𝒕𝒆𝒎”)

Figure 5 is the resulting fourth graph is named “All”. The 𝑠𝑖𝑛𝑔𝑙𝑒(𝑔𝑟𝑎𝑝ℎ = "𝐴𝑙𝑙") command will

generate all three graphs at once, in one field. The result is given in Figure 5 below.

BAREKENG: J. Math. & App., vol. 17(1), pp. 0581-0592, March 2023. 587

Figure 5. Graph from Result of Function 𝒔𝒊𝒏𝒈𝒍𝒆(𝒈𝒓𝒂𝒑𝒉 = ”𝑨𝒍𝒍”)

Figure 5 presents the single function in addition to generating graphs, also provides tables. There are

four tables that are generated from this function, namely: 1) The 𝑜𝑢𝑡_𝑔𝑜𝑖𝑛𝑔_𝑜𝑢𝑡𝑝𝑢𝑡 table, which is the output

of the function that comes from the simmer package, namely 𝑔𝑒𝑡_𝑚𝑜𝑛_𝑎𝑟𝑟𝑖𝑣𝑎𝑙(𝑜𝑛𝑔𝑜𝑖𝑛𝑔 = 𝑇𝑅𝑈𝐸), it's just

that we have modified the values for 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒, and 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑡𝑖𝑚𝑒 have been assigned values for all entities

with the variable 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 𝐹𝐴𝐿𝑆𝐸, i.e. 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 > 𝑅𝑈𝑁 but 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 < 𝑅𝑈𝑁. In addition, this table

also produces three additional variables (columns), namely: 𝑠𝑒𝑟𝑣_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒, 𝑓𝑙𝑜𝑤_𝑡𝑖𝑚𝑒, and

𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒. The variable 𝑠𝑒𝑟𝑣_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 is the time that the entity is start to served by the server,

𝑓𝑙𝑜𝑤_𝑡𝑖𝑚𝑒 is the time the entity is in the system, and 𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒 is the time spent by the entity in the queue.

2) The second table is named 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑜𝑢𝑡𝑝𝑢𝑡, generated by the simmer 𝑔𝑒𝑡_𝑚𝑜𝑛_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠() function.

This table contains four important variables used to build the graph, namely: 𝑡𝑖𝑚𝑒, 𝑠𝑒𝑟𝑣𝑒𝑟, 𝑞𝑢𝑒𝑢𝑒, and

𝑠𝑦𝑠𝑡𝑒𝑚. The 𝑡𝑖𝑚𝑒 variable records all simulation times that are less than 𝑅𝑈𝑁 (beyond that time the entity

cannot enter the system). The 𝑠𝑒𝑟𝑣𝑒𝑟 variable records the status of the server utility (0 and 1) at any point in

time given by time. The 𝑞𝑢𝑒𝑢𝑒 variable records the status of the queue length of the entity, at each point in

the simulation time. The last is the 𝑠𝑦𝑠𝑡𝑒𝑚 variable, which records the status of the number of entities in the

system at any point in time, given by time. 3) There are ten statistics values generated by this function namely,

a) 𝑞𝑢𝑒𝑢𝑒_𝑟𝑎𝑡𝑒 is the queue rate per unit of time, b) statistics 𝑢𝑡𝑖𝑙𝑖𝑡𝑦_𝑟𝑎𝑡𝑒 measures the level of server utility

(usage) per unit of time, c) 𝑠𝑦𝑠𝑡𝑒𝑚_𝑙𝑎𝑠𝑡_𝑡𝑖𝑚𝑒 measures the server downtime (latest time of time), d)

𝑎𝑣𝑔_𝑓𝑙𝑜𝑤_𝑡𝑖𝑚𝑒 is the average time spent by the entity in the system, e) 𝑎𝑣𝑔_𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 is the average

time spent by the entity to be in the queue, f) 𝑙𝑜𝑛𝑔𝑒𝑠𝑡_𝑓𝑙𝑜𝑤_𝑡𝑖𝑚𝑒 records the longest time (of all 𝑓𝑙𝑜𝑤_𝑡𝑖𝑚𝑒)

spent by an entity in the system, g) 𝑙𝑜𝑛𝑔𝑒𝑠𝑡_𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 is the longest time (of all 𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒) spent by a

entities to be in the queue, h) 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ is the average queue length, i)

𝑎𝑣𝑔_𝑒𝑛𝑡𝑖𝑡𝑦_𝑖𝑛_𝑠𝑦𝑠𝑡𝑒𝑚 is the average number of entities in the system during the simulation time span, j)

𝑠𝑒𝑟𝑣𝑒𝑟_𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 is the range between server downtimes (𝑠𝑦𝑠𝑡𝑒𝑚_𝑙𝑎𝑠𝑡_𝑡𝑖𝑚𝑒) with 𝑅𝑈𝑁. The value of

𝑠𝑒𝑟𝑣𝑒𝑟_𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 is equal to 0, it means the last entity 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒 value is ≤ 𝑅𝑈𝑁. These ten statistics are

summarized in tabular form, and there are two tabular forms that are given the first in the form of a width and

named 𝑤𝑖𝑑𝑒_𝑠𝑡𝑎𝑡_𝑣𝑎𝑙𝑢𝑒1, an example of the results are as follows

$wide_stat_value1

A tibble: 5 × 4

 name1 value1 name2 value2

 <chr> <dbl> <chr> <dbl>

1 queue_rate 3.88 longest_flow_time 22.9

2 utility_rate 0.944 longest_waiting_time 20.4

3 system_last_time 111. average_queue_length 3.73

4 avg_flow_time 11.7 avg_entity_in_system 4.70

5 avg_waiting_time 9.39 server_downtime 11.2

588 Yudistira, et. al. Output Visualization From Result Of Discrete Event System Simulation …

4) The last table given by the 𝑠𝑖𝑛𝑔𝑙𝑒 function, is the long form table of the 10 statistics discussed earlier.

This table is named 𝑙𝑜𝑛𝑔_𝑠𝑡𝑎𝑡_𝑣𝑎𝑙𝑢𝑒2, an example of the result is given below:

$long_stat_value2

A tibble: 10 × 2

 name value

 <chr> <dbl>

 1 queue_rate 3.88

 2 utility_rate 0.944

 3 system_last_time 111.

 4 avg_flow_time 11.7

 5 avg_waiting_time 9.39

 6 longest_flow_time 22.9

 7 longest_waiting_time 20.4

 8 average_queue_length 3.73

 9 avg_entity_in_system 4.70

10 server_downtime 11.2

3.3 Simulation with 𝒏 Replications

The statistics generated from the simulation are estimators of system parameters, so to get the margin

of error, we need to repeat it several times. This study develops a single server function with 𝑛 > 1

replications. This function is named 𝑛_𝑠𝑖𝑛𝑔𝑙𝑒, which is an expansion of the 𝑠𝑖𝑛𝑔𝑙𝑒 function previously

discussed. The function arguments are also mostly the same, the use of the function is as follows:

𝑛_𝑠𝑖𝑛𝑔𝑙𝑒(𝑟𝑎𝑡𝑒1 = 0.40, 𝑟𝑎𝑡𝑒2 = 0.45, 𝑅𝑈𝑁 = 100, 𝑛 = 30, 𝑔𝑟𝑎𝑝ℎ = 𝑐("𝑁𝑜𝑛𝑒", "𝑈𝑡𝑖𝑙𝑖𝑡𝑦",
"𝑊𝑎𝑖𝑡_𝑇𝑖𝑚𝑒", "𝐹𝑙𝑜𝑤_𝑇𝑖𝑚𝑒", "𝑇𝑜𝑡𝑎𝑙_𝑆𝑒𝑟𝑣", "𝐴𝑣𝑔_𝐹𝑙𝑜𝑤", "𝐴𝑣𝑔_𝑊𝑎𝑖𝑡𝑖𝑛𝑔",
"𝑄𝑢𝑒𝑢𝑒_𝑅𝑎𝑡𝑒", "𝑆𝑒𝑟𝑣𝑒𝑟_𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒", "𝐴𝑣𝑔_𝑄𝑢𝑒𝑢𝑒_𝐿𝑒𝑛𝑔𝑡ℎ"), 𝑠𝑒𝑒𝑑 = 𝑁𝑈𝐿𝐿)

This function provides nine graphical displays namely, from “Utility” to “Avg_Queue_Length”. The

full script of the 𝑛_𝑠𝑖𝑛𝑔𝑙𝑒 function is in this link Appendix n_single.pdf. The argument value 𝑛 = 30, is the

default value for replication.

The 𝑛_𝑠𝑖𝑛𝑔𝑙𝑒 function will basically replicate the single function 𝑛 times (repetitions), and for each

replication it will be calculated including utility level (𝑢𝑡𝑖𝑙𝑖𝑡𝑦_𝑟𝑎𝑡𝑒), waiting time in the queue (𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒),

number of entities served in each replication (𝑡𝑜𝑡_𝑠𝑒𝑟𝑣), and others can be seen in the output of this function.

3.4 Visualization of Simulation Results with 𝒏 Replication

The 𝑛_𝑠𝑖𝑛𝑔𝑙𝑒 function can generate 9 graphs, with the additional option 𝑔𝑟𝑎𝑝ℎ = “𝑁𝑜𝑛𝑒” provided if

the user does not need the graph display. The nine graphs are 𝑔𝑟𝑎𝑝ℎ = “𝑈𝑡𝑖𝑙𝑖𝑡𝑦”, the choice of this graph

argument will produce a line graph that connects the utility level (𝑢𝑡𝑖𝑙𝑖𝑡𝑦_𝑟𝑎𝑡𝑒) of each replication with its

replication. An example of a graphical demonstration is as follows:

https://binusianorg-my.sharepoint.com/personal/i_yudistira_binus_ac_id/_layouts/15/guestaccess.aspx?docid=013f83b6ab6a84ff1b27bed74da465e99&authkey=AQDegqWfSXz6andS4x-Cx2Y&e=yEIHHb

BAREKENG: J. Math. & App., vol. 17(1), pp. 0581-0592, March 2023. 589

Figure 6. Graph from Result of Function 𝒏_𝒔𝒊𝒏𝒈𝒍𝒆(𝒈𝒓𝒂𝒑𝒉 = ”𝑼𝒕𝒊𝒍𝒊𝒕𝒚”)

This graph (Figure 6) also shows summary statistics of the 𝑢𝑡𝑖𝑙𝑖𝑡𝑦_𝑟𝑎𝑡𝑒 for all replications. This

statistics summary includes 𝑀𝑖𝑛 (smallest value), 𝑄1 (1st quartile), 𝑀𝑒𝑑𝑖𝑎𝑛, 𝑀𝑒𝑎𝑛, 𝑄3 (3rd quartile) and

𝑀𝑎𝑥 (largest value).

The second graph is a box plot, which shows a box and line graph for the 𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒 values for each

replication. An example of a graphical demonstration of this simulation output is shown in Figure 7.

Figure 7. Graph from Result of Function 𝒏_𝒔𝒊𝒏𝒈𝒍𝒆(𝒈𝒓𝒂𝒑𝒉 = ”𝑾𝒂𝒊𝒕_𝑻𝒊𝒎𝒆”)

Figure 7, It can be seen from the "Wait_Time" graph that the variation of waiting time for each

replication is not the same, but most of the waiting times for the entire replication (75%) are less than 9.12

units of time, while the median and average are 3.5 and 5.77 time units, respectively. In addition to

“Wait_Time”, another box-line graph generated by this function is the “Flow_Time” graph, which relates the

time an entity spends in the system with its replication.

The “Total_Serv” graph generated by the 𝑛_𝑠𝑖𝑛𝑔𝑙𝑒 function is a bar graph, which shows the number

of entities served in each replication, in the simulation time range (𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 < 𝑅𝑈𝑁). An example of the

simulation output for this graph is,

590 Yudistira, et. al. Output Visualization From Result Of Discrete Event System Simulation …

Figure 8. Bar Graph from Result Of Function 𝒏_𝒔𝒊𝒏𝒈𝒍𝒆(𝒈𝒓𝒂𝒑𝒉 = ”𝑻𝒐𝒕𝒂𝒍_𝑺𝒆𝒓𝒗”)

In the graph shown by Figure 8 above, it can be read that there were 43 entities served in replication

1, and the lowest was 31 entities in replication 19, while the highest were 54 entities that occurred in

replication 16. Other graphs can be seen directly by running this 𝑛_𝑠𝑖𝑛𝑔𝑙𝑒 function.

The 𝑛_𝑠𝑖𝑛𝑔𝑙𝑒 function, in addition to generating graphs, also generates four types of tables, which are

provided whenever needed for further processing. The four tables are, 1) The 𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑜𝑢𝑡 table, where the

variables are the same as the 𝑜𝑢𝑡_𝑔𝑜𝑖𝑛𝑔_𝑜𝑢𝑡𝑝𝑢𝑡 table, which is generated by the 𝑠𝑖𝑛𝑔𝑙𝑒 function. An

example of the simulation output for this table is:

$arrival_out

A tibble: 1,237 × 9

Groups: replication [30]

 name start_time end_time activity_time finished replication serv_sta…¹ flow_…² wait_…³

 <chr> <dbl> <dbl> <dbl> <lgl> <int> <dbl> <dbl> <dbl>

 1 ent0 0.232 5.27 5.04 TRUE 1 0.232 5.04 0

 2 ent1 1.87 6.41 1.14 TRUE 1 5.27 4.55 3.41

 3 ent2 6.10 7.33 0.92 TRUE 1 6.41 1.24 0.315

 4 ent3 6.8 13.7 6.38 TRUE 1 7.33 6.91 0.533

 5 ent4 11.8 16.4 2.66 TRUE 1 13.7 4.57 1.91

 6 ent5 18.4 22.1 3.62 TRUE 1 18.4 3.62 0

 7 ent6 20.7 22.9 0.85 TRUE 1 22.1 2.20 1.36

 8 ent7 22.6 24.9 1.96 TRUE 1 22.9 2.24 0.274

 9 ent8 22.9 29.2 4.32 TRUE 1 24.9 6.27 1.95

10 ent9 26.0 29.9 0.751 TRUE 1 29.2 3.98 3.23

… with 1,227 more rows, and abbreviated variable names ¹serv_start_time, ²flow_time,

³wait_time

ℹ Use `print(n = ...)` to see more rows

2) The 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠_𝑜𝑢𝑡 table, which is similar to the 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑜𝑢𝑡𝑝𝑢𝑡 table that generated by the 𝑠𝑖𝑛𝑔𝑙𝑒

function, only the 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠_𝑜𝑢𝑡 table is expanded for 𝑛 replications.

3) The 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠_𝑜𝑢𝑡 table that generates statistics values for each replication. There are eleven important

statistical values given, among others, 𝑡𝑜𝑡𝑎𝑙_𝑠𝑒𝑟𝑣, 𝑎𝑣𝑔_𝑓𝑙𝑜𝑤_𝑡𝑖𝑚𝑒 (average time spent by entity in the

system), 𝑎𝑣𝑔_𝑞𝑢𝑒𝑢𝑒_𝑙𝑒𝑛𝑔𝑡ℎ (average queue length). The complete table is given as follows:

$statistics_out

A tibble: 30 × 12

Groups: replication [30]

 repli…¹ total…² avg_f…³ avg_w…⁴ longe…⁵ longe…⁶ last_…⁷ serve…⁸ queue…⁹ utili…˟ avg_q…˟
 <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

 1 1 43 20.9 17.9 36.2 35.1 133. 33.4 5.77 0.983 5.62

 2 2 41 8.77 6.54 26.7 25.1 112. 12.0 2.39 0.817 2.22

 3 3 35 5.53 3.36 15.4 11.0 108. 7.76 1.09 0.704 1.43

 4 4 43 17.4 14.9 34.6 32.0 108. 7.96 5.94 0.976 5.99

 5 5 41 7.14 4.86 20.2 19.8 120. 19.7 1.67 0.781 1.98

 6 6 48 37.0 34.2 57.3 52.9 153. 53.3 10.7 0.869 11.7

 7 7 38 4.65 2.38 14.9 13.9 106. 5.53 0.856 0.819 1

 8 8 44 13.5 10.9 31.7 28.3 117. 17.4 4.07 0.987 3.84

 9 9 44 13.9 11.4 26.4 24.6 113. 12.5 4.46 0.965 4.68

10 10 39 9.37 7.29 23.9 22.6 103. 2.51 2.77 0.789 3.24

… with 20 more rows, 1 more variable: avg_entity_in_system <dbl>, and abbreviated

BAREKENG: J. Math. & App., vol. 17(1), pp. 0581-0592, March 2023. 591

variable names ¹replication, ²total_serv, ³avg_flow_time, ⁴avg_wait_time,

⁵longest_flow_time, ⁶longest_waiting_time, ⁷last_time, ⁸server_downtime, ⁹queue_rate,
˟utility_rate, ˟avg_queue_length

ℹ Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names

4) The last table is 𝑟𝑠𝑐_𝑜𝑢𝑡, which only contains 5 columns namely, 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒, 𝑞𝑢𝑒𝑢𝑒, 𝑠𝑒𝑟𝑣𝑒𝑟, and

𝑠𝑦𝑠𝑡𝑒𝑚. This table is provided when necessary to generate a step graph, as examples are shown in Figures

2, 3, and 4. The table looks like this (only 10 rows are shown out of a total of 2505 rows):

$rsc_out

A tibble: 2,505 × 5

 replication time queue server system

 <int> <dbl> <dbl> <dbl> <dbl>

 1 1 0 0 0 0

 2 1 0.232 0 1 1

 3 1 1.87 1 1 2

 4 1 5.27 0 1 1

 5 1 6.10 1 1 2

 6 1 6.41 0 1 1

 7 1 6.8 1 1 2

 8 1 7.33 0 1 1

 9 1 11.8 1 1 2

10 1 13.7 0 1 1

… with 2,495 more rows

ℹ Use `print(n = ...)` to see more rows

4. CONCLUSIONS

1. There are two user define R functions resulting from this research, the first one is named 𝑠𝑖𝑛𝑔𝑙𝑒,

which is stored in the singleDES.R file. This function aims to display the dynamics of the status of

the queue length of the entity, the number of entities in the system and the status of the "idle" or

"busy" server, throughout the simulation time from the starting point of the simulation (time point 0)

to the last entity leaving the system. This graph, of course, only displays the dynamics of the system

status for one simulation only. In connection with the graph, this function is also used to display

statistics that are used to estimate system parameters, including queue level (𝑞𝑢𝑒𝑢𝑒_𝑟𝑎𝑡𝑒), server

utility level (𝑢𝑡𝑖𝑙𝑖𝑡𝑦_𝑟𝑎𝑡𝑒), system downtime (𝑠𝑦𝑠𝑡𝑒𝑚_𝑙𝑎𝑠𝑡_𝑡𝑖𝑚𝑒), the time span between the end

of the simulation time – in this paper denoted by 𝑅𝑈𝑁 - and the server downtime (in this case it also

means the system downtime), which is then named server downtime (𝑠𝑒𝑟𝑣𝑒𝑟_𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒), there are

six more simulation results statistics generated by this function. Other statistics according to user

requirements, can be generated by reprocessing the dataset generated by this function, which is

named 𝑜𝑢𝑡_𝑔𝑜𝑖𝑛𝑔_𝑜𝑢𝑡𝑝𝑢𝑡. This dataset is generated from the simmer 𝑔𝑒𝑡_𝑚𝑜𝑛_𝑎𝑟𝑟𝑖𝑣𝑎𝑙 function,

with a slight modification, namely, continuing simulation for entities that enter the system less than

the 𝑅𝑈𝑁 simulation time. Then the 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑜𝑢𝑡𝑝𝑢𝑡 dataset, which gives the system state dynamics

related to the servers (resources),

2. The second function produced in this study is named 𝑛_𝑠𝑖𝑛𝑔𝑙𝑒, which is an extension of the 𝑠𝑖𝑛𝑔𝑙𝑒

function by using replication up to 𝑛 times. This function aims to visualize the simulation output,

from a system with a single server which is repeated up to 𝑛 times. The graphs generated by this

function include; 1) “Utility” graph, which displays a line graph, for the utility level for each

replication along with summary statistics including smallest value (Min), 1st quartile (Q1), median,

mean, 3rd quartile (Q3), and largest value (Max). This statistics summary is an overview of the overall

replication. 2) “Wait_Time” graph, this graph displays a boxplot of the time an entity spends in the

queue for each replication, and also displays a summary of those wait time statistics for the entire

replication. 3) the "Total_Serv" graph, is a bar graph of the number of entities served in each

replication, and like any other graph it also displays summary statistics for the entire replication.

There are six more graphs that this function can create, along with summary statistics to give a better

picture of the state of the system. As with the 𝑠𝑖𝑛𝑔𝑙𝑒 function, the 𝑛_𝑠𝑖𝑛𝑔𝑙𝑒 function is also equipped

with the ability to generate datasets, which can be further processed to obtain other desired graphs

592 Yudistira, et. al. Output Visualization From Result Of Discrete Event System Simulation …

according to needs. The datasets are 𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑜𝑢𝑡 and 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠_𝑜𝑢𝑡, which are similar to those

generated by a single function, only extended for 𝑛 replications. The 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠_𝑜𝑢𝑡 dataset provides

statistical values for each replication such as total entities served, average number of entities in the

system and queues, utility level and there are seven more statistics displayed in this dataset. The

𝑟𝑠𝑐_𝑜𝑢𝑡 dataset is designed to be used to display step graphs, such as graphs generated by the 𝑠𝑖𝑛𝑔𝑙𝑒

function, but by selecting the desired replication. The graphs produced by both the 𝑠𝑖𝑛𝑔𝑙𝑒 function

and the 𝑛_𝑠𝑖𝑛𝑔𝑙𝑒 function are more effective with the help of the ggplot2 package, while the dplyr

package is used for data manipulation.

ACKNOWLEDGMENT

I would like to thank my institution, Bina Nusantara University, for funding BRUN's internal grant, so that

this paper can be created.

REFERENCES

[1] D. N. Banks, Jerry, John Carson II, Barry Nelson, Discrete-Event System Simulation, 5th Editio. Edinburgh Gate, England:

Pearson Education Limited, 2014.

[2] R. E. Shannon, “Introduction to the art and science of simulation,” in 1998 winter simulation conference. proceedings (cat.

no. 98ch36274), 1998, vol. 1, pp. 7–14.

[3] M. Stark, “Why Data Visualization Is Important.” 2020.

[4] H. A. A. Jiangjun Tang, George Leu, “Discrete Event Simulation,” Simulation and Computational Red Teaming for Problem

Solving. pp. 121–142, Oct. 18, 2019. doi: https://doi.org/10.1002/9781119527183.ch7.

[5] S. B. Ucar I, “simmer.plot: Plotting Methods for simmer. R package version 0.1.5,” 2017. http://r-simmer.org/extensions/plot.

[6] I. Ucar, B. Smeets, A. Azcorra, U. Carlos, and I. I. I. De Madrid, “simmer: Discrete-Event Simulation for R,” vol. 90, no. 2,

2019, doi: 10.18637/jss.v090.i02.

[7] I. G. A. A. Yudistira, “Pengembangan Simulasi Kejadian Diskret Berbasis Paket Simmer pada R,” Eng. Math. Comput. Sci.

J., vol. 3, no. 2, pp. 79–85, 2021, doi: 10.21512/emacsjournal.v3i2.7386.

[8] J. P. Lander, R for everyone: Advanced analytics and graphics. Pearson Education, 2014.

[9] W. Chang, R graphics cookbook: practical recipes for visualizing data. O’Reilly Media, 2018.

[10] W. N. Venables, D. M. Smith, and R. C. Team, “An introduction to R, Notes on R: A Programming Environment for Data

Analysis and Graphics Version 3.6. 3.” R Foundation for Statistical Computing Vienna, Austria, 2020.

[11] D. Ziniviev, Discrete Event Simulation. It’s Easywith SimPy! PragPub, 2018. [Online]. Available:

https://www.researchgate.net/publication/322949363_Discrete_Event_Simulation_It’s_Easy_with_SimPy

[12] P. Van Der Paelt, B. Lauwens, and B. Signer, “A Transparent Data Persistence Architecture for the SimJulia Framework”.

[13] M. C. Sachs and E. E. Gabriel, “Event History Regression with Pseudo-Observations: Computational Approaches and an

Implementation in R,” J. Stat. Softw., vol. 102, no. 9 SE-Articles, pp. 1–34, May 2022, doi: 10.18637/jss.v102.i09.

[14] A. Ebert, P. Wu, K. Mengersen, and F. Ruggeri, “Computationally Efficient Simulation of Queues: The R Package

queuecomputer,” J. Stat. Softw., vol. 95, no. 5 SE-Articles, pp. 1–29, Oct. 2020, doi: 10.18637/jss.v095.i05.

[15] T. A. Syahputri, T. S. Az-zahra, N. A. Setifani, K. P. Ningrum, and D. Rolliawati, “PEMODELAN DAN SIMULASI

PROSES PRODUKSI PERALATAN BAYI PADA HOME INDUSTRI PUPPY PUTRA PERDANA,” JUST IT J. Sist.

Informasi, Teknol. Inf. dan Komput., vol. 11, no. 1, p. 24, Oct. 2020, doi: 10.24853/justit.11.1.24-31.

[16] M. Tollefson, “Introduction: plot (), qplot (), and ggplot (), Plus Some,” in Visualizing Data in R 4, Springer, 2021, pp. 3–7.

[17] X. G. Baqués, A. Mosca, B. Rondelli, and G. R. Fort, “Roman Open Data: A semantic based Data Visualization &

Exploratory Interface,” Arqueol. y Téchne Métodos formales, nuevos enfoques Archaeol. Techne Form. methods, new

approaches, p. 18, 2022.

