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ABSTRACT 

Article History: 
The performance of machine learning in analyzing time series data is being widely discussed. 

A new ensemble method, Double Random Forest (DRF), which considers supervised learning 

currently being developed. This method has been claimed to be able to improve the performance 

of Random Forest (RF) if the data is under-fitting. Another machine learning method, Long 

Short-Term Memory Networks (LSTMs), have capability to analyze nonlinear data. Since the 

study compare both methods have not existed in the literature, it is interesting to compare the 

performance of both methods using Indonesian data, especially economic indicator data which 

have been found to be under-fitting, non-underfitting, and nonlinear data. The indicators used 

in this study are Export, Import, Official Reserves Asset, and Exchange Rate data. The results 

showed that overall, the LSTMs method outperforms the DRF method in analyzing the data.  
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1. INTRODUCTION 

Time series data consists of sequences of observations collected over time [1]. Methods to analyze 

time series data have been widely developed, including several algorithms in machine learning [2]. Machine 

learning is an alternative method in analyzing time series data and it has been reported as powerful when the 

data is nonlinear [3]. Machine learning is categorized into two different types, supervised and unsupervised 

learning. Supervised learning creates a statistical model to predict or estimate an outcome based on one or 

more inputs, while unsupervised learning finds useful patterns in a dataset without output variables [4]. 

Some research compared machine learning and ARIMA as well as regression models in modeling and 

forecasting new Covid-19 cases in Nigeria [5]. Mualifah, et al. compared the performances of GARCH, 

LSTM, and hybrid GARCH–LSTM models for analyzing the dynamical pattern of stock price volatility of 

PT Bumi Resources Minerals Tbk in 2022 [6]. These researches showed that machine learning based methods 

outperform other methods. Another research was also conducted using tree-based methods applied to time 

series data. The research compared ARIMA, Decision Tree (DT), Random Forest (RF), and Gradient Boosted 

Trees (GBT) to predict monthly gold prices. The result of this study found that RF is superior to the other 

methods [7]. 

Sunwoo Han, Hyunjoong Kim, and Yung-Seop Lee developed a new supervised learning method 

called Double Random Forest (DRF) in 2020. This method was developed to overcome the limitation of 

Random Forest (RF) when the data is under-fitting. While RF has the best performance using minimum node 

size, it may have a chance to be under-fitting, or the size of the tree is not large enough. The previous study 

compared DRF and RF using 34 datasets with the best performance on minimum node size or under-fitting 

in RF. The result of this research found that DRF outperforms RF [8]. 

The other machine learning methods, more specifically Neural Networks (NNs), have the ability to 

model nonlinear data with high forecasting accuracy and minimal initial assumptions [2]. Long Short-Term 

Memory Networks (LSTMs) are one of the NNs methods which has the capability to analyze time series data. 

The main advantage of LSTMs is the ability to remember information for long time periods [9]. The previous 

research used LSTMs to forecast COVID-19 outbreaks in Egypt [10]. In addition, a comparative study found 

that LSTMs outperform ARIMA in forecasting cryptocurrency prices [11]. 

DRF and LSTMs have abilities to analyze under-fitting and nonlinear data, respectively. Therefore, 

this study aims to present a comparative study between DRF and LSTMs using under-fitting, non-

underfitting, and nonlinear data from Indonesia’s economic indicators. The indicators used in this study are 

Export, Import, Official Reserves Assets, and Exchange Rates. These indicators were used because they have 

fluctuating patterns that tend to be nonlinear and will be suitable if these data are analyzed using machine 

learning methods. The best performance method was chosen using the least value of Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). 

 

 

2. RESEARCH METHODS 

This study used Indonesia’s economy indicators. The indicators used in this study are Export, Import, 

Official Reserve Assets in a million USD, and Exchange Rates obtained from Bank Indonesia’s and 

International Monetary Fund’s websites. These are monthly time series data from January 2010 to December 

2021. DRF and LSTMs methods use output and input variables in the analysis process. The input variable 

used in this study is the data on previous lag (t-1), and the data at time t was used as the output variable in 

this study. The hyperparameters optimized in DRF are node size, defined as the minimum number of samples 

a terminal node should hold, and ntree, defined as the number of trees that will be created [8]. The 

hyperparameters optimized in LSTMs are epoch, defined as the number of times the algorithm will be run 

for the entire data [12], and learning rate, defined as a parameter that controls the amount of weight change 

that is updated during the training process in response to the error value generated during the training process. 

It can affect the convergence time of the gradient descent [4]. 

The analysis stages in this study are as follows. 

1. Examining each indicator used in this study, whether the data is considered under-fit, non-under-fit, 

or nonlinear. 
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2. Carrying out the training process on the training data on all split groups of time series cross-validation 

using each hyperparameter combination of DRF and LSTMs. 

3. Calculating RMSE, MAPE, and MAE from test data on all split groups of time series cross-validation 

data for each parameter combination. The model with optimal parameter is selected based on the 

least average value of RMSE, MAPE, and MAE from the combination of hyperparameters used on 

all split groups of time series cross-validation data. 

4. The best model selected from step 3 is used to create a model using DRF and LSTMs with a 

proportion of 83% for training data and 17% for testing data. 

5. Comparing the performance of DRF and LSTMs. 

 

2.1 Double Random Forest (DRF) 

The ensemble method is a method that combines prediction results from some baseline models to 

obtain enhanced performance [13]. Double Random Forest is a new ensemble method developed by Sunwoo 

Han, Hyunjoong Kim, and Yung-Seop Lee in 2020. This method can increase the can performance of Random 

Forest (RF) while RF is under-fitting because it can create a bigger tree which can reduce the bias in 

prediction. Under-fitting in RF can be identified using relative test MAPE, defined as (the MAPE value of 

RF under the given node size) / (the MAPE value of RF when node size is set to its default). Therefore, if the 

relative MAPE is greater than 1, RF with the largest trees is more accurate than that with the smaller trees. 

After all, this means that RF may under-fit. Here is the algorithm of DRF [8]. 

1. Each regression tree in DRF is created by using all the training data (D) with size 𝑛. 

2. Steps of selecting the best splitting: 

a. For a given node t, a random sampling of size 𝑛𝑡 is carried out with bootstrap, if the number of samples at 

node t is greater than 𝑛 ×  0.1. If it does not meet the requirements, then bootstrap will not be done.  

b. Randomly select 𝑝 ≈
𝑚

3
 or √𝑝  features. 

c. Find the best split features and cut points using the random feature subset. 

d. Send down the data using the best split features and cut points. 

e. Steps a to d are repeated until the stopping rules are met to obtain the estimation result from a regression 

tree. 

3. Steps 1-2 are repeated until DRF creates b regression trees. 

4. The prediction result from DRF is obtained using each tree’s average prediction. 
 

2.2 Long Short-Term Memory Networks (LSTMs) 

Long Short-Term Memory Networks were introduced by Sepp Hochreiter and Jurgen Schimidhuber 

in 1997 [14]. LSTMs are special kinds of Recurrent Neural Networks (RNNs) and have capability to learn 

long-term temporal or sequential dependencies [15]. LSTMs contain an input gate, an output gate, a forget 

gate, and internal state (cell memory) [16]. Figure 1 shows the architecture of LSTMs [14]. 

 
Figure 1. The architecture of LSTMs 

According to the architecture in Figure 1, LSTMs have several steps in the learning process. The 

learning stages of LSTMs are as follows [16]. 

1. Determining the LSTMs output using Equations (1-5) (forward learning). The equations can be 

written as follows. 

 

𝑎(𝑡𝑖) = 𝜎(𝑤𝛼𝑥(𝑡𝑖) + 𝑤ℎ𝑎ℎ(𝑡𝑖−1) + 𝑏𝑎)    (1) 

𝑓(𝑡𝑖) = 𝜎(𝑤𝑓𝑥(𝑡𝑖) + 𝑤ℎ𝑓ℎ(𝑡𝑖−1) + 𝑏𝑓)    (2) 
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𝑐(𝑡𝑖) = 𝑓𝑡 × 𝑐(𝑡𝑖−1) + 𝑎𝑡 × 𝑡𝑎𝑛ℎ(𝑤𝑐𝑥(𝑡𝑖) + 𝑤ℎ𝑐ℎ(𝑡𝑖−1) + 𝑏𝑐)   (3) 

𝑜(𝑡𝑖) = 𝜎(𝑤𝑜𝑥(𝑡𝑖) + 𝑤ℎ𝑜ℎ(𝑡𝑖−1) + 𝑏𝑜)    (4) 

ℎ(𝑡𝑖) = 𝑜(𝑡𝑖) × tanh (𝑐(𝑡𝑖))     (5) 

 

with, 

𝑥(𝑡𝑖)   : the input values 

𝑎(𝑡𝑖)    : the output results for input gate  

𝜎 and 𝑡𝑎𝑛ℎ  : the activation functions 

𝑓(𝑡𝑖)   : the output results for forget gate 

 𝑐(𝑡𝑖−1) and 𝑐(𝑡𝑖) : the cell states at time t-1 and t  

𝑜(𝑡𝑖)   : the output results for output gate 

ℎ(𝑡𝑖−1) and ℎ(𝑡𝑖) : the output value at time t-1 and t  

𝑤𝛼 , 𝑤𝑜 , 𝑤𝑓 , 𝑤𝑐  : the weight matrixes of input gate, output gate, forget gate, and internal state 

𝑤ℎ𝑎 , 𝑤ℎ𝑓 , 𝑤ℎ𝑐 , 𝑤ℎ𝑜 : the recurrent weights  

 

2. Computing the error between the resulted data and input data of each layer. 

3. The error is reversely propagated to the input gate, cell, and forget gate. 

4. The optimization algorithm based on the error term is used to update the weight of each gate. 

5. Stages 1– 4 are reiterated for a set number of iterations until the biases and weights optimal value 

can be obtained.  

 

2.3 Measure of Forecast Accuracy 

The model performance of DRF and LSTMs is assessed by three measures of forecast accuracy, those are 

RMSE, MAPE, and MAE. The model with the least RMSE, MAPE, and MAE is considered the best performance. 

RMSE is the standard deviation of the model prediction results [17]. The formula of RMSE can be written as follows 

[18].  

 

 𝑒𝑡 = 𝑦𝑡 − 𝑦̂𝑡      (6) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑒𝑡)2𝑛

𝑡=1      (7) 

 

MAPE represents the mean absolute percentage error function for the prediction and the eventual 

outcomes, this error measures express error as a percentage [19]. The formula of MAPE can be written as follows 

[18].  

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑒𝑡

𝑦𝑡
| × 100𝑛

𝑡=1     (8) 

 

with 𝑒𝑡 is the error value at time t, 𝑦𝑡 is the actual value at time t, and 𝑦̂𝑡 is the forecasted value at time t.  

The MAPE values interpretations are shown in Table 1 [20]. 

 
Table 1. MAPE Values Interpretation 

MAPE Value  Interpretation 

>50% Inaccurate forecasting 

20% - 50% Reasonable forecasting 

10% - 20% Good forecasting 

<10% High accurate forecasting 
 

 

MAE is obtained from the average of absolute difference between the forecasted value and the actual value [17]. 

The formula of MAE can be written as follows [18].  

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑒𝑡|𝑛

𝑡=1      (9) 
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3. RESULTS AND DISCUSSION 

3.1. Under-fitting/Non-underfitting Data  

Under-fitting data can be detected using Random Forest. If RF gives the best performance using the 

default node size = 5 or the largest tree is more accurate than the smaller one, it means that RF may under-

fit. Table 2 shows the MAPE value of each node size in Export, Import, Official Reserve Assets, and 

Exchange Rates data.  

 
Table 2. MAPE Value of Each Node size  

Node size Export Import Official Reserve Assets Exchange Rates 

5 11.93790 11.54937 4.324446 1.414259 

6 11.84959 11.53789 4.331469 1.301333 

7 11.87713 11.50116 4.387146 1.245586 

8 11.85902 11.45797 4.427928 1.211501 

9 11.83365 11.50479 4.533176 1.180476 

10 11.88511 11.51324 4.577068 1.172965 

11 11.89959 11.51269 4.643693 1.146187 

12 11.97062 11.51991 4.681113 1.120810 

 

Furthermore, the relative MAPE for each data is also calculated and shown in Figure 2. If the relative 

MAPE is greater than 1, it means that RF may under-fit because the largest tree gives a smaller MAPE value. 

The result of relative MAPE shown in Figure 2 shows that RF under-fit in Official Reserve Assets data, and 

RF does not under-fit in Export, Import, and Exchange Rates data.  

 
Figure 2. Relative MAPE 

 

3.2. Linear/Nonlinear Data 

Terasvirta test was used in this study to detect nonlinearity in the data. The significance level used in 

this test is 0.05, with hypothesis null states that data has a linear relationship with its lag.  Table 3 shows the 

result of the Terasvirta test for Export, Import, Official Reserves Assets, and Exchange Rates data. 

 
Table 3. The result of the Terasvirta test 

Data p-value Conclusion 

Export 0.0000 Nonlinear 

Import 0.4752 Linear 

Official Reserve Assets 0.5218 Linear 

Exchange Rates 0.0000 Nonlinear 
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3.3. The Results of DRF and LSTMs 

Before comparing the performance of DRF and LSTMs, the optimal hyperparameter for each model 

was selected using time series cross-validation. Table 4 shows the list of hyperparameters which were used 

in this study. 

 
Table 4. The Hyperparameters for Each Model 

Model Hyperparameters 

DRF 
Node size 5, 6, 7, 8, 9, and 10 

ntree 500 and 700 

LSTMs 
Epoch 50 and 100 

Learning Rates 0.001, 0.0025, and 0.005 

 

Time series cross-validation (TSCV) splits the time series data in sequence into K complementary 

partitions. The model is validated on a test set in one round of TSCV and then trained on other K-1 partitions 

(referred to as training sets). The validation processes are repeated for K-1 rounds using different K-1 time 

series partitions to decrease the model variability. Then the performances of the model across different K-1 

validation partitions are averaged [21]. Table 5 shows the data partition for time series cross-validation with 

𝐾 = 6. 
Table 5. Data Partition  

K Training Data Period Testing Data Period 

1 January 2010 – July 2020 August 2020 – December 2021 

2 January 2010 – August 2020 September 2020 – December 2021 

3 January 2010 – September 2020 October 2020 – December 2021 

4 January 2010 – October 2020 November 2020 – December 2021 

5 January 2010 – November 2020 December 2020 – December 2021 

6 January 2010 – December 2020 January 2021 – December 2021 

 

This study used RMSE, MAPE, and MAE resulted from time series cross-validation to evaluate the 

optimal hyperparameters. Table 6 shows the optimal hyperparameters of DRF and LSTMs for Export, 

Import, Official Reserves Assets, and Exchange Rates data. 
 

Table 6. The Optimal Hyperparameters for Each Data 

Data Model Hyperparameters 

Export 

DRF 
Node size 6 

ntree 700 

LSTMs 
Epoch 50 

Learning Rates 0.0025 

Import 

DRF 
Node size 10 

ntree 700 

LSTMs 
Epoch 100 

Learning Rates 0.001 

Official 

Reserve 

Assets 

DRF 
Node size 5 

ntree 500 

LSTMs 
Epoch 50 

Learning Rates 0.005 

Exchange 

Rates 

DRF 
Node size 10 

ntree 500 

LSTMs 
Epoch 100 

Learning Rates 0.0025 

 

After the optimal hyperparameters of DRF and LSTMs were selected, this study evaluated the 

performance of DRF and LSTMs for each data by splitting the data into training and testing data with 

proportions 83% and 17% respectively. According to the result in 3.1 and 3.2 Export data is considered non-

underfitting and nonlinear data, import data is considered as non-underfitting and linear data, Official Reserve 

Assets data is considered under-fitting and linear data, and Exchange Rates data is considered non-
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underfitting and nonlinear data. The performance comparison of DRF and LSTMs for each data is shown in 

Table 7, Table 8, and Table 9. 

 
Table 7. RMSE Value of DRF and LSTMs 

Method Data 
RMSE 

Export 

RMSE 

Import 

RMSE  

Official Reserve Assets 

RMSE 

Exchange Rates 

DRF 
Train 765.182 1058.891 1759.239 178.418 

Test 2423.838 2206.910 9374.651 532.652 

LSTMs 
Train 15.751 317.101 543.212 62.174 

Test 15.751 317.101 554.851 68.228 

 

Table 8. MAPE Value of DRF and LSTMs 

Method Data 
MAPE 

Export 

MAPE 

Import 

MAPE  

Official Reserve Assets 

MAPE 

Exchange Rates 

DRF 
Train 4.473 6.005 1.354 1.057 

Test 11.147 11.843 5.868 2.076 

LSTMs 
Train 0.111 2.337 0.430 0.473 

Test 0.100 2.359 0.329 0.423 

 

Table 9. MAE Value of DRF and LSTMs 

Method Data MAE Export 
MAE 

Import 

MAE  

Official Reserve Assets 

MAE 

Exchange Rates 

DRF 
Train 621.157 804.934 1455.395 128.155 

Test 1921.524 1679.684 8150.797 310.769 

LSTMs 
Train 15.751 317.101 460.703 54.776 

Test 15.751 317.101 449.796 61.119 

 

The visualization of actual data and forecasted data for training and testing data are shown in Figures 

3-6. The black color in the figure represents the actual data, the green color in the figure represents the 

forecasted value of training data, and the red color in the figure represents the forecasted value of testing data.  

 

 
(a) (b) 

Figure 3. The comparison of actual and forecasted export data (a) The comparison of actual and forecasted 

export data resulted from DRF, (b) The comparison of actual and forecasted export data resulted from LSTMs  
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(a) (b) 

Figure 4. The comparison of actual and forecasted Import data (a) The comparison of actual and forecasted 

Import data resulted from DRF, (b) The comparison of actual and forecasted Import data resulted from 

LSTMs 

 

 
(a) (b) 

Figure 5. The comparison of actual and forecasted official reserves assets data (a) The comparison of actual and 

forecasted official reserves assets data resulted from DRF, (b) The comparison of actual and forecasted official 

reserves assets data resulted from LSTMs  

 

 
(a) (b) 

Figure 6. The comparison of actual and forecasted Exchange Rates data (a) The comparison of actual and 

forecasted Exchange Rates data resulted from DRF, (b) The comparison of actual and forecasted Exchange 

Rates data resulted from LSTMs  

 

According to the result of the measure of forecast accuracy and the visualization of actual and 

forecasted data in Figures 3-6, LSTMs still outperform DRF whether the data is under-fitting, non-

underfitting, or nonlinear. 
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4. CONCLUSIONS 

This study used Indonesia’s economy indicators considered to under-fitting, non-underfitting, and 

nonlinear data. These indicators are Export, Import, Official Reserve Assets, and Exchange Rates. The 

performance comparison results using RMSE, MAPE, and MAE showed that LSTMs have higher 

performance than DRF in each data. 
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