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ABSTRACT 

Article History: 
The assumption of normality is often not fulfilled. This causes the estimation of the resulting 

parameters to be less efficient. The problem with assuming that normality is not satisfied can 

be overcome by resampling. The use of resampling allows data to be applied free of 

distributional assumptions. In this study, a research simulation was carried out by applying 

Jackknife and Double Jackknife resampling in path analysis with the assumption that the 

normality of the residuals was not fulfilled and the number of resampling was set at 100 with 

the degree of closeness level of relationship between variables consisting of low, medium, and 

high closeness. Based on the simulation results, resampling with a power of 100 can overcome 

the problem of unfulfilled normality assumptions. In addition, the comparison of the relative 

efficiency level of the Jackknife and Double Jackknife resampling in the path analysis obtained 

that the Double Jackknife resampling has more efficiency than the Jackknife resampling. 
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1. INTRODUCTION 

Path analysis is an extension of multiple linear regression analysis, which has more than one equation 

in the form of a system. In path analysis, the terms response and predictor variables are no longer used. 

Instead, the terms exogenous and endogenous variables are used [1]. As an extension of multiple linear 

regression analysis, the assumptions in estimating the path coefficient are almost the same as the assumptions 

that apply in multiple linear regression analysis. The assumptions that must be met in the path analysis are 

the assumption of linearity, residual variance homoscedasticity, and residual normality assumption [2]. The 

assumption of normality of the residuals in path analysis is as important as it is in regression analysis. There 

are times when the residual normality assumption in the path analysis cannot be fulfilled, so it needs to be 

handled. 

If the residual normality assumption cannot be met, then several things can be done, for example, 

transforming the data, trimming the outlier data, or adding observations [3]. In addition to the method already 

mentioned, there is one more method that can be used to overcome violations of the residual normality 

assumption, namely resampling [4]. 

Resampling is a method of taking repeated samples from the same sample [5]. Bootstrap and Jackknife 

methods are nonparametric and resampling techniques that aim to estimate standard errors and bias values, 

Jackknife itself is an alternative to bootstrap [6]. [7] Bootstrap and Jackknife are two methods used to estimate 

an unknown population distribution with empirical distributions obtained from the resampling process. The 

resampling used in this study is Jackknife and Double Jackknife resampling. 

The basic principle of the Jackknife method is the removal of the first element from the original data 

[8], the result of deleting the first row is called the first stage Jackknife data as much as 𝛽1 resampled again 

as much as 𝛽2 replication so that it is called the second stage double Jackknife. The weakness of the Double 

Jackknife method is that it takes longer to calculate because it has to calculate as many  𝛽1 + 𝛽1𝛽2 test statistic 

value. 

The 100 data used in this research is a simulation study using generated data with one exogenous 

variable, one intervening endogenous variable, and one pure endogenous variable [9]. These three variables 

are measured directly (observable variables), so they do not require a measurement model. Thus, the data has 

an interval or ratio scale. Exogenous variables are determined by standardizing 𝑥̅ ± 2𝑠, where 𝑥̅ = 0 and 𝑠 =
1. The distance between observations on exogenous variables is made the same. Pure endogenous variables 

are calculated through a linear regression function with three variations of the path coefficient [10]. Path 

coefficients with a range of 0.05 – 0.20 describe a low closeness relationship, a value range of 0.20 – 0.50 

describe a medium closeness relationship, and a value range of 0.50 – 1.00 describes a high closeness 

relationship. 

The comparison of the Jackknife and Double Jackknife methods is said to be good in terms of relative 

efficiency. Comparative research on the efficiency of the parameter estimator from path analysis by applying 

Jackknife (delete-5), the Jackknife resampling method is more appropriate for parameter estimation in path 

analysis, this is indicated by a relative efficiency above one [6]. The use of path analysis with the jackknife 

method proved to be more effective, and resulted in relatively good asymptotic assumptions [11]. 

In this study, the effectiveness was tested by applying the Double Jackknife resampling method, where 

the process will resampling the first stage of resampling data. The novelty of this research is the use of the 

Double Jackknife method applied to simulated data. 

In this study, residuals from generated data are used, namely residuals that follow an exponential 

distribution [12]. The exponential distribution represents the condition when the residual normality 

assumption is not met. Comparison of the Efficiency Level of the Parameter Estimator from Path Analysis 

with Bootstrap and Jack Knife (Delete-5) with Simulation Data shows that the jackknife resampling method 

(delete-5) is three times more efficient than the bootstrap resampling method [6]. This study applies the 

resampling method in path analysis. In addition, this research is also intended to determine which resampling 

method is more efficient, Jackknife or Double Jackknife with a simulation study. 
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2. RESEARCH METHODS 

2.1  Path Analysis 

Path analysis is used when research analyses relationships between complex variables that cannot be 

done using multiple regression. In complex relationships or more than one dependent variable, a series of 

regression equations is needed. Path analysis was developed as a method to study the direct and indirect 

effects of the independent variables on the dependent variable [13]. 

Path analysis is a technique for analysing cause-and-effect relationships that occur in multiple 

regression if the independent variables affect the dependent variable not only directly but also indirectly. 

Another definition says path analysis is the direct development of multiple regression forms to provide 

estimates of the magnitude and significance of a hypothetical causal relationship in a set of variables. 

Another definition says path analysis is an extended regression model that is used to test the alignment of 

the correlation matrix with two or more causal relationship models desired by the researcher [14].  

This analysis is a method for explaining and looking for causal relationships between variables. Path 

analysis is used to examine the relationship between causal models that have been formulated by researchers 

based on theoretical considerations and certain knowledge. Besides being based on data, causal relationships 

are also based on knowledge, hypothesis formulation, and logical analysis. This path analysis can be used to 

test a set of causal hypotheses as well as interpret those relationships [15]. Based on the description above, 

path analysis is not a method to find causes but an applied method for causal models formulated by 

researchers with a knowledge base and theoretical considerations. 

 

2.2  Types of Influence on Path Analysis 

A variable can be viewed as a cause or an effect. This can be seen from the influence of the variables 

[16]. It explained that there are three types of influence in the path analysis, namely: 

1) Direct Effect  

Inter-variables are said to directly influence when the influence between exogenous and endogenous 

variables occurs without going through other variables as intermediaries. 

 

 

 

 

 
Figure 1. Direct influence 

From Figure 1 it can be seen that the magnitude of the direct effect can be known directly as 𝑃𝑦1𝑥1.  

2) Indirect Effect  

Inter-variables have an indirect effect if the influence between exogenous and endogenous variables 

is through other variables as intermediaries. 

 

 

 

 

 
       Figure 2. Indirect effect 

From Figure 2, it can be seen that the effect of 𝑋1 is 𝑌3 through 𝑌2. The amount of direct influence 

is calculated by diverting the direct influence of 𝑋1 to 𝑌2 and the direct influence of 𝑌2 to 𝑌3 with the 

formula 𝑃𝑦2𝑥1  ×  𝑃𝑦3𝑦2. 

3) Total Effect  

The total effect is the sum of the step effect and the indirect effect. Based on Figure 2, the total effect 

can be calculated using the formula 𝑃𝑦1𝑥1 + 𝑃𝑦2𝑥1 × 𝑃𝑦3𝑦2. 
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2.3 Path Charts 

Path diagrams are an important component of path analysis. Through the path diagram, it can be seen 

the direct and indirect influence on the relationship between exogenous and endogenous variables. Cause and 

effect relationships in the path diagram are shown in the direction of the arrows. In path analysis, there is at 

least one exogenous variable (𝑋), mediating (𝑌1), and endogenous (𝑌2).  The shape of the path diagram with 

three variables is as follows. 

 

 

 

 

 

 
 

 

 

 

 

Figure 3. Path diagram with three variables 

 

Figure 3 shows that 𝑋 affects 𝑌1  and 𝑌2, 𝑌1 affects 𝑌2 , while 𝑌2 is influenced by 𝑋 and 𝑌1. 

 

Before creating a model, it is necessary to standardize the variables in the path analysis so that they 

have the same mean and variance. Thus, the path coefficients obtained usually have the same units and can 

be compared. The following is a form of standardization carried out on exogenous variables. 

 

𝑍𝑋𝑖
=

𝑋𝑖−𝑋̅

𝑆
; 𝑤𝑖𝑡ℎ 𝑆 = √

(𝑋𝑖−𝑋̅)2

𝑛−1
         (1) 

 

By carrying out standardization, each variable will follow the standard normal distribution, namely the 

normal distribution with 𝑚𝑒𝑎𝑛 = 0 and 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1. To get the original observed value, the reverse 

transformation can be carried out as follows. 

 

𝑍𝑋 =
𝑋𝑖 − 𝑋̅

𝑆
 

𝑆 × 𝑍𝑋 = 𝑋𝑖 − 𝑋̅            (2) 

𝑋𝑖 = (𝑆 × 𝑆𝑋) + 𝑋̅ 

 

The path analysis model is a system of equations. This model can be formed based on the path diagram. 

It is necessary to solve the system of equations simultaneously (simultaneously), starting from parameter 

estimation and hypothesis testing to interpretation. 

The system of equations obtained from the path diagram in Figure 3 is as follows. 

 

𝑌1𝑖 = 𝛽𝑋𝑌1
𝑋𝑖 + 𝜀𝑌1𝑖       (3) 

𝑌2𝑖 = 𝛽𝑋𝑌2
𝑋𝑖 + 𝛽𝑌1𝑌2

𝑌1𝑖 + 𝜀𝑌2𝑖      (4) 

 

In the equation above, 𝑖 moves from 1,2,⋯ , 𝑛, where n indicates the number of observations. After 

being standardized with Equation (1), the system of Equations (3-4) becomes as follows. 

 

𝑍𝑌1𝑖 = 𝛽𝑍𝑋𝑍𝑌1
𝑍𝑋𝑖 + 𝜀𝑍𝑌1

 

 𝑍𝑌2𝑖 = 𝛽𝑍𝑋𝑍𝑌2
𝑍𝑋 + 𝛽𝑍𝑌1𝑍𝑌2

𝑍𝑌1𝑖 + 𝜀𝑍𝑌2𝑖
           (5) 

 

In matrix form, the system of Equation (5) can be written as follows. 

 

𝑋 

𝑌1 

𝑌2 
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(

 
 
 

𝑍𝑌11

⋮
𝑍𝑌𝑛

𝑍𝑌21

⋮
𝑍𝑌2𝑛)

 
 
 

=

(

 
 
 

𝑍𝑋1
0 0

⋮ ⋮ ⋮

𝑍𝑋𝑛

0
⋮
0

0
𝑍𝑋1

⋮
𝑍𝑋𝑛

0
𝑍𝑌11

⋮
𝑍𝑌1𝑛)

 
 
 

(

𝛽𝑍𝑋𝑍𝑌1

𝛽𝑍𝑋𝑍𝑌2

𝛽𝑍𝑌1𝑍𝑌2

) +

(

 
 
 

𝜀𝑍𝑌11

⋮
𝜀𝑍𝑌1𝑛

𝜀𝑍𝑌21

⋮
𝜀𝑍𝑌2𝑛)

 
 
 

              (6) 

𝑌̰ = 𝑿𝛽̰ + 𝜀̰ 

2.4 Path Coefficient Estimation 

 

The path coefficient shows the magnitude of the direct influence of exogenous variables on endogenous 

variables in a system of equations. One method that can be used to estimate the path coefficient is Ordinary 

Least Square (OLS). 

The principle of the OLS method is to minimize the sum of the residual squares. Based on Equation 

(6), 𝑌 = Χβ + ε can be written as ε = 𝑌 − Χβ. Thus, the sum of the squares of the residuals can be written as 

𝑄 = 𝜀𝑇𝜀.  

The OLS method minimizes the following functions. 

 

min{𝑄} = min{𝜀𝑇𝜀} = min {(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽)} 
                    min{𝑄} = min{𝜀𝑇𝜀} = min {(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽)}           (7) 

 

2.5 Resampling 

  

Resampling is the process of repeating sampling from an existing or original sample so that a new 

sample is obtained [17]. A new sample is obtained from the original sized sample taken at random, either 

with replacement or without replacement. The resampling method can be applied as an alternative if the 

number of observations does not meet the needs of the research, which can lead to inaccurate parameter 

estimates [18]. In addition, the application of the resampling method allows the validity of the data, which is 

free from assumptions or, in other words, does not require normality assumptions. 

 

2.5.1 Jackknife 

 

Jackknife is a resampling method introduced by Quenouille to estimate bias. Tukey introduced 

Jackknife to estimate the standard deviation [19]. The Jackknife method is used for taking new samples 

repeatedly from the original data of size 𝑛 by deleting the 𝑘𝑒 − 𝑖 observation with 𝑖 = 1,2,3,… , 𝑛.  then the 

Jackknife simulation is based on the new data set ×∗= 𝑥1
∗, 𝑥2

∗, ⋯ , 𝑥𝑛
∗  which is used to take new samples 

repeatedly from the original data of size 𝑛 by removing the 𝑖 − 𝑡ℎ observation. 

Jackknife's resampling process in general can be seen as shown below in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Schematic of the Jackknife process 

 

×=  (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 

×1
∗  

×2
∗  

 

⋯ 

×𝑛
∗  

 

Jackknife sample 

𝑠(×1
∗) 

𝑠(×2
∗) 

 

⋯ 

𝑠(×𝑛
∗ ) 

 

Statistics from the Jackknife 

sample 

Datasets 
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 Based on this process, the collection of observational data (observation) is based on the removal of one 

sample or group of samples from the initial sample, which is considered as a population. At one stage and the 

next, the removed sample is returned and one or a group of samples is deleted and so on, until all samples 

from the population have had a chance to be deleted. 

 

The principle is to remove one piece of data and repeat it as many times as there are samples. To 

estimate the regression parameters using the Jackknife procedure, eliminating one piece of data can be done 

using the following procedure. 

Take a random sample of size 𝑛, where: 

 

𝑌 = [

𝑦1

𝑦2

⋮
𝑦𝑛

] 𝑎𝑛𝑑 𝑋 = [

1 𝑥11
𝑥12 … 𝑥1𝑗

1 𝑥21
𝑥22 … 𝑥2𝑗

⋮
1

⋮
𝑥𝑛1

⋮
𝑥𝑛2

⋱
…

⋮
𝑥𝑛𝑗

] is the actual sample. 

 

The next step in jackknife is to remove one row from the vector, for  the Jackknife to remove the first line in 

the vector as follows: 

𝑌∗∗1 = [

𝑦1

𝑦2

⋮
𝑦𝑛

] 𝑎𝑛𝑑 𝑋∗∗1 = [

1 𝑥21
𝑥22 … 𝑥2𝑗

1 𝑥32
𝑥32 … 𝑥3𝑗

⋮
1

⋮
𝑥𝑛1

⋮
𝑥𝑛2

⋱
…

⋮
𝑥𝑛𝑗

]    (8) 

 

The data that has been omitted from the first row in the vector is called the Jackknife data and is solidly 

denoted in the following form: 

𝑌∗∗𝑖 =

[
 
 
 
𝑦1

∗∗𝑖

𝑦2
∗∗𝑖

⋮
𝑦𝑛

∗∗𝑖]
 
 
 

;  𝑋∗∗1 =

[
 
 
 
 1 𝑥11

∗∗𝑖 𝑥12
∗∗𝑖 … 𝑥1𝑗

∗∗𝑖

1 𝑥21
∗∗𝑖 𝑥22

∗∗𝑖 … 𝑥2𝑗
∗∗𝑖

⋮
1

⋮

𝑥(𝑛−1)1
∗∗𝑖

⋮

𝑥(𝑛−1)2
∗∗𝑖

⋱
…

⋮

𝑥(𝑛−1)𝑗
∗∗𝑖

]
 
 
 
 

; 𝜀∗∗𝑖 =

[
 
 
 
𝑒1

∗∗𝑖

𝑒2
∗∗𝑖

⋮
𝑒𝑛

∗∗𝑖]
 
 
 

   (9) 

 

To estimate the parameter 𝛽̂∗∗𝑖 search using the least squares method to minimize the sum of squared errors 

as follows: 

𝑒∗∗𝑖𝑇𝑒∗∗𝑖 = (𝑌∗∗𝑖 − 𝑋∗∗𝑖𝛽̂∗∗𝑖)
𝑇
(𝑌∗∗𝑖 − 𝑋∗∗𝑖𝛽̂∗∗𝑖) 

= (𝑌∗∗𝑖 − (𝑋∗∗𝑖𝛽̂∗∗𝑖)
𝑇
) (𝑌∗∗𝑖 − 𝑋∗∗𝑖𝛽̂∗∗𝑖)     (10) 

= (𝑌∗∗𝑖𝑇 − 𝛽̂∗∗𝑖𝑇𝑋∗∗𝑖𝑇)(𝑌∗∗𝑖 − 𝑋∗∗𝑖𝛽̂∗∗𝑖) 

𝑒∗∗𝑖𝑇𝑒∗∗𝑖 = 𝑋∗∗𝑖𝑇𝑌∗∗𝑖 − 𝑌∗∗𝑖𝑇𝑋∗∗𝑖𝛽̂∗∗𝑖𝑇 − 𝛽̂∗∗𝑖𝑇𝑌∗∗𝑖𝑇𝑌∗∗𝑖 + 𝛽̂∗∗𝑖𝑇𝑋∗∗𝑖𝑇𝑌 

 

The estimation results for the parameter 𝛽̂∗∗𝑖 are obtained by minimizing the sum of the squared errors, 

namely: 

 

𝜕(𝑒∗∗𝑖𝑇𝑒∗∗𝑖)

𝜕𝛽̂∗∗𝑖 = 0       (11) 

𝜕(𝑌∗∗𝑖𝑇𝑌∗∗𝑖)

𝜕𝛽̂∗∗𝑖
− 2

𝜕(𝑌∗∗𝑖𝑇𝑋∗∗𝑖𝛽̂∗∗𝑖)

𝜕𝛽̂∗∗𝑖
+

𝜕(𝑋∗∗𝑖𝑇𝛽̂∗∗𝑖𝑋∗∗𝑖𝛽̂∗∗𝑖)

𝜕𝛽̂∗∗𝑖
= 0 

−2𝑌∗∗𝑖𝑇𝑋∗∗𝑖 + 2𝑋∗∗𝑖𝑇𝑋∗∗𝑖𝛽̂∗∗𝑖 = 0 

2𝑋∗∗𝑖𝑇𝑋∗∗𝑖𝛽̂∗∗𝑖 = 2𝑋∗∗𝑖𝑇𝑋∗∗𝑖 

𝛽̂∗∗𝑖 = (𝑋∗∗𝑖𝑇𝑋∗∗𝑖)
−1

𝑌∗∗𝑖𝑇𝑋∗∗𝑖 

 

So that the estimated value of 𝛽̂∗∗𝑖 is obtained as follows: 

 

𝛽̂∗∗𝑖 = (𝑋∗∗𝑖𝑇𝑋∗∗𝑖)
−1

𝑌∗∗𝑖𝑇𝑋∗∗𝑖 
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𝑋12
∗∗ 

𝑋1𝐵2

∗∗  

… 

𝑋𝐵11
∗∗  

….. 

𝑋𝐵12
∗∗  

... 

𝑋𝐵1𝐵2

∗∗  

𝑋11
∗∗ 𝜏11

∗∗

∗

𝜏12
∗∗

* 

𝜏1𝐵2
∗∗  

𝜏𝐵
12

∗∗  

𝜏𝐵11
∗∗  

𝜏𝐵1𝐵2
∗∗  

𝑋1
∗ 

𝜏1
∗ 

𝑋2
∗ 

𝑋𝐵1
∗  

𝜏2
∗ 

… 

𝜏𝐵1
∗  

𝑋
= {𝑋 , 𝑋 ,… , 𝑋 } 

Original dataset 

Jackknife sample 

Stage 1 

Jackknife sample 

Stage 2 Double Jackknife stats 

The next step is to take the actual sample as in Equation (9). Then the second row is omitted and the 

parameters are estimated using Equation (11). Analogously applied to the third row to the 𝑘𝑒 − 𝑛. Then the 

Jackknife parameter 𝛽̂∗∗1, 𝛽̂∗∗2,⋯ 𝛽̂∗∗𝑛. Jackknife parameter estimation is obtained by finding the average 

value of each parameter estimator 𝛽̂1, 𝛽̂2, ⋯ 𝛽̂𝑛 as follows: 

 

    𝛽̂𝐽 =
∑ 𝛽̂𝑖𝑛

𝑖=1

𝑛
            (12) 

 

Then calculate the level of accuracy of parameter estimation using bias and standard deviation. The bias of 

the Jackknife can be calculated as follows: 

 

𝐵𝑖𝑎𝑠𝐽 = (𝑛 − 1)𝛽̂𝐽 − 𝛽̂             (13) 

 

The variance of the Jackknife can be calculated as follows: 

 

𝑉𝑎𝑟(𝛽̂𝐽  ) =
𝑛−1

𝑛
∑ (𝛽̂𝑖  − 𝛽̂𝐽  )(𝛽̂𝑖  − 𝛽̂𝐽  )

𝑇𝑛
𝑖=1         (14) 

 

So the Jackknife standard deviation is 

 

𝑆𝐷𝐽 = √𝑉𝑎𝑟(𝛽̂𝐽)       (15) 

 

 

2.5.2 Double Jackknife 

 

The double Jackknife procedure is done by generating new data from the previously generated 

Jackknife data set. From the first stage Jackknife data set that was replicated as much as 𝐵1 from the original 

data set, the Jackknifing process was repeated as many as 𝐵2 replications, so that the total number of test 

statistics that had to be calculated as 𝐵1 + 𝐵1𝐵2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   

 

 

 
     Figure 5. Double Jackknife procedure 
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The steps for the Double Jackknife resampling method are as follows: 

1) Take a random sample of size 𝑛 from the population and name it a vector 𝑤𝑖 = (𝑌𝑖 , 𝑋𝑗𝑖)
′
 with 𝑌𝑖 =

(𝑦1, 𝑦2, … , 𝑦𝑛)′  and 𝑋𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑛)′ for 𝑗 = 1,2,… , 𝑘  𝑎𝑛𝑑  𝑖 = 1,2, … . , 𝑛.  

2) Delete the first line of the vector 𝑤𝑖 = (𝑌𝑖 , 𝑋𝑗𝑖)
′
 and it is a vector with sample size (𝑛 − 1) so vector y 

becomes 𝑌𝑖
(𝑗)

= (𝑦2
(𝑗)

, 𝑦3
(𝑗)

, … , 𝑦𝑛
(𝑗)

)
′
 and 𝑋𝑗𝑖

(𝑗)
= (𝑥𝑗2

(𝑗)
, 𝑥𝑗3

(𝑗)
, … , 𝑥𝑗𝑛

(𝑗)
)
′
 as a sample with a Jackknife, 

remove one (𝑤1
(𝑗)

) and estimate the path coefficient 𝛽̂(𝑗1) from (𝑤1
(𝑗)

). Next, delete the second row of 

the vector 𝑤𝑖 = (𝑌𝑖 , 𝑋𝑗𝑖)
′
 and then label the sample size  (𝑛 − 1) with the observation set 𝑌𝑖

(𝑗)
=

(𝑦1
(𝑗)

, 𝑦3
(𝑗)

, … , 𝑦𝑛
(𝑗)

)
′
 and 𝑋𝑗𝑖

(𝑗)
= (𝑥𝑗1

(𝑗)
, 𝑥𝑗3

(𝑗)
, … , 𝑥𝑗𝑛

(𝑗)
)
′
as (𝑤2

(𝑗)
) and estimate the path coefficient 𝛽̂(𝑗2). 

Remove one by one sample from n observations and estimate the path coefficient 𝛽̂(𝑗𝑖) where the value 

𝛽̂(𝑗𝑖) is the Jackknife path coefficient. After eliminating the ith observation from 𝑘𝑒 − 𝑖 𝑑𝑎𝑟𝑖 𝑤𝑖, the 

estimated value of the Jackknife path coefficient 𝛽̂(𝑗1), 𝛽̂(𝑗2), … , 𝛽̂(𝑗𝑛). 

3) Furthermore, the Double Jackknife procedure is carried out by regenerating data from the previously 

generated Jackknife data set. From the first phase of the Jackknife data set that was replicated as much as 

𝐵1from the original data set, the Jackknife process was carried out again as many as 𝐵2 replications, so 

that the total number of test statistics that had to be calculated as 𝐵1+𝐵1𝐵2. 

4) The Jackknife path coefficient is calculated which is the average of 𝛽̂(𝑗1), 𝛽̂(𝑗2), … , 𝛽̂(𝑗𝑛). 

5) Then calculate the level of accuracy of parameter estimation using bias and standard deviation.  

The following are the steps that must be taken to estimate the standard error in a double jackknife: 

1) Perform resampling by removing d observations alternately from the original sample set on each 

Jackknife sample 

2) Perform parameter estimation on all Jackknife 𝛽 samples 

3) Calculates the standard error for the Jackknife sample 

 

𝑠̂𝑒𝑗𝑘 = √
𝑛−𝑑

𝑑(
𝑛
𝑑
)
∑ (𝛽̂(𝑗) −

𝛽̂𝑗

𝑗
)
2

𝑛
𝒋=1        (16) 

 

2.6 Relative Efficiency 

 

The comparison of the resampling method is measured based on the relative efficiency value [20]. 

Relative efficiency is calculated by comparing the variance between the two parameter estimators. The 

relative efficiency of the two estimators can be written as follows. 

 

   𝑒𝑓𝑓(𝛽̂𝐽𝐾 , 𝛽̂𝐷𝐽𝐾  ) =
𝑉(𝛽̂𝐷𝐽𝐾)

𝑉(𝛽̂𝐽𝐾)
         (17) 

Description: 

𝑒𝑓𝑓(𝛽̂𝐽𝐾 , 𝛽̂𝐷𝐽𝐾  ) = Efficiency between Jackknife and Double jackknife resampling method estimator 

𝑉(𝛽̂𝐽𝐾)               = Variant of parameter estimator with the Jackknife resampling method 

𝑉(𝛽̂𝐷𝐽𝐾)  = Variant of parameter estimator with Double Jackknife resampling method 

 

Efficiency comparison between the Jackknife and Double Jackknife resampling estimator variants. 

That is a parameter estimator variant with the Double Jackknife resampling method. If the efficiency of the 

results using Equation (17) is more than 1, the 𝛽̂𝐽𝐾 an estimator is said to be more efficient than the 𝛽̂𝐷𝐽𝐾 

estimator. On the other hand, if the calculated efficiency results are less than 1, the 𝛽̂𝐷𝐽𝐾  an estimator is said 

to be more efficient than the 𝛽̂𝐽𝐾.  estimator. Meanwhile, if the efficiency results are equal to 1, both estimators 

are equally efficient. 
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3. RESULTS AND DISCUSSION 

3.1 The Degree of Closeness of the Relationship between Categorical Variables Is Low 

The level of closeness of the relationship between variables included in the low category is shown by 

the path coefficient values in the range of  0.05-0.20. Resampling was carried out on the results of parameter 

simulations in path analysis for each set of samples, the path coefficient was estimated, denoted as                    

𝛽̂ = (𝛽̂𝑋𝑌1
    𝛽̂𝑋𝑌2

    𝛽̂𝑌1𝑌2
). After obtaining three path coefficient estimators, namely 𝛽̂𝑋𝑌1

, 𝛽̂𝑋𝑌2
, and 𝛽̂𝑌1𝑌2

 then 

the average path coefficient estimator is calculated, which is denoted as 𝛽̂𝑋𝑌1

∗ (. )    𝛽̂𝑋𝑌2

∗ (. ), and 𝛽̂𝑌1𝑌2

∗ (. ). The 

hypothesis test is presented in Table 1. 

 
Table 1. Hypothesis testing on conditions assuming normality not fulfilled and low closeness of Jackknife and 

Double Jackknife resampling 

 

Based on Table 1, the 𝑝-value for the path coefficient, which shows the relationship between 𝑋 to 𝑌1, 

𝑋 to 𝑌2 and 𝑌1 to 𝑌2 is smaller than the level set, so that 𝐻0 is rejected. Thus, it can be concluded that 𝑋 has a 

significant effect on 𝑌1, 𝑋 has a significant effect on 𝑌2, and 𝑌1 has a significant effect on 𝑌2. Judging from 

the relative efficiency value of variable 𝑋 to 𝑌1 in the path analysis, the efficiency value is more than one, 

indicating that the Jackknife method has a smaller variant than the Double Jackknife method. Whereas in the 

path analysis between variables 𝑋 to 𝑌2 and 𝑌1 to 𝑌2 the efficiency value is less than one indicating that the 

Double Jackknife method has a smaller variant than the Jackknife method. 

 

3.2 The Level of Closeness of the Relationship between the Variables in the Moderate Category 

The level of closeness of the relationship between variables included in the medium category is shown 

by the path coefficient values in the range of 0.20-0.50. Resampling was carried out on the results of 

parameter simulations in path analysis for each set of samples, the path coefficient was estimated, denoted as 

𝛽̂ = (𝛽̂𝑋𝑌1
    𝛽̂𝑋𝑌2

    𝛽̂𝑌1𝑌2
). After obtaining three path coefficient estimators, namely 𝛽̂𝑋𝑌1

, 𝛽̂𝑋𝑌2
 and 𝛽̂𝑌1𝑌2

 then 

the average path coefficient estimator is calculated which is denoted as 𝛽̂𝑋𝑌1

∗ (. )    𝛽̂𝑋𝑌2

∗ (. ), and  𝛽̂𝑌1𝑌2

∗ (. ). The 

hypothesis test is presented in Table 2. 

 
Table 2. Hypothesis testing on conditions assuming normality not fulfilled and closeness of moderate  Jackknife 

and Double Jackknife Resampling 

 

Based on Table 2, the 𝑝-value for the path coefficient which shows the relationship between 𝑋 to 𝑌1, 

𝑋 to 𝑌2 and 𝑌1 to 𝑌2 is smaller than the level set so that 𝐻0 is rejected. Thus it can be concluded that 𝑋 has a 

significant effect on 𝑌1, 𝑋 has a significant effect on 𝑌2, and 𝑌1 has a significant effect on 𝑌2. Judging from 

 
    Variable 

Jackknife Resampling Double Jackknife Resampling 

 
Relative Efficiency 

Path 

Coefficient 
𝒑 − 𝒗𝒂𝒍𝒖𝒆 Path Coefficient 𝒑 − 𝒗𝒂𝒍𝒖𝒆 

𝑛 = 100 𝑛 = 100 𝑛 = 100 𝑛 = 100 

𝑋 → 𝑌1 

𝑋 → 𝑌2 

𝑌1 → 𝑌2 

0,01 

0,01 

0,92 

0,00 

0,00 

0,00 

0,01 

0,01 

0,93 

0,00 

0,00 

0,00 

1,04473 

0,85679 

0,83073 

 

     Variable 

Jackknife Resampling Double Jackknife Resampling 
 

Relative 

Efficiency 

Path Coefficient 𝒑 − 𝒗𝒂𝒍𝒖𝒆 Path Coefficient 𝒑 − 𝒗𝒂𝒍𝒖𝒆 

𝑛 = 100 𝑛 = 100 𝑛 = 100 𝑛 = 100 

𝑋 → 𝑌1 

𝑋 → 𝑌2 

𝑌1 → 𝑌2 

0,01 

0,00 

0,96 

0,00 

0,00 

0,00 

0,01 

0,00 

0,96 

0,00 

0,00 

0,00 

0,92524 

0,96278 

0,79389 
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the relative efficiency values of all path analyses efficiency values are less than indicating that the Double 

Jackknife method has a smaller variant than the Jackknife method. Therefore, it can be concluded that path 

analysis with Double Jackknife resampling is more efficient than the Jackknife resampling method. 

 

3.3 The Degree of Closeness of the Relationship between Category Variables Is High 

 

The level of closeness of the relationship between variables included in the high category is shown by 

the path coefficient values in the range of 0.05-1.00. Resampling was carried out on the results of parameter 

simulations in path analysis for each set of samples, the path coefficient was estimated, denoted as 𝛽̂ =

(𝛽̂𝑋𝑌1
    𝛽̂𝑋𝑌2

    𝛽̂𝑌1𝑌2
). After obtaining three path coefficient estimators, namely 𝛽̂𝑋𝑌1

,  𝛽̂𝑋𝑌2
  and 𝛽̂𝑌1𝑌2

 then the 

average path coefficient estimator is calculated which is denoted as 𝛽̂𝑋𝑌1

∗ (. ),    𝛽̂𝑋𝑌2

∗ (. ), and 𝛽̂𝑌1𝑌2

∗ (. ). The 

hypothesis test is presented in Table 3. 

 
Table 3. Hypothesis testing on unfulfilled normality assumption conditions and high relationship closeness of 

Resampling Jackknife and Double Jackknife 

 

Based on Table 3, the 𝑝-value for the path coefficient, which shows the relationship between 𝑋 to 𝑌1, 

𝑋 to 𝑌2, and 𝑌1 to 𝑌2, is smaller than the level set so that 𝐻0 is rejected. Thus, it can be concluded that 𝑋 has 

a significant effect on 𝑌1, 𝑋 has a significant effect on 𝑌2, and 𝑌1 has a significant effect on 𝑌2. Judging from 

the relative efficiency value of variable 𝑋 to 𝑌1, in path analysis, the efficiency value is less than one, 

indicating that the Double Jackknife method has a smaller variant than the Jackknife method, while in the 

path analysis between 𝑋 to 𝑌2 and 𝑌1 to 𝑌1, the efficiency value is more than one, indicating that the method 

Jackknife has a smaller variant than the Double Jackknife method. 

 

 

4 CONCLUSIONS 

Based on the simulation studies that have been carried out, the use of the Jackknife and Double Jackknife 

resampling methods on the data with the assumption of residual normality is not met, indicating that both the Jackknife 

and Double Jackknife resampling methods can be applied and overcome normality. The calculated relative efficiency 

produces various levels of the closeness of the relationship between variables indicating that the Double Jackknife 

resampling method is more efficient than the Jackknife resampling method. 
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