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ABSTRACT 

Article History: 
COVID-19 is a deadly infectious disease that occurs throughout the world. Therefore, it is 

necessary to prevent the transmission of COVID-19 such as vaccination. The purpose of this 

research is to modify the model of the spread of the COVID-19 disease from the previous model. 

The equilibrium points and the basic reproduction number (ℛ0) of the modified model are 

determined. Then a stability analysis was carried out, and a numerical simulation was carried 

out to see the dynamics of the population that occurred. The analysis performed on the model 

obtained two equilibriums, namely the disease-free equilibrium and the endemic equilibrium. 

Disease-free equilibriums are locally asymptotically stable if ℛ0 < 1. Meanwhile, the endemic 

equilibrium is locally asymptotically stable if ℛ0 > 1. The numerical simulation results show 

the same results as the analytical results. 
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1. INTRODUCTION 

Coronavirus Disease is an infectious disease caused by a type of corona virus that was recently 

discovered in Wuhan, Hubei Province, China, in December 2019 [1]. In 2020, a new type of coronavirus 

(SARS-CoV-2) spread which was later named Coronavirus Disease 2019 (COVID-19) by the World Health 

Organization (WHO) [2]. In Wuhan, the capital city of Hubei Province, this virus has infected 90,308 people 

on March 2, 2020. The number of deaths reached 3,087 people or 6%, and the number of patients recovered 

was 45,726 people. Researchers at the Institute of Virology in Wuhan have carried out a metagenomics 

analysis to identify the new coronavirus as a potential etiology. They call it the 2019 novel coronavirus 

(nCoV-2019) [3]. Furthermore, the Centers for Disease Control and Prevention (CDC) in the United States 

mention the coronavirus 2019 as the 2019 novel coronavirus (2019-nCoV), and now the disease is popular 

with the term coronavirus disease-19 (COVID-19) [4]. 

Based on data from WHO [5], on May 26, 2021, cases of COVID-19 worldwide reached 167,492,769 

cases with 3,482,907 deaths. However, in Indonesia, the COVID-19 case on May 23, 2021, reached 1,775,220 

cases with 1,633,045 recoveries and 49,328 deaths [6]. The data shows that the COVID-19 virus is a 

dangerous virus that must be dealt with immediately because it can have a negative impact on the economic 

sector. 

Currently, the COVID-19 virus has disrupted the global economy [7]. According to Organization for 

Economic Co-operation and Development (OECD), the COVID-19 pandemic has an impact on the threat of 

a major economic crisis which is marked by the cessation of production activities in various countries, 

including Indonesia, the level of public consumption decreased, lost consumer confidence, and the fall of the 

stock market which ultimately led to uncertainty[8]. In Indonesia, it is not only the economic sector 

experiencing a downturn but also the education sector. The government of the Republic of Indonesia finally 

took a bold step by vaccinating [6]. This vaccination is expected to reduce or even eliminate pandemic 

outbreaks. So that all sectors of life can return to normal. 

However, the effect of vaccination on the COVID-19 pandemic cannot be ascertained. It is not yet 

certain whether this vaccination is effective or not in reducing the number of COVID-19 cases. Therefore, 

the researchers modeled the dynamic system of the spread of the COVID-19 disease with the vaccination 

treatment to determine the effect of the vaccination rate and the effectiveness of the vaccine against the 

COVID-19 pandemic. 

 

 

2. RESEARCH METHODS 

The method used in this study is a literature study that aims to develop and modify a model for the 

spread of COVID-19. The model in this research is a modification of Cui et al. [9] and Resmawan et al. [10]. 

Modification of the model was carried out by removing the quarantine treatment and giving treatment in the 

form of vaccination and dividing infected individuals into two groups, namely people who are infected with 

clinical symptoms and people who are infected without clinical symptoms in a population 𝑁(𝑡), which can 

be seen in Figure 1. The model parameters used in the study are shown in Table 1. Furthermore, we will 

look for a disease-free equilibrium, endemic equilibrium, and the basic reproduction number of the system 

of Equations (1). From the equilibriums obtained, the stability conditions will be determined, and a numerical 

simulation will be carried out to see the dynamics of the population in the form of the resulting solution curve. 
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Figure 1. Compartment Diagram of the COVID-19 Disease Spread Model 

The model above is given by the following system of non-linear differential equations: 

𝑑𝑆

𝑑𝑡
= Π− 𝜆𝑆 − 𝜔𝑆 − 𝜇𝑆 

𝑑𝑉

𝑑𝑡
= 𝜔𝑆 − (1 − 𝜀)𝜆𝑉 − 𝜇𝑉 

𝑑𝐸

𝑑𝑡
= 𝜆𝑆 + (1 − 𝜀)𝜆𝑉 − 𝜃𝜑𝐸 − (1 − 𝜃)𝜐𝐸 − 𝜇𝐸 

𝑑𝐴

𝑑𝑡
= 𝜃𝜑𝐸 − 𝜏𝐴 − 𝜇𝐴 

𝑑𝐼

𝑑𝑡
= (1 − 𝜃)𝜐𝐸 − 𝛾𝐼 − 𝛼𝐼 − 𝜇𝐼 

𝑑𝑅

𝑑𝑡
= 𝜏𝐴 + 𝛾𝐼 − 𝜇𝑅 

(1) 

where 𝜆 =
𝛽(𝜎𝐸 + 𝜖𝐼 + 𝜁𝐴)

𝑁
. 

Table 1. ParameterValue 

Parameter Description Value Unit Source 

Π Birth rate 13,330 People/day Estimation 

𝛽 Possibility of transmission upon contact 0.25 – Estimation 

𝜎 The contact rate of susceptible people with exposed people 0.12 1/day Estimation 

𝜖 The rate of contact of susceptible people with infected 

people accompanied by clinical symptoms 

0.05 1/day [11] 

𝜁 The rate of contact of susceptible people with infected 

people without clinical symptoms 

0.08 1/day Estimation 

𝜔 Vaccination rates 0.1 – 1 1/day Estimation 

𝜀 Vaccine effectiveness 0.1 – 0.9 – Estimation 

𝜃 Proportion of infected persons without clinical symptoms 0.15 – Estimation 

𝜑 Transmission rate after completing the incubation period 

and moving to the infected class without clinical symptoms 

0.00048 1/day [11] 

𝜐 Transmission rate after completing the incubation period 

and transition to the infected class accompanied by clinical 

symptoms 

0.005 1/day [11] 

𝜏 Recovery rate of infected people without clinical symptoms 0.854302 1/day [11] 

𝛾 The rate of recovery of infected people accompanied by 

clinical symptoms 

0.33029 1/day [12] 

𝛼 The death rate caused by COVID-19 in the class of people 

who are infected with clinical symptoms 

1.78×10-5 1/day [12] 

𝜇 Human natural death rate 4.36×10-5 1/day [13] 
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3. RESULTS AND DISCUSSION 

3.1. Fixed Point 

The fixed point of system of Equation (1) obtained by solving
𝑑𝑆

𝑑𝑡
=
𝑑𝑉

𝑑𝑡
=
𝑑𝐸

𝑑𝑡
=
𝑑𝐴

𝑑𝑡
=
𝑑𝐼

𝑑𝑡
=
𝑑𝑅

𝑑𝑡
= 0  as 

follows: 

Π − 𝜆𝑆 − 𝜔𝑆 − 𝜇𝑆 = 0 

𝜔𝑆 − (1 − 𝜀)𝜆𝑉 − 𝜇𝑉 = 0 

𝜆𝑆 + (1 − 𝜀)𝜆𝑉 − 𝜃𝜑𝐸 − (1 − 𝜃)𝜐𝐸 − 𝜇𝐸 = 0 

𝜃𝜑𝐸 − 𝜏𝐴 − 𝜇𝐴 = 0 

(1 − 𝜃)𝜐𝐸 − 𝛾𝐼 − 𝛼𝐼 − 𝜇𝐼 = 0 

𝜏𝐴 + 𝛾𝐼 − 𝜇𝑅 = 0 

(2) 

where 𝜆 = 𝜆 =
𝛽(𝜎𝐸+𝜖𝐼+𝜁𝐴)

𝑁
. 

Based on the system of Equation (2), two types of equilibriums are obtained, namely disease-free 

equilibrium and endemic equilibrium. The disease-free equilibrium fulfill 𝐸 = 𝐴 = 𝐼 = 0, while the endemic 

equilibrium has 𝐸 ≠ 0, 𝐴 ≠ 0 dan 𝐼 ≠ 0. 

The disease-free equilibrium is a condition when everyone is healthy or it can be said that there is no 

disease in a certain population. From the system of Equation (2) a disease-free equilibrium is obtained 

𝑇0(𝑆, 𝑉, 𝐸, 𝐴, 𝐼, 𝑅) = (𝑆0, 𝑉0, 0, 0, 0, 0). 
with 

𝑆0 =
Π

ω + μ
 and 𝑉0 =

ωΠ

μ(ω + μ)
. 

The endemic equilibrium is a condition when in a certain population there are still sick people or the 

disease has not disappeared. From the system of Equation (2) the endemic equilibrium is obtained 

𝑇∗(𝑆, 𝑉, 𝐸, 𝐴, 𝐼, 𝑅) = (𝑆∗, 𝑉∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝑅∗) 
with 

𝑆∗ =
Π

λ + ω + μ
, 

𝑉∗ =
𝜔𝑆

(1 − 𝜀)𝜆 + 𝜇
, 

𝐸∗ =
𝜆𝑆 + (1 − 𝜀)𝜆𝑉

𝜃𝜑 + (1 − 𝜃)𝜐 + 𝜇
, 

 

 

𝐴∗ =
𝜃𝜑𝐸

𝜏 + 𝜇
, 

𝐼∗ =
(1 − 𝜃)𝜐𝐸

𝛾 + 𝛼 + 𝜇
, 

𝑅∗ =
𝜏𝐴 + 𝛾𝐼

𝜇
. 

 

3.2. Basic Reproduction Number  

The approach to determining the basic reproduction number (ℛ0) using the next generation matrix 

follows Driessche and Watmough [14]. Determination of the basic reproduction number is based on the order 

of subpopulations causing infection only [15], i.e. 𝐸, 𝐴 and 𝐼 as follows: 

𝑑𝐸

𝑑𝑡
= 𝜆𝑆 + (1 − 𝜀)𝜆𝑉 − 𝜃𝜑𝐸 − (1 − 𝜃)𝜐𝐸 − 𝜇𝐸, 

𝑑𝐴

𝑑𝑡
= 𝜃𝜑𝐸 − 𝜏𝐴 − 𝜇𝐴, 

𝑑𝐼

𝑑𝑡
= (1 − 𝜃)𝜐𝐸 − 𝛾𝐼 − 𝛼𝐼 − 𝜇𝐼. 

(3) 

Based on the system of Equation (3), obtained matrices F and V which are then evaluated at the disease-free 

equilibrium 𝑇0, i.e.: 

𝐹 = (
𝜎𝛽Ω 𝜁𝛽Ω 𝜖𝛽Ω
0 0 0
0 0 0

) 

with 
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Ω = (
μ

ω + μ
+ (1 − 𝜀) (

ω

(ω + μ)
)) 

and 

𝑉 = (

𝑘1 0 0
−𝜃𝜑 𝑘2 0

−(1 − 𝜃)𝜐 0 𝑘3

) 

while 

𝑘1 = 𝜃𝜑 + (1 − 𝜃)𝜐 + 𝜇  𝑘3 = 𝛾 + 𝛼 + 𝜇 

𝑘2 = 𝜏 + 𝜇     

Thus, the G matrix is obtained, with𝐺 = 𝐹𝑉−1as follows: 

𝐺 = (
𝜎𝛽Ω 𝜁𝛽Ω 𝜖𝛽Ω
0 0 0
0 0 0

) ∙

(

 
 
 
 

1

𝑘1
0 0

𝜃𝜑

𝑘1𝑘2

1

𝑘2
0

(𝜐 − 𝜃𝜐)

𝑘1𝑘3
0

1

𝑘3)

 
 
 
 

= (
𝐺11 𝐺12 𝐺13
0 0 0
0 0 0

) 

Thus 

𝐺11 =
𝜖𝛽Ω(𝑘2𝜐−𝑘2𝜃𝜐)

𝑘1𝑘2𝑘3
+
𝜎𝛽Ω

𝑘1
+
𝜁𝜃𝜑𝛽Ω

𝑘1𝑘2
, 𝐺12 =

𝜁𝛽Ω

𝑘2
, and 𝐺13 =

𝜖𝛽Ω

𝑘3
. 

Based on the G matrix, the dominant eigenvalue is obtained, namely: 

ℛ0 =
Ω𝛽(𝑘2𝜖(𝜐 − 𝜃𝜐) + 𝑘2𝑘3𝜎 + 𝑘3𝜁𝜃𝜑)

𝑘1𝑘2𝑘3
= ℛ0

1 + ℛ0
2 + ℛ0

3 (4) 

with 

ℛ0
1 = Ω𝛽 (

𝑘2𝜖(𝜐 − 𝜃𝜐)

𝑘1𝑘2𝑘3
) , ℛ0

2 = Ω𝛽 (
𝑘2𝑘3𝜎

𝑘1𝑘2𝑘3
) , and ℛ0

3 = Ω𝛽 (
𝑘3𝜁𝜃𝜑

𝑘1𝑘2𝑘3
). 

3.3. Equilibrium Stability Analysis 

This section will describe the stability properties for disease-free equilibrium 𝑇0 and endemic 

equilibrium 𝑇∗. 

Theorem 1. If ℛ0 < 1 then the disease-free equilibrium 𝑇0 for the system of Equation (1) is locally 

asymptotically stable. 

Proof. Stability properties 𝑇0(𝑆, 𝑉, 𝐸, 𝐴, 𝐼, 𝑅) = (
Π

ω+μ
,

ωΠ

μ(ω+μ)
, 0, 0, 0, 0) can be known by linearizing the 

system (1) around 𝑇0, so that the Jacobi matrix for the disease-free equilibrium 𝑇0 is obtained as follows: 

𝐽𝑇0 =

(

 
 
 

𝐽11 0 𝐽13
𝐽21 𝐽22 𝐽23
𝐽31 𝐽32 𝐽33

𝐽14 𝐽15 0
𝐽24 𝐽25 0
𝐽34 𝐽35 0

0 0 𝐽43
0 0 𝐽53
0 0 0

𝐽44 0 0
0 𝐽55 0
𝐽64 𝐽65 𝐽66)

 
 
 

 

with 

 𝐽11 = −(𝜔 + 𝜇),   𝐽34 =
β𝜁μ

ω+μ
+ (1 − 𝜀) (

𝛽𝜁ω

(ω+μ)
), 

 𝐽13 = −
β𝜎μ

ω+μ
,    𝐽35 =

β𝜖μ

ω+μ
+ (1 − 𝜀) (

𝛽𝜖ω

(ω+μ)
), 

 𝐽14 = −
β𝜁μ

ω+μ
,    𝐽43 = 𝜃𝜑, 

 𝐽15 = −
β𝜖μ

ω+μ
,    𝐽44 = −(𝜏 + 𝜇), 

 𝐽21 = 𝜔,    𝐽53 = (1 − 𝜃)𝜐, 
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 𝐽22 = −𝜇,    𝐽55 = −(𝛾 + 𝛼 + 𝜇), 

 𝐽23 = −(1 − 𝜀) (
𝛽𝜎ω

(ω+μ)
),  𝐽64 = 𝜏, 

 𝐽24 = −(1 − 𝜀) (
𝛽𝜁ω

(ω+μ)
),  𝐽65 = 𝛾, 

 𝐽25 = −(1 − 𝜀) (
𝛽𝜖ω

(ω+μ)
),  𝐽66 = −𝜇. 

 𝐽31 = 0,    

 𝐽32 = 0,      

 𝐽33 =
β𝜎μ

ω+μ
+ (1 − 𝜀) (

𝛽𝜎ω

(ω+μ)
) − (𝜃𝜑 + (1 − 𝜃)𝜐 + 𝜇), 

Eigenvalues for disease-free equilibrium 𝑇0 obtained by |𝐽𝑇0 − 𝜆𝐼| = 0, or 

|

|

𝐽11 − 𝜆
𝐽21
0
0
0
0

0
𝐽22 − 𝜆
0
0
0
0

𝐽13
𝐽23

𝐽33 − 𝜆
𝐽43
𝐽53
0

𝐽14
𝐽24
𝐽34

𝐽44 − 𝜆
0
𝐽64

𝐽15
𝐽25
𝐽35
0

𝐽55 − 𝜆
𝐽65

0
0
0
0
0

𝐽66 − 𝜆

|

|
= 0, 

so that the characteristic equation is obtained as follows: 

(𝐽11 − 𝜆)(𝐽22 − 𝜆)(𝐽66 − 𝜆)(𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3) = 0 (5) 

with 

𝑎1 = (1 − ℛ0
2)𝑘1 + 𝑘2 + 𝑘3 

𝑎2 = (1 − (ℛ0
2 + ℛ0

3)) 𝑘1𝑘2 + (1 − (ℛ0
1 + ℛ0

2)) 𝑘1𝑘3 + 𝑘2𝑘3 

𝑎3 = (1 − ℛ0)𝑘1𝑘2𝑘3 

Based on Equation (5), six eigenvalues are obtained with three negative eigenvalues, namely 

𝜆1 = 𝐽11 = −(𝜔 + 𝜇), 𝜆2 = 𝐽22 = −𝜇,  𝜆3 = 𝐽66 = −𝜇. 

while the other three eigenvalues are obtained by solving the following equation 

(𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3) = 0 (6) 

Based on criteria Routh-Hurwitz [16], Equation (6) at the disease-free equilibrium 𝑇0 is stable if it 

satisfies the following stability conditions: 

𝑎1 > 0, 𝑎3 > 0, and 𝑎1𝑎2 > 𝑎3 (7) 

Since all parameters are positive, the coefficient 𝑎3will be positive when  ℛ0 < 1. Furthermore, for the 

coefficient 𝑎1will be positive if ℛ0
2 < 1. Hence ℛ0 < 1, we also have ℛ0

2 < 1. Then, to prove 𝑎1𝑎2 > 𝑎3 

it takes parameter values at the time of the condition ℛ0 < 1. The parameters used are presented in Table 1 

and Table 2. So that for ℛ0 < 1 condition (6) is fulfilled. So, it is proved that the disease-free equilibrium 

𝑇0 for system (1) is locally asymptotically stable if ℛ0 < 1. 

Theorem 2. If ℛ0 > 1then the endemic equilibrium 𝑇∗ for the system of Equation (1) is locally 

asymptotically stable. 

Proof. Let 𝜙 = 𝛽 is the bifurcation parameter. Based on the condition ℛ0 = 1 resulted in 

𝜙 = 𝜙∗ =
𝑘1𝑘2𝑘3

Ω(𝑘2𝜖(𝜐 − 𝜃𝜐) + 𝑘2𝑘3𝜎 + 𝑘3𝜁𝜃𝜑)
. 

The equilibrium 𝑇0 has one zero eigenvalue and five negative eigenvalues if ℛ0 = 1  or  𝜙 = 𝜙∗. The zero 

eigenvalue has a right eigenvector (𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6) and left eigenvector (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6). 

Let 𝑢3 > 0, hence 𝑢4 =
𝜃𝜑

𝑘2
𝑢3 > 0, 𝑢5 =

(1−𝜃)𝜐

𝑘3
𝑢3 > 0, 𝑢6 = −(

𝜏

𝜇

𝜃𝜑

𝑘2
+
𝛾

𝜇

(1−𝜃)𝜐

𝑘3
) 𝑢3 < 0, 

𝑢1 = −(
𝛽𝜎𝜇

(𝜔 + 𝜇)2
+

𝛽𝜁𝜇

(𝜔 + 𝜇)2
𝜃𝜑

𝑘2
+

𝛽𝜖𝜇

(𝜔 + 𝜇)2
(1 − 𝜃)𝜐

𝑘3
)𝑢3 < 0, 
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𝑢2 
= −(

𝜔

𝜇
(

𝛽𝜎𝜇

(𝜔 + 𝜇)2
+

𝛽𝜁𝜇

(𝜔 + 𝜇)2
𝜃𝜑

𝑘2
+

𝛽𝜖𝜇

(𝜔 + 𝜇)2
(1 − 𝜃)𝜐

𝑘3
) + (1 − 𝜀) (

𝛽𝜎ω

(𝜔 + 𝜇)
)
1

𝜇

+ (1 − 𝜀) (
𝛽𝜁ω

(ω + μ)
)
1

𝜇

𝜃𝜑

𝑘2
+ (1 − 𝜀) (

𝛽𝜖ω

(ω + μ)
)
1

𝜇

(1 − 𝜃)𝜐

𝑘3
)𝑢3 < 0. 

Furthermore, 𝑣2 = 0, 𝑣1 = 0, 𝑣6 = 0. Let 𝑣3 > 0, then 𝑣4 =
Ωβ𝜁

𝑘2
𝑣3 > 0, 𝑣5 =

Ωβ𝜖

𝑘3
𝑣3 > 0. 

Based on the Castillo-Chaves and Song equation [16] defined 

𝑎 = ∑ 𝑣𝑘𝑢𝑖𝑢𝑗
∂2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑇0, 𝜙∗)

6

𝑘,𝑖,𝑗=1

,   𝑏 = ∑ 𝑣𝑘𝑢𝑖
∂2𝑓𝑘
𝜕𝑥𝑖𝜕𝜙

(𝑇0, 𝜙∗)

6

𝑘,𝑖,𝑗=1

 (8) 

with 

𝑥1 = 𝑆, 𝑥2 = 𝑉, 𝑥3 = 𝐸, 
𝑥4 = 𝐴, 𝑥5 = 𝐼, 𝑥6 = 𝑅. 

𝑓1 =
𝑑𝑥1
𝑑𝑡

= Π −
𝜙(𝜎𝑥3 + 𝜖𝑥5 + 𝜁𝑥4)

𝑁
𝑥1 − 𝜔𝑥1 − 𝜇𝑥1, 

𝑓2 =
𝑑𝑥2
𝑑𝑡

= 𝜔𝑥1 − (1 − 𝜀)
𝜙(𝜎𝑥3 + 𝜖𝑥5 + 𝜁𝑥4)

𝑁
𝑥2 − 𝜇𝑥2, 

𝑓3 =
𝑑𝑥3
𝑑𝑡

=
𝜙(𝜎𝑥3 + 𝜖𝑥5 + 𝜁𝑥4)

𝑁
𝑥1 + (1 − 𝜀)

𝜙(𝜎𝑥3 + 𝜖𝑥5 + 𝜁𝑥4)

𝑁
𝑥2 − 𝜃𝜑𝑥3 − (1 − 𝜃)𝜐𝑥3 − 𝜇𝑥3, 

𝑓4 =
𝑑𝑥4
𝑑𝑡

= 𝜃𝜑𝑥3 − 𝜏𝑥4 − 𝜇𝑥4, 

𝑓5 =
𝑑𝑥5
𝑑𝑡

= (1 − 𝜃)𝜐𝑥3 − 𝛾𝑥5 − 𝛼𝑥5 − 𝜇𝑥5,  

𝑓6 =
𝑑𝑥6
𝑑𝑡

= 𝜏𝑥4 + 𝛾𝑥5 − 𝜇𝑥6. 

Based on the system of Equation (1), the following partial derivatives for Equation (8) are obtained 

∂2𝑓3
𝜕𝑥1𝜕𝑥3

(𝑇0, 𝜙∗) =
𝜎𝜙∗

N
=
𝜇𝜎𝜙∗

Π
, 

∂2𝑓3
𝜕𝑥1𝜕𝑥4

(𝑇0, 𝜙∗) =
𝜁𝜙∗

N
=
𝜇𝜁𝜙∗

Π
, 

∂2𝑓3
𝜕𝑥1𝜕𝑥5

(𝑇0, 𝜙∗) =
𝜖𝜙∗

N
=
𝜇𝜖𝜙∗

Π
, 

∂2𝑓3
𝜕𝑥2𝜕𝑥3

(𝑇0, 𝜙∗) =
(1 − 𝜀)𝜇𝜎𝜙∗

Π
, 

∂2𝑓3
𝜕𝑥2𝜕𝑥4

(𝑇0, 𝜙∗) =
(1 − 𝜀)𝜇𝜁𝜙∗

Π
, 

∂2𝑓3
𝜕𝑥2𝜕𝑥5

(𝑇0, 𝜙∗) =
(1 − 𝜀)𝜇𝜖𝜙∗

Π
, 

∂2𝑓3
𝜕𝑥3𝜕𝜑

(𝑇0, 𝜙∗) = σΩ, 
∂2𝑓3
𝜕𝑥4𝜕𝜑

(𝑇0, 𝜙∗) = 𝜁Ω, 

∂2𝑓3
𝜕𝑥5𝜕𝜑

(𝑇0, 𝜙∗) = ϵΩ. 
 

So, based on Equation (8) we get 

𝑎 = 𝑣3𝑢1𝑢3
∂2𝑓3
𝜕𝑥1𝜕𝑥3

(𝑇0, 𝜑∗) + 𝑣3𝑢1𝑢4
∂2𝑓3
𝜕𝑥1𝜕𝑥4

(𝑇0, 𝜑∗) + 𝑣3𝑢1𝑢5
∂2𝑓3
𝜕𝑥1𝜕𝑥5

(𝑇0, 𝜑∗)

+ 𝑣3𝑢2𝑢3
∂2𝑓3
𝜕𝑥2𝜕𝑥3

(𝑇0, 𝜑∗) + 𝑣3𝑢2𝑢4
∂2𝑓3
𝜕𝑥2𝜕𝑥4

(𝑇0, 𝜑∗) + 𝑣3𝑢2𝑢5
∂2𝑓3
𝜕𝑥2𝜕𝑥5

(𝑇0, 𝜑∗) 

= 𝑣3 (𝑢1𝑢3
𝜇𝜎𝜙∗

Π
+ 𝑢1𝑢4

𝜇𝜁𝜙∗

Π
+ 𝑢1𝑢5

𝜇𝜖𝜙∗

Π
+ 𝑢2𝑢3

(1 − 𝜀)𝜇𝜎𝜙∗

Π
+ 𝑢2𝑢4

(1 − 𝜀)𝜇𝜁𝜙∗

Π

+ 𝑢2𝑢5
(1 − 𝜀)𝜇𝜖𝜙∗

Π
), 

Since 𝑣3, 𝑢3, 𝑢4, 𝑢5 > 0 and 𝑢1, 𝑢2 < 0, then 𝑎 < 0 and then we get 

𝑏 = 𝑣3𝑢3
∂2𝑓3
𝜕𝑥3𝜕𝜑

(𝑇0, 𝜑∗) + 𝑣3𝑢4
∂2𝑓3
𝜕𝑥4𝜕𝜑

(𝑇0, 𝜑∗) + 𝑣3𝑢5
∂2𝑓3
𝜕𝑥5𝜕𝜑

(𝑇0, 𝜑∗)

= 𝑣3𝑢3σΩ + 𝑣3𝑢4𝜁Ω + 𝑣3𝑢5ϵΩ, 
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Hence 𝑣3, 𝑢3, 𝑢4, 𝑢5 > 0, so that 𝑏 > 0.  

The value of 𝑎 and 𝑏 obtained meets the criteria for case 4 of the Castillo-Chavez and Song Theorem 

[16]. As a result, when 𝜑 changed from 𝜑 < 𝜑∗( ℛ0 < 1) into 𝜑 > 𝜑∗( ℛ0 > 1), the endemic equilibrium 

𝑇∗ which is unstable turns from negative to positive and locally asymptotically stable. Hence, we have proved 

if ℛ0 > 1 then the endemic equilibrium 𝑇∗ is locally asymptotically stable. 

 

3.4. Numerical Simulation 

Numerical simulations on the modified model are carried out to show stability and show the stability 

properties of each fixed point by entering the parameter values in Table 2. Then, numerical simulations are 

carried out to study things in dynamical systems. In this case, the dynamics of the human population and 

varying parameter values, namely parameters that are still possible for humans to control in an effort to 

suppress the spread of COVID-19, among them are the parameters of the rate of vaccination (𝜔)and vaccine 

efficacy (𝜀). 

Table 2. Parameter Value of Research on the Spread of COVID-19 

Parameter 
 𝓡𝟎 < 1  𝓡𝟎 > 1 

Value Source Value Source 

𝜔 0.5 Assumption 0.8 Assumption 

𝜀 0.95 Assumption 0.5 Assumption 

Other parameter values can be seen in Table 1. Since the parameters that can be changed in this study 

are the parameters 𝜔 and 𝜀, then the parameter values that are changed in the study are the parameter values 

𝜔 and 𝜀. Population dynamics were observed when ℛ0 < 1 and ℛ0 > 1. In this case, ℛ0 is the basic 

reproduction number defined in Equation (4). The initial value used is 𝑆(0) = 20,000, 𝑉(0) =
250,000, 𝐸(0) = 150,000, 𝐴(0) = 1,000, 𝐼(0) = 50,000, and 𝑅(0) = 40,000. 

The system of Equation (1) when  ℛ0 < 1 has one disease-free equilibrium can be represented by a 

numerical solution. The equilibrium is obtained using the parameter values in Table 2, with ℛ0 =
0.346029 < 1 and disease-free equilibrium 𝑇0(𝑆 = 26,657.7, 𝑉 = 3.05707 × 108, 𝐸 = 0, 𝐴 = 0, 𝐼 =
0, 𝑅 = 0). By linearizing and calculating the system of Equation (1) around the equilibrium, the Jacobian 

matrix and eigenvalues for the disease-free equilibrium are obtained. It can be concluded that the disease-

free equilibrium is stable because all eigenvalues are negative, namely 𝜆1 = −0.854346, 𝜆2 =
−0.500044, 𝜆3 = −0.33036, 𝜆4 = −0.00285491, 𝜆5 = −0.0000436, and 𝜆6 = −0.0000436. 

Dynamics of subpopulations with vulnerable populations (𝑆), vaccinated population (𝑉), exposed 

population (𝐸), asymptomatic infected population (𝐴), symptomatic infected population (𝐼), population that 

has recovered from the disease (𝑅), to a disease-free equilibrium 𝑇0 as can be seen in Figure 2. The number 

of susceptible populations and vaccinated populations increases continuously until they reach stability around 

their respective equilibrium, that is 𝑆 = 26,657.7 and 𝑉 = 3.05707 × 108. The exposed population, the 

asymptomatic infected population and the symptomatic infected population decreased steadily until they 

stabilized around a equilibrium 𝐸 = 𝐴 = 𝐼 = 0. Meanwhile, the population that recovered from the disease 

initially increased, then decreased continuously until it reached stability around a equilibrium 𝑅 = 0. The 

simulation results are in accordance with Theorem 1that if ℛ0 < 1, disease-free equilibrium 𝑇0 is locally 

asymptotically stable. 

A dynamical system also has one endemic equilibrium which can be represented by a numerical 

solution. The equilibrium is obtained using the parameter values in Table 2, with ℛ0 = 3.45475. The 

endemic equilibrium 𝑇∗(𝑆 = 16,657.1, 𝑉 = 8.84648 × 107, 𝐸 = 2.16974 × 106, 𝐴 = 182,855, 𝐼 =
27,913.9, 𝑅 = 2.15043 × 108). By linearization and calculation of the system of Equation (1) around a 

equilibrium, the Jacobian matrix and eigenvalues for endemic equilibrium are obtained. Furthermore, it can 

be concluded that the endemic fixed point is stable because there are four negative eigenvalues and two 

eigenvalues whose real part is negative. They are 𝜆1 = −0.854346, 𝜆2 = −0.800258, 𝜆3 = −0.330375, 

𝜆4 = 0.0000436, 𝜆5 = −0.0000753128 − 0.0006794𝑖, and 𝜆6 = −0.0000753128 + 0.0006794𝑖. 
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     (a)          

 
        (c)       (d) 

 
        (e)       (f) 

 

Figure 2. Population Dynamics for  𝓡𝟎 < 1 

(a) Susceptible Population, (b) Vaccinated Population, (c) Exposed Population, (d) Asymptomatic Infected 

Population, (e) Symptomatic Infected Population, and (f) Recovered Population 

The dynamics of the subpopulation for  ℛ0 > 1 is shown in Figure 3. Population dynamics indicate 

that a subpopulation is moving towards an endemic equilibrium or is stable around an endemic equilibrium. 

The vulnerable population declines continuously until it stabilizes around a equilibrium, specifically 𝑆 =
16,657.1. The vaccinated population increases steadily until it stabilizes around a fixed point 𝑉 =
8.84648 × 107. The exposed population, asymptomatic infected population and symptomatic infected 

population initially fluctuated, then stabilized around their respective fixed points, namely 𝐸 =
2.16974 × 106, 𝐴 = 182,855, and 𝐼 = 27,913.9. Meanwhile, the recovered population experienced a 

continuous increase until it reached stability around a fixed point 𝑅 = 2.15043 × 108. This simulation result 

is in accordance with Theorem 2 that if ℛ0 > 1, the endemic equilibrium 𝑇∗ is locally asymptotically stable. 
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        (a)       (b) 

 
        (c)       (d) 

 
        (e)       (f) 

Figure 3. Population Dynamics for  𝓡𝟎 > 1 

(a) Susceptible Population, (b) Vaccinated Population, (c) Exposed Population, (d) Asymptomatic Infected 

Population, (e) Symptomatic Infected Population, and (f) Recovered Population 

 

 
4. CONCLUSIONS 

This research is a modification of the mathematical model of the spread of the COVID-19 disease. The 

model considers vaccination of susceptible individuals. The resulting model is able to describe the spread of 

the COVID-19 virus. The results of the analysis performed on the modified model obtained two equilibriums, 

namely disease-free equilibrium and endemic equilibrium. The disease-free equilibrium is locally 

asymptotically stable if the basic reproduction number is less than one, while the endemic equilibrium 

islocally asymptotically stable if the basic reproduction number greater than one. Numerical simulations of 

population dynamics show that the results are consistent with the stability of the disease-free equilibrium and 

endemic equilibrium. 
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