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ABSTRACT 

Article History: 
The COVID-19 pandemic in 2020 has caused severe problems in Indonesia. The COVID-19 

virus epidemic can be modeled using the Susceptible, Infected, and Recovered (SIR) model. This 

modeling aims to look at the dynamics of COVID-19 to predict when disease-free and endemic 

disease occurs and to find the basic reproduction number (𝑅0) for policy making in suppressing 

the spread of COVID-19. In this article, we describe and solve a research result on the SIR 

model with an assumption. The assumption in the model is that there is vaccination for the 

population. There are live stages of research conducted. The first is creating the SIR model and 

determining the equilibrium points on disease-free and disease-endemic. The Second is getting 

the basic reproduction number. The third is determining the stability around the equilibrium 

points using the Routh-Hurwitz criteria. Fourth, create a diagram for the subpopulations state 

at a specific time using Wolfram Mathematica software. As an implementation of the model 

created, COVID-19 data at the Batanghari Community Health Center Inpatient UPTD was 

used. Finally, determine the model error percentage with MAPE. The SIR COVID-19 model 

was made using eight parameters, namely 𝑁, 𝛼, 𝛽, 𝜏, µ, 𝜎, 𝛿, 𝛾, which are all positive. The results 

showed that the disease-free and disease-endemic equilibrium points were locally 

asymptotically stable after being analyzed using the Routh-Hurwitz stability criteria. The model 

trial using data from UPTD Puskesmas Batanghari obtained a stable condition for up to 100 

months with a MAPE of 2.8%. From this study, obtained an 𝑅0 =
𝛽𝜎

𝛼+µ
. This means that if you 

want to reduce the rate of spread, then reduce the number of people who are easily infected (𝜎) 

and reduce contacts (𝛽), and increase the healing rate (𝛼). 
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1. INTRODUCTION 

Mathematical models have played an essential role in explaining the dynamics of the disease. A 

mathematical model categorizes individuals into Susceptible, Infectious, and Recovered. In several very 

recent research applied to the COVID-19 epidemic, researchers have developed and used SIR and SEIR-

based models with vaccination to overcome the limitations of the conventional SIR model. Mathematical 

modeling specifically constructed to determine the development of disease outbreaks caused by COVID-19 

has not been widely carried out [1]–[9]. 

Handling the COVID-19 outbreak in Lampung Province involves various groups/communities of 

society, including academics. Even for Lampung province, dynamic models have not yet been found to solve 

the problem of the COVID-19 outbreak in terms of the theory of the SIR model, which involves vaccination 

parameters. The research that has been carried out is to construct the SIR model to determine the development 

of the COVID-19 outbreak in Lampung Province, especially East Lampung Regency, by involving the 

parameters of vaccine administration to the community. Using data at the UPTD Puskesmas Batanghari 

District, East Lampung Regency, the SIR model obtained was implemented to determine the trend of the 

growth of the COVID-19 outbreak in that place after the people were given the vaccine. 

 In March 2020, WHO announced that the world was facing a pandemic called Corona Virus Infectious 

Disease 2019 or COVID-19 [10]. Until October 2020, the number of positive cases of. COVID-19 worldwide 

has reached 37 million, with deaths reaching 1 million people [11]. The main medium of transmission of the 

SARS-Cov-2 virus is droplets that can be easily spread when humans interact directly with a certain distance. 

At the beginning of its spread, the average transmission power of the virus was still quite low, around 2.2 

[12]. However, in its development, the SARS-Cov-2 virus underwent mutations so that several new virus 

variants emerged with higher transmission capabilities, such as in England, South Africa, Brazil, and India 

[13]. The COVID-19 pandemic is developing so fast that many countries are not ready to adapt since the 

beginning. WHO has advised focusing the handling of the pandemic on the health aspect by implementing 

regional isolation and banning activities that involve crowds. However, for some countries, this is not done 

because they doubt that the COVID-19 pandemic will last quite a long time [14]. One of the other efforts to 

deal with the spread of COVID-19 is by implementing mass vaccination. For years, vaccines have been 

proven to reduce the incidence of infectious diseases through the mechanism of the human body's immunity 

[15]. The COVID-19 vaccine was developed to help the formation of individual body immunity so that the 

administration of the COVID-19 vaccine is expected to accelerate the formation of group immunity (herd 

immunity), which will have an impact on reducing the number of infected cases [16]. The vaccination policy 

has an impact on reducing the number of COVID-19 cases that are still not under control in Indonesia [17]. 

This is reinforced by [18] which concluded that the severity of disease in individuals who had received the 

vaccine decreased, so it can be supposed that the vaccine effectively protects individuals from the SARS-

CoV-2 variant. 

A disease can be modeled mathematically into an epidemiological model. One of the many types of 

modeling available is the SIR model. The SIR model was first introduced in 1927 by Kermack and 

McKendrick [19]. The  SIR  model  determines  the  behavior  of  a  pandemic  and  prediction [20]. This SIR 

model groups individuals in a population into three subpopulations, namely susceptible (groups of individuals 

who are susceptible to being infected with a disease), infected (groups of individuals infected with disease), 

recovered (groups of individuals who have recovered from the disease). SIR modeling is a model that is 

prepared with assumptions about a disease starting from the stage before being infected with a disease, being 

infected, and until the individual is cured. Mathematical models of infectious diseases based on the classical 

SIR model are widely used to study the spread of a disease. These models show exciting results, especially 

in the early period of the pandemic [1]–[4], [21]–[28].The results of this model can be used as an illustration 

of how to suppress the spread of disease by looking at the effect of vaccination, ideal number of individuals 

who must be vaccinated, and this model can predict within a certain time, the disease will become endemic. 

This requires field data to analyze the dynamics of the development of a disease. This modeling aims to 

determine the basic reproduction number (𝑅0), which plays a role in decision or policy-making for the 

authorities in dealing with problems caused by the COVID-19 virus. In addition, this modeling is also to find 

out whether this disease can disappear or will remain (endemic) in an area and predict when this disease will 

disappear or remain (endemic) in an area. 
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2. RESEARCH METHODS 

This research is applied research conducted using secondary data obtained from the UPTD of the 

Batanghari District Inpatient Health Center related to cases of the spread of the COVID-19 disease that 

occurred throughout 2020-2021. The steps in this research are given in Figure 1:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. 𝐒𝐭𝐞𝐩𝐬 of research diagram 

2.1 SIR Model 

The SIR model divides the population into susceptible (S), infected (I), and recovered (R) 

subpopulations. The number of susceptible, infected, and cured individuals at time t in a row can be written 

in the form of functions S(t), I(t), and R(t). 

The SIR model can be used to predict how a disease spreads, the total number of infected, the duration 

of the epidemic, and estimate various epidemiological parameters such as the number of reproductions. This 

model can determine how different public health interventions can affect epidemic outcomes [29]. 

 

 

 

 
Figure 2. 𝑺𝑰𝑹 model diagram 

 

Information: 

𝑆 = number of susceptible individuals in the population at the time 

𝐼 = number of infected individuals in the population at the time 

𝑅 = number of recovered individuals in the population at the time 

𝛼 = healing rate from infected to recovered  

𝑟 = rate of disease transmission from susceptible to infected 

The SIR epidemic model is assumed as follows: 

𝑑𝑆

𝑑𝑡
= −𝑟𝑆𝐼 (1) 

𝑑𝐼

𝑑𝑡
= 𝑟𝑆𝐼 − 𝛼𝐼 (2) 

𝑑𝑅

𝑑𝑡
= 𝛼𝐼 (3) 

S 
𝒓𝑺𝑰 𝜶𝑰 

I R 
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2.2 Equilibrium Point 

The equilibrium point is used to analyze the model. According to [19], the equilibrium point is the 

solution of the system of differential equations which is independent of time. In [30], Meyer said the same 

thing too, the equilibrium condition is a condition where the system does not change over time. 

The equilibrium point is divided into 2, as follows: 

1. The disease-free equilibrium point is the condition in which no individual is infected with the disease 

discussed in the population, so 𝐼 =  0. 

2. The endemic equilibrium point is a condition where there are infected individuals in the population, so the 

compartment at the endemic equilibrium point is 𝐼 ≠  0. 

 

Theorem Equilibrium Point [31]: 

1. If all the real parts of the eigenvalues of the Jacobian matrix of a system of differential equations are 

negative, then the equilibrium point of the system is stable. 

2. If one eigenvalue of the Jacobian matrix of a system of differential equations is positive, then the 

equilibrium point of the system is unstable. 

2.3 Next Generation Matrix 

Suppose there are 𝑛 infected classes and m uninfected classes. Furthermore, suppose that 𝑥 is an 

infected sub-population and 𝑦 represents an uninfected (susceptible or cured) subpopulation, so that �̇� =
𝜑𝑖(𝑥, 𝑦) − 𝜔𝑖(𝑥, 𝑦), and �̇� = 𝑔𝑗(𝑥, 𝑦), where 𝑖 = 1,2,… , 𝑛 and 𝑗 = 1,2, … ,𝑚.  𝜑𝑖is the rate of secondary 

infection in the infected class, and 𝜔𝑖 is the rate of disease progression, death, and recovery resulting in a 

reduced population of the infected class [32]. 

Next, Diekmann explain the next generation matrix 𝑲 is defined, which has the form 

 

𝑲 = 𝑭𝑽−1 (4) 

 

where 𝑭 and 𝑽 are matrix of size 𝑛 × 𝑛, which can also be written as follows: 

 

𝑭 = [
𝜕𝜑𝑖

𝜕𝑦𝑗
] and 𝑽 = [

𝜕𝜔𝑖

𝜕𝑦𝑗
] (5) 

2.4 Basic Reproduction Number (𝑹𝟎) 

The basic reproduction number 𝑅0 can be defined as the average number of infected individuals 

infected by other infected individuals in a population. A basic reproductive number is a number that shows 

the number of susceptible individuals who can suffer from diseases caused by one infected individual [33]. 

According [32], the basic reproduction number, which can be formulated as follows 

 

𝑅0 = 𝜌(𝑲) = 𝜌(𝑭𝑽
−𝟏) (6) 

 

The same thing regarding the basic reproduction number is denoted by 𝑅0 and is expressed by the 

following equation [34]: 

 

𝑅0 =
𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑡ℎ𝑎𝑡 𝑐𝑎𝑢𝑠𝑒 𝑑𝑖𝑠𝑒𝑎𝑠𝑒

𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑡ℎ𝑎𝑡 𝑟𝑒𝑑𝑢𝑐𝑒 𝑑𝑖𝑠𝑒𝑎𝑠𝑒
 (7) 

 

Some of the conditions that will arise, namely: 

If 𝑅0 < 1, then on average an infected individual produces  

less than one new infected individual over the course of its infectious period, and the infection 

cannot grow. The disease will disappear [35]. 

If 𝑅0 = 1, then the disease will persist [34]. 
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If 𝑅0 > 1, the each infected individual produces, on average, more than one new infection, and the disease 

can invade the population. The disease will become an epidemic [35]. 

2.5 Routh-Hurwitz Stability Criterion 

The Routh-Hurwitz stability criterion is used to show a system's stability by taking into account the 

coefficients of the characteristic equation without calculating the roots directly. If a polynomial equation is a 

characteristic equation, then this method can determine a system's stability. Thus, the procedures in the Routh-

Hurwitz criterion are [31]: 

1. The 𝑛𝑡ℎ order polynomial equation is written in the form: 

 

det(𝜆𝐼 − 𝐴) = 𝑎𝑛𝜆
𝑛 + 𝑎𝑛−1𝜆

𝑛−1 +⋯+ 𝑎1𝜆 + 𝑎0 (8) 

 

where the coefficients are real numbers and 𝑎𝑛 ≠ 0. 

 

2. If there is a coefficient of 0 or negative, then there is one root or imaginary roots or has a positive real part 

which means the system is unstable. 

3. If all coefficients are positive, then a matrix which is often called a Routh array, can be formed as follows 

 

|

|

𝜆𝑛 𝑎𝑛 𝑎𝑛−2 𝑎𝑛−4 ⋯

𝜆𝑛−1 𝑎𝑛−1 𝑎𝑛−3 𝑎𝑛−5 ⋯

𝜆𝑛−2 𝑏1 𝑏2 𝑏3 ⋯
⋮ 𝑐1 𝑐2 𝑐3 ⋯

𝜆0 ⋮ ⋮ ⋮ ⋱

|

|
 

 

(9) 

The coefficients 𝑏1, 𝑏2, …  , 𝑏𝑘 and 𝑐1, 𝑐2, …  , 𝑐𝑘can be determined by the following formulas: 

 

𝑏1 = −
1

𝑎𝑛−1
|
𝑎𝑛 𝑎𝑛−2
𝑎𝑛−1 𝑎𝑛−3

|, 𝑏2 = −
1

𝑎𝑛−3
|
𝑎𝑛−2 𝑎𝑛−4
𝑎𝑛−3 𝑎𝑛−5

|,⋯ 

 

𝑐1 = −
1

𝑏1
|
𝑎𝑛−1 𝑎𝑛−3
𝑏1 𝑏2

|,𝑐2 = −
1

𝑏2
|
𝑎𝑛−3 𝑎𝑛−5
𝑏2 𝑏3

|,⋯ 

 

The scheme  is  continued  until only  zeroes  appear  (both to  the  right and down wards) [36].   

4. The number of unstable roots can be seen in the number of sign changes in the first matrix column (6). 

5. The necessary condition for the system to be said to be stable is if the coefficient of the characteristic 

equation is positive, while the sufficient condition is that each term of the first column of the matrix (6) is 

positive. 

2.6 Mean Absolute Percentage Error (MAPE) 

Mean Absolute Percentage Error is a method of finding the average absolute error value in the form of 

a percentage in a comparison between actual data and existing projection or forecasting data. MAPE is 

formulated as follows: 

                   𝑀𝐴𝑃𝐸 =∑
|𝐴 − 𝑃|

𝑛
× 100%                                                                                (10) 

With  

𝐴: Actual data,  

𝑃: Forecasting data,  

𝑛: Total data. 

The percentage of MAPE is divided into four interpretation as follows [37]: 
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Table 1. MAPE Interpretation 

Interpretation of Typical MAPE Value’s 

MAPE Interpretation 

< 10 Highly Accurate Forecasting 

10 − 20 Good Forecasting 

20 − 50 Reasonable Forecasting 

> 50 Inaccurate Forecasting 

3. RESULTS AND DISCUSSION 

3.1 SIR Model 

The assumptions in the SIR model for the COVID-19 disease are as follows: 

1. Factors of birth and death are considered. Individuals born into the Susceptible (S) class because the 

individual is assumed to be healthy but susceptible to COVID-19 disease. 

2. The population birth and death rates in each compartment are assumed to be the same so that the total 

population is constant 

3. Migration occurs in the population. No immigrants enter every S, I, and R class. 

4. COVID-19 disease can cause death (fatal). 

5. Vaccinated individuals fall into class S. Vaccination efficacy is assumed as a percentage. WHO explained 

that the performance of vaccines could be seen from three measurements, namely through the efficacy, 

effectiveness, and impact of the vaccine. One type of COVID-19 vaccine is Sinovac. The efficacy of the 

Sinovac vaccine reaches 65.3% [38]. 

6. COVID-19 disease can result in re-infection of individuals who have been infected before. However, some 

individuals have recovered and formed antibodies to the COVID-19 virus. 

 

Based on the assumptions that have been made, the model parameters can be defined as follows: 

 

 

 

 

 

 
Figure 3. SIR model of COVID-19 disease with vaccination 

 

Information: 

𝑁 : Total number of individuals in the population (%) 

µ : Expresses the birth rate in the S compartment and the death rate in each compartment (%) 

𝛽 : Expresses the infection rate in compartment S (%) 

𝛼 : Expresses the healing rate in compartment I (%) 

σ : Stating the total number of susceptible individuals (total individuals who are not vaccinated and already   

     vaccinated but infected) (%) 

𝜏: Expresses the rate of reinfection in compartment R (%) 

with 

𝜎 = 1 − 𝛿𝛾                                                                          (11) 
𝛿 : Vaccine efficiency (%) 

𝛾 : Number of individuals who have been vaccinated (%) 

Since the birth rate is considered equal to the number of deaths, the total population will be constant, 

so 𝑆 + 𝐼 + 𝑅 = 1. If the number of births is not equal to the number of deaths, then N is not constant, but the 

𝝉𝑰𝑹 

S 
𝜷𝝈𝑰𝑺 𝜶𝑰 

µ𝑰 µ𝑺 µ𝑹 

µ𝑵 
I R 
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value is not far from 1 or very close. However, birth and death rates are equated with making this model easy 

to analyze. 

Then the mathematical model of the spread of the COVID-19 disease with vaccination was obtained 

in the form of a system of differential equations as follows: 

𝑑𝑆

𝑑𝑡
= µ − 𝛽𝜎𝐼𝑆 − µ𝑆 (12) 

𝑑𝐼

𝑑𝑡
= 𝛽𝜎𝐼𝑆 + 𝜏𝐼𝑅 − 𝛼𝐼 − µ𝐼 (13) 

𝑑𝑅

𝑑𝑡
= 𝛼𝐼 − µ𝑅 − 𝜏𝐼𝑅 

 

(14) 

where  𝑆(0) > 0, 𝐼(0) ≥ 0, 𝑅(0) > 0; 

 µ, 𝛽, 𝜎, 𝛿, 𝛾, 𝜏, 𝛼 > 0. 

3.2 Equilibrium Point 

The equilibrium condition is a condition where the system does not change over time [30]. 

3.2.1 Disease-Free Equilibrium Point 

Disease-free population means that in the population, no one is sick, 𝐼 = 0. This means that no 

individual has been exposed to COVID-19 or no individual has been infected with COVID-19. Because no 

individual has been exposed to COVID-19, the transmission rate (𝛽)and the infected group (𝐼)is worth 0. 

From the Equation (𝟏𝟐), substitute each equation containing the variables 𝛽and 𝐼 with a value of 0, it is 

obtained: 

µ − (0)𝜎(0)𝑆0 − µ𝑆0  = 0 

µ − µ𝑆0 = 0 

−µ𝑆0 = −µ 

𝑆0 = 1                                                                 (15) 
 

Substituting the value 𝐼0 = 0 into Equation (14), obtained: 

𝛼(0) − µ𝑅0 − 𝜏(0)𝑅0 = 0 

−µ𝑅0 = 0 

𝑅0 = 0                                                              (16) 

Then the disease-free equilibrium point is obtained as follows: 

(𝑆0, 𝐼0, 𝑅0) = (1,0,0) (17) 

 

3.2.2. Disease Endemic Equilibrium Point 

 

Endemic disease means that in the population, there are always individuals who are infected with the 

disease, meaning that there are individuals who are prone to be exposed to COVID-19, and there are 

individuals who are infected with COVID-19. Because there are individuals who are exposed to COVID-19, 

the transmission rate (𝛽) and the infected group (𝐼) are worth 𝛽 > 0, 𝐼 ≠ 0. Let (𝑆∗, 𝐼∗, 𝑅∗) be an endemic 

equilibrium point.  From the Equation (𝟏𝟐) for  𝜎 > 0 and µ > 0, we can rewrite the equation as: 

 

𝑆∗ =
µ

𝐼∗ 𝛽𝜎 + µ
 (18) 

Substituting Equation (18) into Equation (𝟏𝟑), and then solving it for 𝐼∗,  we have: 

 

𝐼∗ =
1

2
 ( −

µ(𝛼− 𝛽𝜎+ µ)

𝛽𝜎(𝛼+ µ)
+√

µ(4 𝑅∗ 𝛽𝜎𝜏(𝛼+ µ)+ µ(𝛼− 𝛽𝜎+ µ)2)

𝛽2𝜎2(𝛼+ µ)2
) (19) 

Substituting Equation (19) into Equation (𝟏𝟒), and then solving it for 𝑅∗, we have: 
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𝑅∗ = 𝑎− 𝑏 (20) 

Where: 

𝑎 =
1

2𝜏3
(𝛽𝜎𝜏µ + 𝛽𝜎µ2 − 𝜏µ2 + 𝛼(2𝜏2 + 𝛽𝜎µ − 𝜏µ)  

𝑏 = 𝜏3√
(𝛼2(2𝛽𝜎𝜏(2𝜏−µ)+𝛽2𝜎2µ+𝜏2µ)+µ(𝜏µ−𝛽𝜎(𝜏+µ))

2
+2𝛼µ(𝛽𝜎𝜏(𝜏−2µ)+𝜏2µ+𝛽2𝜎2(𝜏+µ)))

(𝜏6µ)
  

By selecting and setting parameter values that satisfy 𝜎 > 0  µ > 0  ( (𝛼 ≥ µ  ((𝛽 =
𝛼+µ

𝜎
  𝜏 >

0)   (𝜏 >
µ(𝛼−𝛽𝜎+µ)

𝛼
  0 < 𝛽 <

𝛼+µ

𝜎
))) (0 < 𝛼 < µ  0 < 𝛽 ≤

𝛼+µ

𝜎
  𝜏 >

µ(𝛼−𝛽𝜎+µ)

𝛼
)) and substituting 

them into Equation (20), Equation (19) and Equation (3), the equilibrium point () will be obtained. Finally, 

we have the COVID-19 endemic equilibrium point for is as follows: 

(𝑆, 𝐼, 𝑅) = (𝑆∗, 𝐼∗, 𝑅∗)  (21) 

3.3 Basic Reproduction Number 

The first step is to form a Jacobian matrix of the compartments containing infected individuals, namely 

I and R as follows: 

𝑱(𝐼, 𝑅) = (

𝑑(𝛽𝜎𝐼𝑆 + 𝜏𝐼𝑅 − µ𝐼 − 𝛼𝐼)

𝑑𝐼

𝑑(𝛽𝜎𝐼𝑆 + 𝜏𝐼𝑅 − µ𝐼 − 𝛼𝐼)

𝑑𝑅
𝑑(𝛼𝐼 − 𝜏𝐼𝑅 − µ𝑅)

𝑑𝐼

𝑑(𝛼𝐼 − 𝜏𝐼𝑅 − µ𝑅)

𝑑𝑅

) 

 

𝑱(𝐼, 𝑅) = (
𝛽𝜎𝑆 + 𝜏𝑅 − µ − 𝛼 𝜏𝐼

𝛼 − 𝜏𝑅 −𝜏𝐼 − µ
)                                                                 (22) 

Next, substituting the disease-free equilibrium point (17) into the Jacobian matrix (22), we get: 

𝑱(1,0,0) = (
𝛽𝜎(1) + 𝜏(0) − µ − 𝛼 𝜏(0)

𝛼 − 𝜏(0) −𝜏(0) − µ
) 

𝑱(1,0,0) = (
𝛽𝜎 − µ − 𝛼 0

𝛼 −µ
)  (23) 

Since 𝑱 = 𝑭 − 𝑽, by using manipulation, the Jacobian matrix (23) can be formed as follows: 

𝑱(1,0,0) = (
𝛽𝜎 0
𝛼 0

) − (
µ + 𝛼 0
0 µ

) 

𝑭 = (
𝛽𝜎 0
𝛼 0

) and 𝑽 = (
µ + 𝛼 0
0 µ

) (24) 

Next, looking for the inverse of the matrix V, we get: 

 

𝑽−1 =
1

µ(µ + 𝛼)
(
µ 0
0 µ + 𝛼

) 

𝑽−1 =

(

 

1

(µ + 𝛼)
0

0
1

µ)

  (25) 

The next step is to find 𝑅0 = 𝜌(𝑭 ∙ 𝑽
−1). Then obtained: 

 

𝑅0 = 𝜌(𝐹 ∙ 𝑉
−1) 

𝑅0 = 𝜌

(

 
 
(
𝛽𝜎 0
𝛼 0

) ∙

(

 

1

(µ + 𝛼)
0

0
1

µ)

 

)
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𝑅0 = 𝜌(

𝛽𝜎

(µ + 𝛼)
0

𝛼

(µ + 𝛼)
0
) (26) 

 

To get 𝑅0, the next step is to find the biggest eigenvalue of 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 (𝟐𝟔) as follows: 

 

|𝑭 ∙ 𝑽−1 − 𝜆𝑰| = ||(

𝛽𝜎

(µ + 𝛼)
0

𝛼

(µ + 𝛼)
0
) − (

𝜆 0
0 𝜆

)|| 

→ |𝑭 ∙ 𝑽−1 − 𝜆𝑰| = ||

𝛽𝜎

(µ + 𝛼)
− 𝜆 0

𝛼

(µ + 𝛼)
−𝜆
|| 

→ 𝜆 (𝜆 −
𝛽𝜎

(µ + 𝛼)
) = 0 

𝜆1 = 0 and 𝜆2 =
𝛽𝑂

µ+𝛼
 (27) 

 

Because all variables are positive, so 𝜆2 > 𝜆1. Then obtained 𝑅0 as follows: 

 

𝑅0 =
𝛽𝜎

µ + 𝛼
     , µ + 𝛼 ≠ 0 (28) 

3.4 Stability Analysis 

After obtaining the model equilibrium point, the next step is to perform stability analysis for each 

equilibrium point (𝑆0, 𝐼0, 𝑅0) and (𝑆1, 𝐼1, 𝑅1). As the first step in analyzing the equilibrium point, it is 

necessary to linearize the system of differential Equation (12), Equation (13), and Equation (14). For 

example: 

 𝑓(𝑆, 𝐼, 𝑅) = µ − 𝛽𝜎𝐼𝑆 − µ𝑆 (29) 

𝑔(𝑆, 𝐼, 𝑅) = 𝛽𝜎𝐼𝑆 + 𝜏𝐼𝑅 − 𝛼𝐼 − µ𝐼 (30) 

ℎ(𝑆, 𝐼, 𝑅) = 𝛼𝐼 − µ𝑅 − 𝜏𝐼𝑅 (31) 

By linearizing Equation (𝟐𝟗), we get: 

 

𝑑𝑓

𝑑𝑆
=
𝑑(µ − 𝛽𝜎𝐼𝑆 − µ𝑆)

𝑑𝑆
= −𝛽𝜎𝐼 − µ 

𝑑𝑓

𝑑𝐼
=
𝑑(µ − 𝛽𝜎𝐼𝑆 − µ𝑆)

𝑑𝐼
= −𝐵𝜎𝑆 

𝑑𝑓

𝑑𝑅
=
𝑑(µ − 𝛽𝜎𝐼𝑆 − µ𝑆)

𝑑𝑅
= 0  

Then linearize Equation (𝟑𝟎). Then obtained: 

 
𝑑𝑔

𝑑𝑆
=
𝑑(𝛽𝜎𝐼𝑆 + 𝜏𝐼𝑅 − 𝛼𝐼 − µ𝐼)

𝑑𝑆
= 𝛽𝜎𝐼 

𝑑𝑔

𝑑𝐼
=
𝑑(𝛽𝜎𝐼𝑆 + 𝜏𝐼𝑅 − 𝛼𝐼 − µ𝐼)

𝑑𝐼
= 𝛽𝜎𝑆 + 𝜏𝑅 − 𝛼 − µ 

𝑑𝑔

𝑑𝑅
=
𝑑(𝛽𝜎𝐼𝑆 + 𝜏𝐼𝑅 − 𝛼𝐼 − µ𝐼)

𝑑𝑅
= 𝜏𝐼 

Then linearize Equation (𝟑𝟏). Then obtained: 

𝑑ℎ

𝑑𝑆
=
𝑑(𝛼𝐼 − µ𝑅 − 𝜏𝐼𝑅)

𝑑𝑆
= 0 
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𝑑ℎ

𝑑𝐼
=
𝑑(𝛼𝐼 − µ𝑅 − 𝜏𝐼𝑅)

𝑑𝐼
= 𝛼 − 𝜏𝑅 

𝑑ℎ

𝑑𝑅
=
𝑑(𝛼𝐼 − µ𝑅 − 𝜏𝐼𝑅)

𝑑𝑅
= −µ − 𝜏𝐼 

The result of linearization will be the elements of the Jacobian matrix, which has the following general 

Jacobian: 

 𝐽 = [

−𝛽𝜎𝐼 − µ −𝛽𝜎𝑆 0
𝛽𝜎𝐼 𝛽𝜎𝑆 + 𝜏𝑅 − 𝛼 − µ 𝜏𝐼
0 𝛼 − 𝜏𝑅 −µ − 𝜏𝐼

] (32) 

 

3.4.1 Disease-Free Equilibrium Point Stability Analysis 

By substituting the disease-free equilibrium point value in Equation (17) into the Jacobian matrix (32), 

we get: 

 𝐽0 = [

−µ −𝛽𝜎 0
0 𝛽𝜎 − 𝛼 − µ 0
0 𝛼 −µ

] (33) 

 

Next, look for the eigenvalues of the matrix (33). So, the characteristic equation for the Jacobian matrix 

(33), which is analyzed by substituting the disease-free equilibrium point, can be written as follows: 

 

𝑑𝑒𝑡 [

𝜆 + µ −𝛽𝜎 0
0 𝜆 − 𝛽𝜎 + 𝛼 + µ 0
0 𝛼 𝜆 + µ

] = 0 

 

                                                             (𝜆 + µ)2(𝛼 − βσ + 𝜆 + µ) = 0                                 (34) 
 

Then the eigenvalues obtained are 𝜆1 = −µ and 𝜆2 = βσ − 𝛼 − µ. It can be seen that the value of 𝜆1 

is clearly negative, and 𝜆2 is not necessarily negative. For that, it will be proved that 𝜆2 is negative. It is 

known that the condition for the disease-free equilibrium point is said to be stable if 𝑅0 < 1. From Equation 

(28) known value 𝑅0 =
𝛽𝜎

𝛼+µ
. Then obtained: 

𝛽𝜎

𝛼 + µ
< 1 

𝛽𝜎 < 𝛼 + µ 

𝛽𝜎 − 𝛼 − µ < 0 

 

Because 𝜆2 = βσ − 𝛼 − µ . Then obtained: 

 

𝜆2 < 0 

 

Based on the Routh-Hurwitz criteria, every eigenvalue that exists is the same, namely negative. As a 

result, there is no change in sign. It can be concluded that the disease-free equilibrium point is locally 

asymptotically stable. 

3.4.2 Disease Endemic Equilibrium Point Stability Analysis 

Consider an endemic equilibrium Equation (21). Let the point (𝑆1, 𝐼1, 𝑅1) = (𝑆
∗, 𝐼∗, 𝑅∗)  = (𝑆, 𝐼, 𝑅). 

By substituting the disease-free equilibrium point value in Equation (21) into the Jacobian matrix (32), we 

get: 

 𝐽 = [

−𝛽𝜎𝐼1 − µ −𝛽𝜎𝑆1 0
𝛽𝜎𝐼1 𝛽𝜎𝑆1 + 𝜏𝑅1 − 𝛼 − µ 𝜏𝐼1
0 𝛼 − 𝜏𝑅1 −µ − 𝜏𝐼1

] (35) 

Next, look for the eigenvalues of the matrix (35). So the characteristic equation for the Jacobian matrix 

(35), which is analyzed by substituting the disease-free equilibrium point, can be written as follows: 
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𝑑𝑒𝑡 [

−𝛽𝜎𝐼1 − µ −𝛽𝜎𝑆1 0
𝛽𝜎𝐼1 𝛽𝜎𝑆1 + 𝜏𝑅1 − 𝛼 − µ 𝜏𝐼1
0 𝛼 − 𝜏𝑅1 −µ − 𝜏𝐼1

] = 0 

 

𝐼1𝜏(−𝛼 + 𝜏𝑅1)(𝜆 + 𝐼1𝛽𝜎 + µ) + (𝜆 + 𝜏𝐼1 + µ)(𝑆1𝐼1𝛽
2𝜎2 + (𝜆 + 𝐼1𝛽𝜎 + µ)(𝛼 + 𝜆 − 𝑆1𝛽𝜎 + 𝑅1𝜏 + µ)) 

= 0 

 

𝜆3 + 𝜆2(𝛼 − 𝑆1𝛽𝜎 + 𝐼1𝛽𝜎 + 𝐼1𝜏 + 𝑅1𝜏 + 3µ) + 𝜆(2𝐼1𝛽𝜎µ 

−2𝑆1𝛽𝜎µ + 2𝐼1𝜏µ + 2𝑅1𝜏µ + 3µ
2 + 𝐼1𝛼𝛽𝜎 − 𝑆1𝐼1𝛽𝜎𝜏 

+𝐼1
2𝛽𝜎𝜏 + 𝐼1𝑅1𝛽𝜎𝜏 + 2𝐼1𝑅1𝜏

2 + 2𝛼µ) + 2𝐼1
2𝑅1𝛽𝜎𝜏

2 

+𝐼1𝛼𝛽𝜎µ − 𝑆1𝐼1𝛽𝜎𝜏µ + 𝐼1
2𝛽𝜎𝜏µ + 𝐼1𝑅1𝛽𝜎𝜏µ 

+2𝐼1𝑅1𝜏
2µ + 𝛼µ2 − 𝑆1𝛽𝜎µ

2 + 𝐼1𝛽𝜎µ
2 + 𝐼1𝜏µ

2 

+𝑅1𝜏µ
2 + µ3 = 0 

 

Then obtained: 

𝑎0 = 1 

𝑎1 = 𝛼 − 𝑆1𝛽𝜎 + 𝐼1𝛽𝜎 + 𝐼1𝜏 + 𝑅1𝜏 + 3µ 

𝑎2 = 2𝐼1𝛽𝜎µ − 2𝑆1𝛽𝜎µ + 2𝐼1𝜏µ + 2𝑅1𝜏µ + 3µ
2 + 𝐼1𝛼𝛽𝜎 

−𝑆1𝐼1𝛽𝜎𝜏 + 𝐼1
2𝛽𝜎𝜏 + 𝐼1𝑅1𝛽𝜎𝜏 + 2𝐼1𝑅𝜏

2 + 2𝛼µ 

𝑎3 = 2𝐼1
2𝑅1𝛽𝜎𝜏

2 + 𝐼1𝛼𝛽𝜎µ − 𝑆1𝐼1𝛽𝜎𝜏µ + 𝐼1
2𝛽𝜎𝜏µ 

+𝐼1𝑅1𝛽𝜎𝜏µ + 2𝐼1𝑅𝜏
2µ + 𝛼µ2 − 𝑆1𝛽𝜎µ

2 

+𝐼1𝛽𝜎µ
2 + 𝐼1𝜏µ

2 + 𝑅1𝜏µ
2 + µ3 

Forming an Array-Routh based on the above equation, we get: 

 

||

𝜆3 𝛼0 𝛼2
𝜆2 𝛼1 𝛼3

𝜆 (
𝛼1𝛼2 − 𝛼0𝛼3

𝛼1
) 0

|| 

 

The next step is to analyze 𝛼0, 𝛼1, and (
𝛼1𝛼2−𝛼0𝛼3

𝛼1
)There is no change in signs of a stable condition. 

The condition for a disease to be endemic is 𝑆, 𝐼, 𝑅 > 0. Each case will create a different compartment value, 

meaning that the difference between the compartments is absolute. 

Then obtained: 

𝛼1𝛼2 − 𝛼0𝛼3 = 𝐼1𝛼
2𝛽𝜎 + |𝐼1 − 𝑆1|𝐼1𝛼𝛽

2𝜎2 + |𝐼1 − 𝑆1|𝐼1𝛼𝛽𝜎𝜏 + 2𝑅1𝛼𝛽𝜎𝜏 + 𝑆1
2𝐼1𝛽

2𝜎2𝜏

+ |𝐼1 − 2𝑆1|𝐼1
2𝛽2𝜎2𝜏 + |𝐼1 − 𝑆1|𝐼1𝑅1𝛽

2𝜎2𝜏 + 2𝐼1𝑅1𝛼𝜏
2 + |𝐼1 − 𝑆1|𝐼1

2𝛽𝜎𝜏2

+ |𝐼1 − 3𝑆1|𝑆1𝐼1𝑅1𝛽𝜎𝜏
2 + 𝐼1𝑅1

2𝛽𝜎𝜏2 + 2𝐼2𝑅1𝜏
3 + 2𝐼1𝑅1

2𝜏3 + 2𝛼2µ

+ |6𝐼1 − 4𝑆1|𝛼𝛽𝜎µ + 2𝑆1
2𝛽2𝜎2µ + |2𝐼1 − 4𝑆1|𝑆1𝐼1𝛽

2𝜎2µ + 4𝐼1𝛼𝜏µ + 4𝑅1𝛼𝜏µ

+ |6𝐼1 − 6𝑆1|𝐼1𝛽𝜎𝜏µ + |6𝐼1 − 4𝑆1|𝑅1𝛽𝜎𝜏µ + 2𝐼1
2𝜏2µ + 8𝑅1𝐼1

2𝑅1µ + 2𝑅1
2𝜏2µ + 8𝛼µ2

+ |8𝐼1 − 8𝑆1|𝛽𝜎µ
2 + 8𝐼1𝜏µ

2 + 8𝑅1𝜏µ
2 + 8µ3 

𝛼1𝛼2 − 𝛼0𝛼3 > 0 

 

𝛼1 = 𝛼 + |𝐼1 − 𝑆1|𝛽𝜎 + 𝐼1𝜏 + 𝑅1𝜏 + 3µ 

𝛼1 > 0 

 

In this case, 𝛼1𝛼2 − 𝛼0𝛼3 and 𝛼1 are clearly positive, so it can be concluded that 
𝛼1𝛼2−𝛼0𝛼3

𝛼1
 is positive. 

Then all column one in Array Routh is positive. So, this equation is asymptotically stable. This means that 

the disease will remain in a population. 

3.5 Model Application 

This simulation aims to test the balance points that have been formed following the Routh-Hurwitz 

criteria. This simulation uses the following equation: 
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𝑆𝑛+1 = 𝑆𝑛 + µ𝑁 − 𝛽𝜎𝐼𝑛𝑆𝑛 − µ𝑆𝑛 (36) 

𝐼𝑛+1 = 𝐼𝑛 + 𝛽𝜎𝐼𝑛𝑆𝑛 + 𝜏𝐼𝑛𝑅𝑛 − 𝛼𝐼𝑛 − µ𝐼𝑛 (37) 

𝑅𝑛+1 = 𝑅𝑛 + 𝛼𝐼𝑛 − µ𝑅𝑛 − 𝜏𝐼𝑛𝑅𝑛 (38) 

 

The application of this model uses data obtained from the UPTD Puskesmas Batanghari, as follows: 

Table 2. Parameter values in COVID-19 data at Health Center UPTD Batanghari  

Parameter Value Parameter 

N(Total Population) 100% (24.977) 

µ(Death and Birth Rate) 2% (Assumption) 

𝛽 (Transmission or 

Infection Rate) 
100% (Assumption) 

α(Recovery Rate) 66% (138 of 206) 

γ(Total Vaccinated) 65% (16.361 of 24.977) 

δ(Vaccine Efficacy) 65% (Sinovac Standard) 

𝜏(Reinfection Rate) 50% (Assumption) 

I (Infected Individual) 0,82% (206 of 24.977) 

 

With initial values 𝑆1: 0.9868, 𝐼1: 0.0082, and 𝑅1: 0.005. Subtitute Equation (36), Equation (37), and 

Equation (38) with existing parameter values. Then obtained: 

𝑆2 = 𝑆1 + µ − 𝛽(1 − 𝛿𝛾)𝐼1𝑆1 − µ𝑆1 

𝑆2 = 0.9868 + 2%− 100% × (1 − 65% × 70%) × 0.0082 × 0.9868 − 2% × 

0.9868 

𝑺𝟐 = 𝟎, 𝟗𝟕𝟗𝟒𝟗𝟖𝟐𝟎𝟒 

 

𝐼2 = 𝐼1 + 𝛽(1 − 𝛿𝛾)𝐼1𝑆1 + 𝜏𝐼1𝑅1 − 𝛼𝐼1 − µ𝐼1 

𝐼2 = 0.000132495 + 100% × (1 − 65% × 70%) × 0.000132495 × 0.999847505 + 10% × 

0.000132495 × 0.00002 − 20% × 0.000132495 

− 2% × 0.000132495 

𝑰𝟐 = 𝟎. 𝟎𝟎𝟎𝟏𝟕𝟓𝟓𝟒𝟓 

 
𝑅2 = 𝑅1 + 𝛼𝐼1 − µ𝑅1 − 𝜏𝐼1𝑅1 

𝑅2 = 0.00002 + 20% × 0.000132495 − 2% × 0.00002 − 10% × 0.000132495 × 0.00002 

𝑹𝟐 = 𝟎. 𝟎𝟎𝟎𝟎𝟒𝟔 

Continued until the 100𝑡ℎ iteration, so that the graph is obtained as follows: 

 

 
 

 

 

 

 

 

 

 

 

 

a) 

(b) (c) 

 

Figure 4. Graph of the SIR Model for Covid 19 Data at Batanghari Health Center. (a) Population conditions 

for individuals who are healthy but susceptible to COVID-19, (b) Population conditions for individuals infected 

with COVID-19, and (c) Population conditions for individuals who have been given the COVID-19 vaccine. 

 

Based on the resulting graph, it can be seen that the dynamics of the development of COVID-19 are 

monitored to be conducive, and the condition is stable for the next 100 months. It can be concluded that the 
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decisions or policies implemented by the government and Health Center are correct. However, they must 

continue to apply health protocols properly so that there is no spike in unwanted infections. 

3.6 MAPE 

To find out the errors that exist in the forecasting process, the data in the Batanghari Health Center 

UPTD in months 1, 2, 3, 4, and 5 in 2022 with forecasting results with the SIR COVID-19 model in months 

1, 2, 3, 4, and 5 in 2022. 

Table 3. Comparison of Data for Months 1, 2, 3, 4, and 5 in 2022 

Months Model SIR 

COVID-19  

(𝑨) 

Health 

Center 

(𝑷) 
𝜟|𝑨 − 𝑷| 

1 12.239 10 2.239 

2 10.965 11 0.035 

3 9.796 7 2.796 

4 8.761 8 0.761 

5 7.837 9 1.163 

Total 49.598 45 6.994 

 

Then it can be obtained that the average absolute error or Mean Absolute Error (MAPE) is 

 

𝑀𝐴𝐸 =
𝛥|𝐴 − 𝑃|

𝑛
=
6,994

5
= 1.3988 

𝑀𝐴𝑃𝐸 =
1.3988

49.598
= 0.028202 = 2.8% 

4. CONCLUSIONS 

Our research results can be explained as follow: 

1. The COVID-19 SIR Model, made locally asymptotically stable at the balance point of disease-free 

and endemic disease, means that this disease can disappear and remain in an area.  

2. The effect of the vaccination given is to inhibit the spike in infection. We can pay attention to the 

basic reproduction number A in handling this case. 

3. Based on the application of the model to the data at the Batanghari Health Center UPTD, we obtained 

that the dynamics of the COVID-19 development monitored to be conducive, and the condition was 

stable for the next 100 months, with a Mean Absolute Percentage Error (MAPE) percentage of 2.8% 

which it's Highly Accurate Forecasting 
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