
 https://doi.org/10.30598/barekengvol17iss2pp0955-0968

June 2023 Volume 17 Issue 2 Page 0955–0968

P-ISSN: 1978-7227 E-ISSN: 2615-3017

BAREKENG: Journal of Mathematics and Its Applications

955

IMPLEMENTATION AND COMPARISON IN USING STATE

PATTERN ON MAIN CHARACTER MOVEMENT (CASE STUDY:

POCONG JUMP VIDEO GAME VERSION 1.0)

Sanriomi Sintaro1, Deiby Tineke Salaki2, Luther Alexander Latumakulita3*,

Mahardika Inra Takaendengan4, Bernard5, Ade Surahman6, Noorul Islam7

1,3*,4 Information System Study Program, Faculty of Mathematic and Nature Science, Sam Ratulangi

University

Bahu, Malalayang, Manado City, North Sulawesi, Indonesia

2 Mathematic Study Program, Faculty of Mathematic and Nature Science, Sam Ratulangi University

Bahu, Malalayang, Manado City, North Sulawesi, Indonesia

5 Informatic Department, Faculty of Engineering and Computer Science, Teknokrat Indonesia

University

Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kedaton, Bandar Lampung, Lampung, Indonesia

6 Computer Engineering Department, Faculty of Engineering and Computer Science, Teknokrat

Indonesia Univerisy

Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kedaton, Bandar Lampung, Lampung, Indonesia

7 Kanpur Institute of Technology, Kanpur, India

A1, UPSIDC Industrial Area, Chakeri Ward, Rooma, Uttar Pradesh 208001, India

Corresponding author e-mail: * latumakulitala@unsrat.ac.id

ABSTRACT

Article History:
Game development success is often hard to achieve due to various problems such as

performance issues, malfunctioning features, and poorly organized program structure. The

problems that arise can be prevented by using the design pattern as a game programming

architecture from the beginning of development. By implementing a design pattern, the process

of developing video games can be made easier and simplified. The development team can focus

its efforts on producing better quality video games. In this study, design patterns that would be

used are state patterns and finite state machines. The state pattern is implemented by

encapsulating the character's behavior in a class called state. The finite state machine will then

facilitate the transition of states caused by user/player input or variable value changes. State

pattern and the finite state machine are tested with a test case and game performance is tested

with software metrics. The result obtained from this study are state patterns and finite state

machines have a valid component structure and could improve performance efficiency in video

games.

Received: 14th January 2023

Revised: 24th April 2023

Accepted: 28th April 2023

Keywords:

Game;

Design pattern;

Finite state machine

This article is an open access article distributed under the terms and conditions of the

Creative Commons Attribution-ShareAlike 4.0 International License.

How to cite this article:

S. Sintaro, Bernard, A. Surahman, L. A. Latumakulita, M. I. Takaendengan and N. Islam., “IMPLEMENTATION AND COMPARISON

IN USING STATE PATTERN ON MAIN CHARACTER MOVEMENT (CASE STUDY: POCONG JUMP VIDEO GAME VERSION

1.0),” BAREKENG: J. Math. & App., vol. 17, iss. 2, pp. 0955-0968, June, 2023.

Copyright © 2023 Author(s)

Journal homepage: https://ojs3.unpatti.ac.id/index.php/barekeng/

Journal e-mail: barekeng.math@yahoo.com; barekeng.journal@mail.unpatti.ac.id

Research Article • Open Access

mailto:latumakulitala@unsrat.ac.id
http://creativecommons.org/licenses/by-sa/4.0/
https://ojs3.unpatti.ac.id/index.php/barekeng/
mailto:barekeng.math@yahoo.com
mailto:barekeng.journal@mail.unpatti.ac.id

956 Sintaro. et. al. IMPLEMENTATION AND COMPARISON IN USING STATE PARAMETER ON…

1. INTRODUCTION

Eternal Dream is a video game development startup company located in Bandar Lampung City,

Lampung and has been established since 2017. This development team is one of the video game developers

that has experienced development in Indonesia. The revenue earned by video game developers in Indonesia

in 2019 reached $1.08 Billion [1].

Based on the information provided by Lucky Putra Dharmawan, the CEO of Eternal Dream and who

at that time was the programmer of the Video Game Pocong Jump, Pocong Jump had problems in program

structure, functionality, and performance. The structure of the programs contained in video games is not

neatly arranged and systematically. In addition, Pocong Jump also has problems with inefficient memory

allocation, ineffective coroutine use, and improper use of animations, resulting in video games experiencing

poor performance when running on platforms that have 1GB of RAM. In Game Development, we have to

use Research and Development to make games. One of the ways to make R&D is to do a comparison between

the previous program code and the better program code to produce increased performance [2]. In this research,

we are using design pattern for the code.

The use of design patterns as a game programming architecture has been widely applied in the video

game development process, with the aim of simplifying and simplifying the video game development process

so that it can be easily understood by the development team [2]. We also must to awareness about Context

awareness and adaptation, which are crucial aspect in mobile game based learning [3]. The use of design

pattern has multiple benefits for game software, because hardware will communicate with input, data

transform, and output [4]. The development team can allocate its resources to build video games that have

better performance, functionality, and structure, because of which the quality of the video games developed

improves. One of the design patterns that can be used to improve video game quality is to apply a state pattern

[5], [6] with a finite state machine [5]. FSM not only can be used for games but also another platforms, such

as medical area, because FSM is an abstract machine that can allow the storage and also processing of all

information with order-sensitive patterns [7].

In this research, We decided to use state pattern which can be implemented in a synchronous approach

with FSM [8]. The authors will apply state patterns and finite state machines to Pocong characters in eternal

dream's Pocong Jump video game. The state pattern encapsulates the character's behavior on the Pocong

character then creates three states, namely silence, jump, and death. The finite state machine oversees

handling the transfer between states and then the system will execute the currently active state.

2. RESEARCH METHODS

This research was used to find whether using the state pattern makes the video game develop better.

This was done because A well-developed video game will give players a special gaming experience [9], [10].

Video games have several genres referred to as "The Classics Game Genre". These genres are shooter, action

and arcade, platformer, fighting, strategy, role-playing, sport, vehicle, construction and simulations,

adventure, and puzzle. Meanwhile, in this study, the Pocong jump video game has a platformer genre where

Platformer is one of the genres of video games where characters move by jumping from one platform to

another. Platformers give players a challenge that can be fighting or avoiding a trap [11]. Platformers can be

divided into two types, namely single-screen platformers and scrolling platformers. In a single-screen

platformer, characters can only move within a scope as large as the monitor screen, while in scrolling

platformers, the screen moves following the character's movements [12].

2.1 Data Collection Technique

2.1.1 Interview

The interview method is carried out by conducting interview directly with the source. The author

conducted an interview with Lucky Putra Dharmawan, the CEO of Eternal Dream and who at that time was

the programmer of the video game Pocong Jump.

BAREKENG: J. Math. & App., vol. 17(2), pp. 0955- 0968, June, 2023. 957

2.1.2 Observation

The observation method is carried out by studying the behavioral function of the Pocong character by
playing the Pocong Jump video game and reading the program code contained in the Pocong character. Here
is the flowchart of the program code on the Pocong character that we can see in Figure 1 below.

Figure 1. Functions inside OnTriggerEnter2D

Figure 1 shows the simple logic for playing this game is when the main character touches an obstacle

or trap that we put somewhere inside the game. The main character will respawn if the main character touch

the ground. For this logic, we can put ground below the screen, so the player cannot see it, but that logic will

make the main character respawn when fall into the trap that not visible on the screen. Figure 2, Figure 3

and Figure 4 are made to Shown an update function, it will be use to set the main character movement and

other feature that we put inside the game.

Figure 2. Update Function

958 Sintaro. et. al. IMPLEMENTATION AND COMPARISON IN USING STATE PARAMETER ON…

Figure 3. Update Function (2)

Figure 4. Update Function (3)

BAREKENG: J. Math. & App., vol. 17(2), pp. 0955- 0968, June, 2023. 959

Figure 2, Figure 3, and Figure 4 shown above show the update process for the character for moving and control. As

we can see in Figure 2, at the start program will ask abour where player is, whether it is on ground and is it mirrored or

not. When the program knows that the character is at the ground, it will check about setPower, and setPower are true

then the last check checks the mirrored position of a character. If it turnRight (not mirrored), hen the program will

calculate increment forceX and forceY for each frame and set the value cap for forceX to 6.5f and forceY to 13.5f while

it is mirrored (turn left). The program will calculate the different values. While the forceY is still the same value, forceX

will be set to -6.5f, which means that the X axis will send back to the left of the character. In this progress and calculation,

the program will show the increment of the PowerBar charge value and show the user the charge meter. This progress

will show no change to the character because we do not input anything to the character when the program starts, but the

process will continue to Figure 3. To change the direction of the character, shown in Figure 2 that the program will

take the input and check the right input, we can see that if we press KeyDown(A) while the character is faceRight, it

will change the direction to faceLeft and if we press KeyDown(A) while the character is faceLeft, it will change the

direction to faceRight. While the program knows the direction of the character, this process will continue to keep

checking the forceY, forceY, thresoldX, and thresoldY. The last step in Figure 4, shows that the user press the input

KeyDown(Space), program will checking the value of power and if the power already released the program will check

the character are on the ground or not, the character will jump with the certain value that the program already collect

before.

2.2 Analysis Method

2.2.1 Research Framework

The research stage is needed so that the research carried out is carried out regularly and systematically

to achieve the goal. The stages of research carried out in this study can be seen in the form of a diagram in

Figure 5.

Figure 5. Research Stage

Figure 5 shows the steps for doing this research. The first step is a literature study, like collecting the data

and interviews. After that, we do some research analysis to determine the core problem to search for a

solution. After that, we do the system design that will manage the next steps, which are system

implementation, the code is made, and after that, the last step is collecting the data with a system test. All of

the data that are collected will then be used for the result of this research.

2.2.2 Designing the State Pattern

The state pattern is a class that takes the form of an interface. The class has several components that

will be passed on to the child called the state. The components contained in the state pattern will be executed

inside the character class loop. In the Unity game engine, the class is the class that implements the

MonoBehaviour class. The controller class plays a role in helping the finite state machine function to regulate

the course of transitions between states. The state pattern class diagram can be seen in Figure 6.

960 Sintaro. et. al. IMPLEMENTATION AND COMPARISON IN USING STATE PARAMETER ON…

Figure 6. State Pattern Class Diagram

Figure 6. There are four components contained in the state pattern. These components are Init (Initialization),

Enter, HandleState, and HandleLogic. The Init (Initialization) component contains the initial variables of

character behavior within each of the states where the video game has just started. The Enter component is a

component that is executed at the beginning of one time each state switches transitions. The HandleState

component contains a finite state machine function where the system checks the conditions that regulate the

displacement between states. The HandleLogic component executes the main line of program code character

behavior.

2.2.4 Designing the Finite Stage Machine

Finite state machines are used to regulate transitions between states that occur within the state pattern

[13]. In Figure 7. the design of the finite state machine is depicted using a state machine diagram.

Figure 7. State Machine Diagram.

BAREKENG: J. Math. & App., vol. 17(2), pp. 0955- 0968, June, 2023. 961

Figure 7. There are three states in the finite state machine system. Those states are IdleState, JumpState, and

DieState. At the beginning of the first time the game is run, the character will enter the IdleState. In this state,

the character stays in place and the player can change the orientation of the Pocong character to face left or

right.

When the player presses and holds the jump button, the Pocong character will fill the jump bar to determine

the strength of the jump. When the player releases this button, the state will transition to jumpstate. In this

state, Pocong characters will perform jumping actions to move or avoid obstacles. When the character hits

the ground, the state will move back to IdleState.

When the character is hit by a trap that causes lives to decrease, the system will force the character to

make a transition to DieState. In this state, the character will play a dying animation according to how the

Pocong character died. The system then runs a three-second countdown to return the character to the

checkpoint position (respawn).

3. RESULTS AND DISCUSSION

3.1. State Pattern Implementation

The implementation of the state pattern begins with creating an interface to facilitate the development

and maintenance of video games. Interfaces are also used to homogenize structures within the state class.

INTERFACE IstatePattern
void Init (parameters: chara, controller)
void Enter()
void HandleLogic()
void HandleState()

In the IStatePattern interface, there are four framework methods in the IStatePattern interface, namely

Init, Enter, HandleLogic, and HandleState. One example of an implementation of the IStatePattern interface

is the creation of a state that will be shown in the following IdleState class.

Class IdleState IMPLEMENT MonoBehaviour EXTEND IStatePattern
Initialization _character As Character
Initialization _stateController As Controller

void Init (parameters: chara, controller)
begin
 _character ← chara
 _stateController ← control
end

void Enter()
begin
 CALL _character.AnimController.SetBool WITH "isGrounded", true
End Enter

void HandleLogic()
begin
 IF keyboard input key down IS 'A'
 _character.SpriteRender.flipX ← NOT _character.SpriteRender.flipX
 ENDIF

 IF keyboard input key IS 'Space'
 Initialization _jumpForce As Vector2
 _jumpForce ← _character.JumpCharge
 _jumpForce ← _jumpForce + (_character.MultiplierJumpForce * Time.deltaTime)
 _jumpForce ← MINIMUM VALUE OF_jumpForce, _character.MaxJumpForce
 _character.JumpCharge ← _jumpForce;
 ENDIF

 IF keyboard input key release IS 'Space'
 _stateController.ActionState ← Controller.State.JUMP
 ENDIF
END HandleLogic

void HandleState()
begin
 CASE _stateController.ActionState OF
 Controller.State.JUMP : CALL _stateController.ChangeState WITH _character.jumpState
 Controller.State.DIE : CALL_stateController.ChangeState WITH _character.dieState
 ENDCASE
END HandleState

962 Sintaro. et. al. IMPLEMENTATION AND COMPARISON IN USING STATE PARAMETER ON…

void OnTriggerEnter2D (parameter: target)
begin
 IF target.gameObject.tag IS MEMBER OF _character.ObstacleTags
 _character.CauseOfDeath ← target.gameObject.tag;
 _stateController.ActionState ← Controller.State.DIE;
 RETURN null;
 ENDIF
end OnTriggerEnter2D (parameter: target)

The IdleState class is built by implementing MonoBehaviour and extending the IStatePattern interface.

The MonoBehaviour implementation is used to access Unity components, in this case, accessing collider2D

components to use the OnTriggerEnter2D function.

State initialization is executed when the video game starts inside the Awake method inside the

Character class. The HandleLogic and HandleState methods are executed once each frame is inside the

Update method inside the Character class. The program below shows the Character class.

Class Character IMPLEMENT MonoBehaviour
Initialization StateController As Controller
Initialization idleState As IdleState
Initialization jumpState As JumpState
Initialization dieState As DieState

void Awake()
Begin
 CALL idleState.Init WITH this, StateController
 CALL jumpState.Init WITH this, StateController
 CALL dieState.Init WITH this, StateController
End Awake

void Update()
Begin
 CALL StateController.CurrentState.HandleLogic
 CALL StateController.CurrentState.HandleState
End Update

In the Controller class, the program calls the Enter method to execute the program in The CurrentState

once each state switch occurs. The program below shows the Controller class.

Class Controller
Enumeration State
Begin
 IDLE
 JUMP
 DIE
End State

Initialization ActionState As State
Initialization CurrentState As IStatePattern

void Init (parameters: actionState, startingState)
Begin
 ActionState ← actionState
 CurrentState ← startingState
 CALL CurrentState.Enter
End Init

void ChangeState (parameter: newState)
Begin
 CurrentState ← newState
 CALL CurrentState.Enter
End ChangeState

3.2 Finite State Machine

The finite state machine implementation is done inside the HandleState method contained in each state

as in the IdleState class. In the Pocong character, there are three actions that can be divided into three states,

namely IdleState, JumpState, and DieState. Below is a program implementing the finite state machine by

using the Controller class to replace the active state.

Class IdleState IMPLEMENT MonoBehaviour EXTEND IStatePattern
void HandleState()
begin
 CASE _stateController.ActionState OF
 Controller.State.JUMP : CALL _stateController.ChangeState WITH _character.jumpState
 Controller.State.DIE : CALL_stateController.ChangeState WITH _character.dieState
 ENDCASE
END HandleState

BAREKENG: J. Math. & App., vol. 17(2), pp. 0955- 0968, June, 2023. 963

Class JumpState IMPLEMENT MonoBehaviour EXTEND IStatePattern
void HandleState()
begin
 CASE _stateController.ActionState OF
 Controller.State.IDLE : CALL _stateController.ChangeState WITH _character.idleState
 Controller.State.DIE : CALL_stateController.ChangeState WITH _character.dieState
 ENDCASE
END HandleState

Class DieState IMPLEMENT MonoBehaviour EXTEND IStatePattern
void HandleState()
begin
 CASE _stateController.ActionState OF
 Controller.State.IDLE : CALL _stateController.ChangeState WITH _character.idleState
 ENDCASE
END HandleState

Tabel 1. Pocong character action

Picture Active State Information

IdleState No input is given. The active state is IdleState. This state is

active when a Pocong character hits the ground or respawns.

IdleState

Orientation

The player presses the 'A' key or the like to change the

orientation of the character. The active state is IdleState.

IdleState

Hold Power

Players press and hold the 'Space' button or the like to fill the

jump power bar. The active state is IdleState.

JumpState Players release the 'Space' button or the like to perform

jumping stunts. The active state transitions to jumpstate.

DieState When a character touches a trap, the active state automatically

transitions to DieState and runs a countdown to respawn.

IdleState

Revive

After the countdown is over, the Pocong character respawns

at the checkpoint point. The active state transitions to

IdleState.

In Table 1, you can see the actions performed by the Pocong character. Pocong character has an active state

that is shown above. We use IdleState for 4 states (idle, orientation, hold, and revive), jumpState when the

character performs jumping, DieState when the character die. While the player can do something for the

character, like touching space to fill power jump or A to change orientation, IdleState will be shown.

3.3 Gameplay Comparison

Tabel 2. Gameplay Comparison

Without Design Pattern With Design Pattern

964 Sintaro. et. al. IMPLEMENTATION AND COMPARISON IN USING STATE PARAMETER ON…

In Table 2, shows the gameplay comparison of Pocong characters between those who are not and those who

use the design pattern. To make it different in design when comparing this research, we made a few changes

in the bottom right of the design pattern. While there is no difference in design, there are so many results that

will be shown in this research later below.

3.4 State Pattern Implementation

State pattern testing is carried out with a test case to find out the correctness of the system to be

executed. The results of the tests can be seen in Table 3.

Table 3. State pattern testing

Test Case Component Expected Results Test Results

Program

Executed

Init The Enter, HadleLogic, and

HandleState methods work

Appropriate

Enter The Enter method works Appropriate

HandleLogic HandleLogic method works Appropriate

HandleState State can transition Appropriate

Program Not Executed Init NullReference error, state cannot

transition

Appropriate

Enter The Enter method doesn't work Appropriate

HandleLogic HandleLogic method doesn't work Appropriate

HandleState State cannot transition Appropriate

Table 3 shows state pattern testing that we test method for handling the game. From Table 3 we can see there

are two main components that we are testing when the test case is the program being executed, component

Init, Enter, HandleLogic, and Handle State, which is already explained in 3.1. State Pattern Implementation,

all of the test case gives appropriate test results. Program Not Executed also gives Appropriate test results

when component init, enter, handlelogic, and handlestate are being tested and show the right expected results.

3.5 Finite State Machine Implementation

Finite state machine testing is carried out with a test case to determine the validity of the state

displacement. The results of the tests can be seen in Table 4.

Table 4. Finite state machine testing

Test Case Precondition Steps/ Conditions Expected Results Test Results

IdleState

Transition Test

Idle State running No input State does not transition Appropriate

The spacebar is released

after pressing/holding

State transitions to

JumpState

Appropriate

Characters hit traps State transitions to

DieState

Appropriate

JumpState

Transition Test

Jump State running No input State does not transition Appropriate

Character touches the

ground

State transitions to

IdleState

Appropriate

Characters hit traps State transitions to

DieState

Appropriate

DieState

Transition Test

DieState running No input The state transitions to

idlestate and the

character respawns at the

checkpoint after a delay

of 3.5 seconds

Appropriate

Table 4 shows Finite State matching Testing, and test cases are the transition between states. In the test case

IdleState, we can see steps or conditions we made for testing this state when no input state does not transition,

but when the spacebar is released after pressing or holding it, IdleState changes into JumpState. It also

changes into DieState when the character hits traps. For the JumpState, the transition we want to see is from

JumpState to IdleState, and DieState is already shown in Tabel 4 above. DieState also gives appropriate test

results when we give no input, and automatically after 3.5 seconds, DieState will change into IdleState to

Respawn the character.

BAREKENG: J. Math. & App., vol. 17(2), pp. 0955- 0968, June, 2023. 965

3.6 Performance Testing

For testing, we use a test case, which is a software test based on several predefined input scenarios.

The test case is carried out by comparing the expected results with the actual results that occurred at the time

of testing. If there is a discrepancy between the two, the program code must be corrected [14]. Performance

testing was carried out by comparing Eternal Dream's Pocong character behavior program with the program

that has been designed in this study. Testing is carried out using a profiler by turning on the deep profile to

determine the program execution time of each frame. To facilitate the testing process, this study used 100

pieces of prefab characters. The results of algorithm performance testing can be seen in Table 5 and Table

6.

Table 5. Performance testing without design pattern

Action Data retrieval Average

(ms) 1 2 3 4 5

Idle 1.27 1.39 1.26 1.29 1.26 1.3

Orienta

-tion

Change

1.28 1.26 1.34 1.34 1.28 1.3

Jump

Charge

1.61 1.51 1.40 1.47 1.43 1.5

Jump

Button

Release

6.,8 55.3 55.5 55.4 61.5 57.7

Mid

Air

0.91 0.92 0.92 0.93 0.92 09

Die 1.18 1.17 1.25 1.16 1.17 1.2

Table 5 shows performance testing without a design pattern. We can also see the result in Figure 8. With

this testing, we take five times data retrieval for each State. For IdleState the average time for executed the

code is 1.3ms, the average Orientation is 1.3ms, the average of JumpCharge is 1.5ms, and the average shown

below.

Table 6. FPS testing without design pattern

Action Data retrieval (frame per second) Average

1 2 3 4 5

Idle 371 368 311 315 309 335

Orienta-

tion

Change

344 343 343 360 329 344

Jump

Charge

284 277 291 295 291 288

Jump

Button

Release

205 211 213 217 220 213

Mid Air 397 407 426 422 404 411

Die 295 317 281 309 266 294

Table 6 shows FPS testing without design pattern. With this testing we also take five times data retrieval for

each State. For IdleState the average FPS is 335 Frame per Second, the average of Orientation is 344 FPS,

the average of JumpCharge is 288 FPS, the average of JumpButtonRelease is 213 FPS, the average of MidAir

is 411 and, the average when Die is 294.

In Table 7 and Table 8, you can see the test results of algorithms that have used design patterns,

966 Sintaro. et. al. IMPLEMENTATION AND COMPARISON IN USING STATE PARAMETER ON…

Table 7. Performance testing with design patterns

Action Data Retrieval (milisecond) Average

1 2 3 4 5

Idle 0.39 0.39 0.40 0.39 0.39 0.4

Orienta

-tion

Change

0.51 0.51 0.60 0.52 0.52 0.5

Jump

Charge

0.62 0.62 0.62 0.69 0.62 0.6

Jump

Button

Release

0.94 0.92 0.91 0.92 0.98 0.9

Mid

Air

0.32 0.31 0.30 0.31 0.30 0.3

Die 0.19 0.21 0.19 0.19 0.20 0.2

Table 7 shows performance testing with design pattern that already implemented. With this testing we take

five times data retrieval for each State. For IdleState the average time for executed the code is 0.4ms, the

average of Orientation is 0.5ms, the average of JumpCharge is 0.6ms, the average of JumpButtonRelease is

0.9ms, the average of MidAir is 0.3ms, and the average when Die is 0.2ms.

Table 8. FPS testing with design pattern

Action Data Retrieval (frame per second) Averages

1 2 3 4 5

Idle 587 537 555 504 514 539

Orienta-tion

Change

530 560 528 542 553 543

Jump

Charge

488 486 486 525, 477 492

Jump Button

Release

507 491 520 553 528 520

Mid Air 515 554 539 587 588 557

Die 507 558 534 568 504 534

Table 8 shows FPS testing with a design pattern that has already been implemented. With this testing, we

also take five times data retrieval for each State. For IdleState, the average FPS is 539 Frames per Second,

The average for Orientation is 543 FPS, The average for JumpCharge is 492 FPS, The average of

JumpButtonRelease is 520 FPS, The average of MidAir is 557, and The average when Die is 534.

We use Software metrics as indicators for software development to measure the quality of software.

Software metric contains information that is quantitative in nature to evaluate the efficiency of certain

programs or features contained in the software. One of the indicators that are often used in metric software is

execution time. Execution time is the time it takes the CPU (Central Processing Unit) to execute a program

from start to finish [15].

BAREKENG: J. Math. & App., vol. 17(2), pp. 0955- 0968, June, 2023. 967

Figure 11. Execution time comparison graph

In Figure 11, information is obtained that both algorithms have a relatively stable execution time, with

programs that use the design pattern having a faster execution time. When the jump button is released, there

is a very significant spike in execution time occurring in Eternal Dream's algorithm.

Figure 12. FPS comparison graphics

In Figure 12, information obtained from algorithms with a design pattern has a higher FPS and is more stable

than algorithms that do not use design patterns. The weight of computing during JumpButtonRelease makes

video game performance decrease for a moment, so players feel a lagging when characters move.

4. CONCLUSIONS

Based on the results of research conducted on the behavior of Pocong characters, it was concluded that

Pocong characters in the Pocong Jump video game could be developed by applying design patterns in the

form of state patterns and finite state machines. The program code that implements the design pattern has a

more organized structure and a faster program execution time. The test results of the state pattern and finite

state machine components on the Pocong character show valid values. The value describes that the component

has been appropriate and successfully tested.

Some suggestions that researchers can give to conduct further research, namely: The test results of the

state pattern and finite state machine components on the Pocong character show valid values. The value

describes that the component has been appropriate and successfully tested.

Some suggestions that researchers can give to conduct further research, namely:

1. The number of states carried out in this study is relatively small, it is hoped that in the future a study

will be carried out with a larger number of states with different transitions.

968 Sintaro. et. al. IMPLEMENTATION AND COMPARISON IN USING STATE PARAMETER ON…

2. It is hoped that in the future research related to the use of state pattern and finite state machine methods

will be carried out in different cases, such as the behavior of non-player character movements or the

interaction of the non-player character with players.

3. Develop this research by testing the design pattern and architecture of other video games, such as

observers, object pooling, spatial partitions, and others.

ACKNOWLEDGMENT

With the creation of this study, the author expresses his deepest gratitude and gratitude to all parties who

contributed to the study. Thank you to Lucky Putra Dharmawan for being willing to provide interviews,

materials, and research objects. Thank you to a team from Teknokrat Indonesia University who are willing

to help with this collaboration research. As well as thanks to team from Sam Ratulangi University..

REFERENCES

[1] Kneoema, “Top 100 Countries by Game Revenues,” 2019. https://knoema.com/infographics/tqldbq/top-100-countries-by-

game-revenues# (accessed Aug. 22, 2022).

[2] P. S. Dewi and S. Sintaro, “Mathematics Edutainment Dalam Bentuk Aplikasi Android,” Triple S (Journals Math. Educ.,

vol. 2, no. 1, pp. 1–11, 2019.

[3] L. Bennis, K. Kandali, and H. Bennis, “An Authoring Tool for Generating Context Awareness Mobile Game Based

Learning,” Int. J. Emerg. Technol. Learn., vol. 17, no. 2, pp. 273–281, 2022.

[4] J. D. Bayliss, “Developing games with data-oriented design,” in Proceedings of the 6th International ICSE Workshop on

Games and Software Engineering: Engineering Fun, Inspiration, and Motivation, 2022, pp. 30–36.

[5] F. S. Pramana, “Penerapan Konsep State Pattern Pada Game Engine (Studi Kasus Game Wipe It Off).” Universitas

Brawijaya, 2018.

[6] R. Nystrom, “Game Programming Patterns: Robert Nystrom: 9780990582908: Amazon. com: Books 1 edition., Genever

Benning.” 2014.

[7] S. Cao, F. Wang, L. Wang, C. Fan, and J. Li, “DNA nanotechnology-empowered finite state machines,” Nanoscale horizons.

[8] V. André, R. A. S. S. Victório, and G. C. A. Coutinho, “Persistent State Pattern.”

[9] M. F. Rahadian, A. Suyatno, and S. Maharani, “Penerapan metode finite state machine pada game ‘The Relationship,’” 2017.

[10] S. Sintaro, “RANCANG BANGUN GAME EDUKASI TEMPAT BERSEJARAH DI INDONESIA,” J. Inform. dan

Rekayasa Perangkat Lunak, vol. 1, no. 1, pp. 51–57, 2020.

[11] M. Mustofa, S. Sidiq, and E. Rahmawati, “Penerapan Finite State Machine Untuk Pengendalian Animasi Pada Video Game

Rpg Nusantara Legacy,” Jusikom J. Sist. Komput. Musirawas, vol. 3, no. 1, pp. 1–10, 2018.

[12] T. Minkkinen, “Basics of Platform Games,” 2016.

[13] F. Marzian and M. Qamal, “Game RPG ‘The Royal Sword’ Berbasis Desktop Dengan Menggunakan Metode Finite State

Machine (FSM),” J. Sist. Inf., vol. 1, no. 2, 2017.

[14] A. N. Hasibuan and T. Dirgahayu, “Pengujian dengan Unit Testing dan Test case pada Proyek Pengembangan Modul

Manajemen Pengguna,” AUTOMATA, vol. 2, no. 1, 2021.

[15] P. Kaur, “A Review of Software Metric and Measurement,” Int. J. Comput. Appl. Inf. Technol., vol. 9, no. 2, p. 187, 2016.

