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ABSTRACT 

Article History: The existence of annihilator in the ring motivates the emergence of studies on Annihilating Ideal 

and Exact Annihilating Ideal Graphs. The purpose of this research is to describe the 

characteristics of an (exact) annihilating ideal of ring ℤ𝑛. The method used in this research is 

literature study. The results of this study discuss finiteness, adjacency, connectedness, vertices, 

and types of 𝔸𝔾(ℤ𝑛) and 𝔼𝔸𝔾(ℤ𝑛). Furthermore, the number of vertices of an Annihilating 

Ideal Graph is determined by the factorization of 𝑛. The adjacency of two vertices is determined 

by the divisibleness of 𝑛. The results also show that 𝔼𝔸𝔾(ℤ𝑛) is a subgraph of 𝔸𝔾(ℤ𝑛). 

𝔼𝔸𝔾(ℤ𝑛) can be represented as a union of several complete graphs. 
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1. INTRODUCTION 

The use of graphs in representing algebraic structures has been carried out since at least 1878 in [1]. 

This representation starts from representing a group structure into a graph. The vertices of a graph are all 

elements of a group and changes to an element due to operations on the group are represented by directed 

edges. Furthermore, [2], [3] began to associate graphs with a broader structure, namely rings. Investigation 

of the ring structure is carried out through the colored representation of the graph. The representation of an 

algebraic structure on a graph opens up opportunities for visual investigation of the properties of a particular 

structure. An essential part in the process of representing a particular algebraic structure to a graph is how to 

define the connection between the vertices of the graph. Different ways of defining adjacent vertices can lead 

to different variations of properties as well. 

One of the interesting things in the ring, which is about zero divisor. A non-zero element 𝑎 is said to 

be a zero divisor if it can be found a non-zero element 𝑏 such that 𝑎𝑏 = 0. From this structure, [4] proposed 

the origin of the zero-divisor graph. The vertices of the graph are all zero divisors. Two vertices are adjacent 

if and only if the product of the two elements is zero. Many interesting properties result from this concept, 

one of which is about the combinatorics of a finite ring [5], [6], [7]. 

The concept is similar to zero divisor in the ring is the Annihilator. Badawi has started a study on 

annihilator graphs [8]. In its development, annihilating graphs are generalized into annihilating Ideal graphs. 

In [9], it is stated that Annihilator is an ideal 𝐼, namely 𝐴𝑛𝑛(𝐼) =  {𝑟 ∈  𝑅|𝑟𝑙 = 0 ∀ 𝑙 ∈  𝐿}. If 𝐴𝑛𝑛(𝐼) is not 

a trivial set, then 𝐼 is called an ideal annilator. In 2011, [10] started to represent a structure consisting of 

annihilator ideals into a graph. The graph that is formed is named Annihilating Ideal Graph. In line with the 

development of zero divisor graphs, [11] is continuing the study of Exact Annihilating Ideal graphs. The 

development of ideal annihilating and exact annihilating properties of graphs is studied separately. The 

general relationship between these two graphs began to be investigated by [12]. 

An integer modulo 𝑛, ℤ𝑛 is a ring that has very interesting properties. This 𝕫𝑛 structure is widely used 

in graphs, for example in coloring Antimagic graphs [13]  and Domination ratio [14]. The factorization 

theorem on integers is a motivation for developing graph studies involving a ring of integers modulo 𝑛. One 

of the graph studies carried out was a study on non-coprime for ℤ𝑛 [15]. In this research, we combine the 

properties of (Exact) Annihilating Ideal Graph of arbitrary ring with factorization of ring integer modulo 𝑛. 

These properties will be used to represent integer factors in a graph. 

2. RESEARCH METHODS 

This is a literature research that examines the properties of annihilating ideal and exact annihilating 

ideal graphs on integer rings modulo 𝑛, ℤ𝑛. The properties studied are the relationship between the 

factorization of integer 𝑛 and the vertex of an ideal annihilating graph, the adjacency of vertices, and the 

relationship between integer decomposition and graph decomposition. The definition of (Exact) Annihilating 

Ideal based on [10], [11] is as follows. 

Definition 1. [10] An Ideal 𝐼 of commutative ring 𝑅 with identity is a Annihilating Ideal if there exist non 

zero ideal 𝐽 of 𝑅 such that 𝐼𝐽 = 0. The set of all Annihilating Ideal of ring 𝑅 is denoted by 𝔸(𝑅). 

Definition 2.  [11] An ideal 𝐼 of commutative ring 𝑅 with identity is Exact Annihilating Ideal if there exist 

non zero ideal 𝐽 of 𝑅 such that 𝐴𝑛𝑛(𝐼) = 𝐽 and 𝐴𝑛𝑛(𝐽) = 𝐼. The set of all Exact Annihilating Ideal of ring 𝑅 

denoted by 𝔼𝔸(𝑅). 

Based on the two definitions above, then (Exact) Annihilating Ideal Graph is defined as follows. 

Definition 3. [10] Annihilating Ideal graph of ring 𝑅 denoted by 𝔸𝐺(𝑅) is a graph with vertices 𝔸(𝑅)∗ =
𝔸(𝑅)\{(0)} and (𝐼, 𝐽) ∈ 𝐸(𝔸𝐺(𝑅)) if and only if 𝐼𝐽 = (0). 

Definition 4.  [11] Exact Annihilating Ideal graph of ring 𝑅 denoted by 𝔼𝔸𝔾(𝑅) is a graph with vertices 

𝔼𝔸(𝑅)∗ = 𝔼𝔸(𝑅)\{(0)} and (𝐼, 𝐽) ∈ 𝐸(𝔼𝔸𝐺(𝑅)) if and only if 𝐴𝑛𝑛(𝐼) = 𝐽 and 𝐴𝑛𝑛(𝐽) = 𝐼. 

Definition of (Exact) Annihilating Ideal Graph, this article further describes the properties of the graph 

with rings ℤ𝑛. Comparison of the properties of annihilating ideal and exact annihilating ideal graph of ring 

ℤ𝑛 is also presented in this article. 
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3. RESULTS AND DISCUSSION 

Integers are partitioned into prime numbers and composite numbers. Integer factorization affects the 

cardinality of the set of all vertices of an ideal annihilating graph. Conversely, can also be observed from the 

ideal annihilating graph, the characteristics of these integers can be determined. The following theorem shows 

the relationship between integer factorization and vertex cardinality of an ideal annihilating graph. 

Theorem 1. Suppose ℤ𝑛 ring of integer modulo 𝑛 where 𝑛 not prime. 

1. If 𝑛 = 𝑝2, where 𝑝 is prime then |𝔸(ℤ𝑛)∗| = 1. 

2. If 𝑛 ≠ 𝑝2, where 𝑝 is prime then |𝔸(ℤ𝑛)∗| ≥ 2 

Proof. 

(1) Suppose 𝑛 = 𝑝2 then there exists uniquely non zero proper ideal in di ℤ𝑛,  〈�̅�〉 = {𝑝𝑧̅̅ ̅|𝑧̅ ∈ ℤ𝑛}. If  𝑛 =

𝑝2 it means 𝑝2̅̅ ̅ = �̅� = 0̅ such that 〈�̅�〉〈�̅�〉 = 〈0̅〉. Ideal 〈�̅�〉 is an annihilating ideal of ℤ𝑛 by Definition 1. 

Since ideal 〈�̅�〉 is the only one of proper non zero ideal in ℤ𝑛, hence 𝔸(ℤ𝑛)∗ = {〈�̅�〉} or |𝔸(ℤ𝑛)∗| = 1. 

(2) Suppose 𝑛 is nonprime, that is 𝑛 = 𝑎𝑏 for some 𝑎, 𝑏 ∈ ℤ, where 1 < 𝑎 < 𝑛, 1 < 𝑏 < 𝑛, and 𝑎 ≠ 𝑏. The 

product of two ideal, 〈𝑎〉〈𝑏〉 = {(𝑧𝑎)(𝑦𝑏)|𝑎, 𝑏 ∈ ℤ , 𝑦, 𝑧 ∈ ℤ𝑛}. Since 𝑛 = 𝑎𝑏, 𝑧𝑦(𝑎𝑏) = 𝑧𝑦(𝑛) then 

〈𝑎〉〈𝑏〉 = {𝑧𝑦𝑛|𝑧, 𝑦 ∈ ℤ𝑛} = 〈0̅〉. Clearly,  〈𝑎〉 ≠ 〈0̅〉 and 〈𝑏〉 ≠ 〈0̅〉. Ideals 〈𝑎〉 and 〈𝑏〉 are annihilating 

ideal by Definition 1. Hence, 〈𝑎〉, 〈𝑏〉 ∈ 𝔸(ℤ𝑛)∗. That is prove that for any nonprime 𝑛, |𝔸(ℤ𝑛)∗| ≥ 2. ∎ 

Theorem 2. Suppose ℤ𝑛 ring of integer modulo 𝑛. The number of vertices of annihilating ideal graph 𝔸𝔾(ℤ𝑛) 

is 𝜑(𝑛) − 2, where 𝜑(𝑛) is the number of positive factors of 𝑛. 

Proof. Suppose 𝑛 = (𝑝1)𝛼1(𝑝2)𝛼2 … (𝑝𝑛)𝛼𝑛 is prime factorization of 𝑛. If 𝑥|𝑛 then 𝑥 =
(𝑝1)𝛽1(𝑝2)𝛽2 … (𝑝𝑛)𝛽𝑛 where 𝛽𝑖 ≤ 𝛼𝑖 for all 𝑖. If 𝑥|𝑛, also means that there exists integer 𝑦 such that 𝑥𝑦 =
𝑛. Suppose 𝑦 = (𝑝1)𝛾1(𝑝2)𝛾2 … (𝑝𝑛)𝛾𝑛 then 𝑦 = (𝑝1)𝛾1(𝑝2)𝛾2 … (𝑝𝑛)𝛾𝑛, where 𝛼𝑖 = 𝛽𝑖 + 𝛾𝑖 for 1 ≤ 𝑖 ≤ 𝑛. 

We construct principal ideal 〈𝑥〉 = {𝑥𝑧̅̅ ̅|𝑧 ∈ ℤ𝑛} and 〈𝑦〉 = {𝑦𝑡̅̅̅|𝑡 ∈ ℤ𝑛} of ℤ𝑛. The product of these 

ideal 〈𝑥〉〈𝑦〉 = {(𝑥𝑧̅̅ ̅)(𝑦𝑡̅̅̅)} = {(𝑥𝑦̅̅ ̅)(𝑧�̅�)}. As 𝑥𝑦 = 𝑛 implies 〈𝑥〉〈𝑦〉 = {0̅}. For all 〈𝑥〉, where 𝑥 is a positive 

factor of 𝑛, there exists ideal 〈𝑦〉 such that 〈𝑥〉〈𝑦〉 = {0̅}. The number of Ideal 〈𝑥〉 that satisfied the condition 

is the number of positive factor of 𝑛, 𝜑(𝑛). Suppose the set 

𝕀(ℤ𝑛) = {〈𝑥〉 ideal ℤ𝑛|∃𝑦 ∈ ℤ such that 𝑥𝑦 = 𝑛} 

Based on the process above, we have |𝕀(ℤ𝑛)| = 𝜑(𝑛). All of elements 𝕀(ℤ𝑛) is the elements of 𝔸(ℤ𝑛)∗ except 

〈1〉 and 〈𝑛〉. Hence |𝔸(ℤ𝑛)∗| = 𝜑(𝑛) − 2. ∎ 

Theorem 3. Suppose ℤ𝑛 ring of integer modulo 𝑛. If 〈�̅�〉 is a vertex of graph 𝔸𝔾(ℤ𝑛) then 𝑎 is a factor of 𝑛. 

Proof. Assume 𝑎 isn’t factor of 𝑛. We have 𝑛 = 𝑎𝑥 + 𝑦, where 𝑥 and 𝑦 is integer and 0 < 𝑦 < 𝑎.  The 

product of ideal 〈�̅�〉 and 〈�̅�〉 is 

〈�̅�〉〈�̅�〉 = {(�̅�𝑟)(�̅�𝑛)} = {�̅�(𝑟�̅�𝑛)} = {�̅�(�̅�𝑟𝑛)} = {(�̅��̅�)𝑟𝑛} = {(𝑎𝑥̅̅ ̅)𝑟𝑛} 

We have element �̅� = �̅� because 𝑛 = 𝑎𝑥 + 𝑦. Then 〈�̅�〉〈�̅�〉 = {(𝑎𝑥̅̅ ̅)𝑟𝑛} = {(𝑎𝑥̅̅ ̅𝑟)𝑛} = 〈�̅�〉 = 〈�̅�〉. In means 
〈�̅�〉 isn’t a ideal annihilator of ℤ𝑛. Hence 〈�̅�〉 ∉ 𝔸(ℤ𝑛)∗. By the contraposition, we have if 〈�̅�〉 ∈ 𝔸(ℤ𝑛)∗ then 

𝑎 is a factor of 𝑛. ∎ 

The converse of Theorem 3 is not true. For all 𝑛 ∈ ℤ, we have 1|𝑛, but clearly 〈1̅〉 is not an ideal 

annihilator of ℤ𝑛. It means 〈1̅〉 is not a vertex ini 𝔸𝔾(ℤ𝑛). 

Theorem 4. Suppose 〈�̅�〉 and 〈�̅�〉 are ideal in ℤ𝑛. Vertex 〈�̅�〉 and 〈𝑞〉  are adjacent in 𝔸𝔾(ℤ𝑛) if and only if  

𝑛|𝑝𝑞. 

Proof. Suppose 〈𝑝〉 = {𝑝𝑎|𝑎 ∈ ℤ𝑛} and 〈𝑞〉 = {𝑞𝑏|𝑟 ∈ ℤ𝑛}. The product 〈𝑝〉〈𝑞〉 = 〈𝑝𝑞̅̅ ̅〉. If 𝑛|𝑝𝑞 then 

〈𝑝〉〈𝑞〉 = 〈0̅〉 = {0̅}. Hence 〈�̅�〉 and 〈�̅�〉  are adjacent in 𝔸𝔾(ℤ𝑛) by Definition 3. If 〈�̅�〉 and 〈�̅�〉  are adjacent 

then 〈𝑝〉〈𝑞〉 = {0̅}. It means (𝑝𝑞)(𝑎𝑏) = 𝑛𝑘 for some integer 𝑎, 𝑏, and 𝑘. The equation (𝑝𝑞)(𝑎𝑏) = 𝑛𝑘 

implies 𝑛|(𝑝𝑞)(𝑎𝑏), especially must be 𝑛|𝑝𝑞. ∎ 

We will continue to discuss the relation some part of annihilating ideal and exact annihilating ideal 

graph of any commutative ring 𝑅.  

Lemma 5. For any commutative ring 𝑅, 𝔼𝔸(𝑅)∗ = 𝔸(𝑅)∗ 
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Proof. Take any ideal 𝐼 ∈ 𝔼𝔸(𝑅)∗. It means there exist ideal 𝐽 of 𝑅 such that 𝐴𝑛𝑛(𝐼) = 𝐽 and 𝐴𝑛𝑛(𝐽) = 𝐼. 

Based on definition of annihilator, the product of ideal 𝐼𝐽 = 0. Hence 𝐼 ∈ 𝔸(𝑅)∗. 

Now, take any ideal 𝐼 ∈ 𝔸(𝑅)∗. It means there exist nonzero ideal 𝐽 such that 𝐼𝐽 = 0. Ideal 𝐼 is 

annihilator ideal then 𝐴𝑛𝑛(𝐼) ≠ 0. Suppose 𝐽 = 𝐴𝑛𝑛(𝐼) then 𝐽 is nonzero ideal of 𝑅. We have 𝐴𝑛𝑛(𝐽) =

𝐴𝑛𝑛(𝐴𝑛𝑛(𝐼)) = 𝐼. We conclude 𝐴𝑛𝑛(𝐼) = 𝐽 and 𝐴𝑛𝑛(𝐽) = 𝐼. Hence 𝐼 ∈ 𝔼𝔸(𝑅)∗. ∎ 

Lemma 6. For any commutative ring 𝑅, 𝔼𝔸𝔾(𝑅) is a subgraph of 𝔸𝔾(𝑅). 

Proof. Lemma 5 show us that 𝔼𝔸(𝑅)∗ = 𝔸(𝑅)∗. We will prove that for all (𝐼, 𝐽) ∈ 𝐸(𝔼𝔸𝔾(𝑅)) then (𝐼, 𝐽) ∈

𝐸(𝔸𝔾(𝑅)). Adjacency of ideal 𝐼 and 𝐽 on 𝔼𝔸𝔾(𝑅) means that 𝐼 = 𝐴𝑛𝑛(𝐽) and 𝐽 = 𝐴𝑛𝑛(𝐼). Based on 

properties of annihilator of ideal, we have 𝐼𝐽 = 0. Based on definition of adjacency on 𝔸𝔾(𝑅), we have  

(𝐼, 𝐽) ∈ 𝐸(𝔸𝔾(𝑅)). ∎ 

The converse of Theorem 4 not valid for exact annihilating ideal graph. The counter example of converse 

Theorem 4 is in Example 1 below. 

Example 1. In ring ℤ24, vertex 〈6̅〉 and 〈12̅̅̅̅ 〉 are adjacent in 𝔸𝔾(ℤ24) but not adjacent in 𝔼𝔸𝔾(ℤ24) although 

24|12 × 6. Figure 1 below show the representation both graph of ring ℤ24. 

 

 
 

(a)  (b)  
Figure 1. Representation of Annihilating Ideal and Exact Annihilating Ideal Graph  

(a)𝔸𝔾(ℤ𝟐𝟒),  (b)𝔼𝔸𝔾(ℤ𝟐𝟒) 

Based on the situation, we will construct the criteria of adjacency in exact annihilating ideal graph. 

Theorem 7. Suppose commutative ring ℤ𝑛 with identity 1̅. Ideals 〈�̅�〉 and 〈�̅�〉 are adjacent vertex of 𝔼𝔸𝔾(ℤ𝑛) 

if and only if 𝑛 = 𝑝𝑞. 

Proof. (⟸). Assume 〈�̅�〉 and 〈𝑞〉 are not adjacent. We will proof 𝑛 ≠ 𝑝𝑞. We have 〈�̅�〉 = {𝑝𝑎̅̅̅̅ |�̅�, �̅� ∈ ℤ𝑛} 

and 〈𝑞〉 = {𝑞𝑏̅̅ ̅|�̅�, �̅� ∈ ℤ𝑛} are not adjacent. It means 𝐴𝑛𝑛(〈�̅�〉) ≠ 〈𝑞〉 and 𝐴𝑛𝑛(〈𝑞〉) ≠ 〈�̅�〉 such that 〈�̅�〉〈�̅�〉 ≠

{0̅}. We use commutative and associative property of ℤ𝑛 to get form 〈�̅�〉〈�̅�〉 = {(𝑝𝑎̅̅̅̅ )(𝑞𝑏̅̅ ̅)} = {(𝑝𝑞̅̅ ̅)(𝑎𝑏̅̅ ̅)} ≠

{0̅}. It imply 𝑝𝑞 ∤ 𝑛. Hence 𝑝𝑞 ≠ 𝑛. 

(⟹). Assume 𝑛 ≠ 𝑝𝑞. We will proof vertex 〈�̅�〉 and 〈�̅�〉 are not adjacent in graph 𝔼𝔸𝔾(ℤ𝑛). If 𝑛 ≠ 𝑝𝑞 then 

𝑛 = 𝑝𝑞 + 𝑎 with 𝑎 is non-zero integer. We construct two principal ideal generated by 𝑝 and 𝑞 on ℤ𝑛. Now, 

we have the product of these ideal  

〈�̅�〉〈�̅�〉 = {(𝑝𝑟̅̅ ̅)(𝑞�̅�)} = {(𝑛 − 𝑎̅̅ ̅̅ ̅̅ ̅)(𝑟�̅�)} = 〈−𝑎̅̅ ̅̅ 〉 

We have (〈�̅�〉, 〈�̅�〉) ∉ 𝐸(𝔸𝔾(ℤ𝑛)). Based on Lemma 6, vertex 〈�̅�〉 and 〈𝑞〉 are not adjacent in graph 

𝔼𝔸𝔾(ℤ𝑛).∎ 

Theorem 8. Suppose commutative ring ℤ𝑛 with identity 1̅. If 𝑛 = 𝑟2 then 〈�̅�〉 is a isolated vertex in 𝔼𝔸𝔾(ℤ𝑛). 

Proof. Suppose 𝑛 = 𝑟2 and principal ideal 〈�̅�〉 of ring ℤ𝑛. We have 𝐴𝑛𝑛(〈�̅�〉) = 〈�̅�〉. Its means 〈�̅�〉 is a vertex 

of 𝔼𝔸𝔾(ℤ𝑛). Assume there is a vertex 〈�̅�〉 (not equal to 〈�̅�〉) of 𝔼𝔸𝔾(ℤ𝑛) such that 〈�̅�〉 and 〈�̅�〉 adjacent. The 

product of the ideals is 〈�̅�〉〈�̅�〉 ≠ 〈�̅�〉〈�̅�〉 = 〈0̅〉. Vertex 〈�̅�〉 and 〈�̅�〉 adjacent on 𝔼𝔸𝔾(ℤ𝑛) means that 〈�̅�〉 =
𝐴𝑛𝑛(〈�̅�〉) and 〈�̅�〉 = 𝐴𝑛𝑛(〈�̅�〉). Furthermore 〈�̅�〉〈�̅�〉 = 〈0̅〉. Its contradiction with the product ideals 〈�̅�〉 and 

〈�̅�〉. Hence there is no vertex adjacent with 〈�̅�〉 on 𝔼𝔸𝔾(ℤ𝑛). ∎ 

In [11] showed that 𝑑𝑖𝑎𝑚(𝔼𝔸𝔾(𝑅)) < 1 and 𝑔(𝔼𝔸𝔾(𝑅)) ≤ 4 for any commutative ring 𝑅. In this 

paper, we will show more specific result about diameter, girth, cycle existence of 𝔼𝔸𝔾(𝑅). 
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Theorem 9. Suppose commutative ring 𝑅. If  𝔼𝔸𝔾(𝑅) is connected graph then 𝑑𝑖𝑎𝑚(𝔼𝔸𝔾(𝑅)) = 1. 

Proof. Suppose 𝐼 and 𝐽 are two different vertex of 𝔼𝔸𝔾(𝑅). Assume 𝑑(𝐼, 𝐽) = 2 > 1, means that exist a 

vertex 𝐴 of 𝔼𝔸𝔾(𝑅) such that 𝐼 − 𝐴 − 𝐽 is a path in 𝔼𝔸𝔾(𝑅). Based on Definition 4 we have 𝐼 =

𝐴𝑛𝑛(𝐴), 𝐴 = 𝐴𝑛𝑛(𝐼), 𝐴 = 𝐴𝑛𝑛(𝐽), and 𝐽 = 𝐴𝑛𝑛(𝐴). It imply 𝐼 = 𝐴𝑛𝑛(𝐴) = 𝐴𝑛𝑛(𝐴𝑛𝑛(𝐽)). Based on 

Lemma 2.1 on [3], we get 𝐴𝑛𝑛(𝐴𝑛𝑛(𝐽)) = 𝐽. Two last equation imply 𝐼 = 𝐽. We have a contradiction with 

ideal 𝐼 and 𝐽 must be different. So, 𝑑(𝐼, 𝐽) = 1 for all ideal 𝐼 and 𝐽. It proved that 𝑑𝑖𝑎𝑚(𝔼𝔸𝔾(𝑅)) = 1. ∎ 

Collorary 10. Suppose commutative ring 𝑅. If 𝔼𝔸𝔾(𝑅) contain a cycle then 𝑔(𝔼𝔸𝔾(𝑅)) ≤ 3. 

Proof. If graph 𝐺 contain a cycle then 𝑔(𝐺) ≤ 2𝑑𝑖𝑎𝑚(𝐺) + 1. Theorem 9 has shown that 

𝑑𝑖𝑎𝑚(𝔼𝔸𝔾(𝑅)) = 1. Finally, we have 𝑔(𝔼𝔸𝔾(𝑅)) ≤ 2𝑑𝑖𝑎𝑚(𝔼𝔸𝔾(𝑅)) + 1 = 3. ∎ 

Theorem 3.9 in [11] showed that 𝔼𝔸𝔾(ℤ𝑝𝑛) where 𝑝 is prime can be represented as union of some complete 

graph. Figure 1 below show that 𝔼𝔸𝔾(ℤ24) can be represented as union of 𝐾2 graph, although 24 ≠ 𝑝𝑛 for 

any prime 𝑝. Based on this fact, we construct a theorem to generalize properties of representation of 

𝔼𝔸𝔾(ℤ𝑛). 

Theorem 11. The number of complete subgraph of Exact annihilating ideal graph of ring  ℤ𝒏 is ⌈
𝜑(𝑛)

2
− 1⌉. 

Proof. Lemma 5 showed that 𝔼𝔸(𝑅)∗ = 𝔸(𝑅)∗. Based on Theorem 2, we have |𝔼𝔸(ℤ𝑛)∗| = 𝜑(𝑛) − 2. 

Theorem 9 showed that 𝑑𝑖𝑎𝑚(𝔼𝔸𝔾(𝑅)) = 1 for any commutative ring 𝑅. We conclude that the maximum 

number of edges 𝔼𝔸𝔾(ℤ𝑛) is 
𝜑(𝑛)

2
− 1. Its means the maximum complete subgraph of 𝔼𝔸𝔾(ℤ𝑛) is also 

𝜑(𝑛)

2
− 1. 

Case 1: 𝑛 = 𝑟2 for some integer 𝑟 

Based on Theorem 8, 〈�̅�〉 is a isolated vertex in 𝔼𝔸𝔾(ℤ𝑛). We have 𝜑(𝑛) − 3 other vertices of 𝔼𝔸𝔾(ℤ𝑛). 

Obviously there is no positive integer  𝑎 such that 𝑛 = 𝑎2. In another word, we just found exactly one isolated 

vertex on 𝔼𝔸𝔾(ℤ𝑛). We can partition 𝔼𝔸𝔾(ℤ𝑛) to be 
𝜑(𝑛)−3

2
 graph 𝐾2. Isolated vertex can be represented as 

𝐾1. The total of number complete graph that contain in 𝔼𝔸𝔾(ℤ𝑛) is 
𝜑(𝑛)−3

2
+ 1 =

𝜑(𝑛)+1

2
− 1 = ⌈

𝜑(𝑛)

2
⌉ − 1 =

⌈
𝜑(𝑛)

2
− 1⌉.  

Case 2: 𝑛 ≠ 𝑟2 for any integer 𝑟 

If 𝑛 ≠ 𝑟2 for any integer 𝑟 then 𝑛 = 𝑎𝑏 where 𝑎 ≠ 𝑏. Ideal 〈�̅�〉 and 〈�̅�〉 are vertices in 𝔼𝔸𝔾(ℤ𝑛). Based on 

theorem 7, 〈�̅�〉 and 〈�̅�〉 adjacent in 𝔼𝔸𝔾(ℤ𝑛). This condition means there is no isolated vertex in 𝔼𝔸𝔾(ℤ𝑛). 

Graph 𝔼𝔸𝔾(ℤ𝑛) is fully partition into complete graph 𝐾2. Total number of 𝐾2 is 
𝜑(𝑛)−2

2
=

𝜑(𝑛)

2
− 1 =

⌈
𝜑(𝑛)

2
⌉ − 1 = ⌈

𝜑(𝑛)

2
− 1⌉. ∎ 

4. CONCLUSIONS 

Factorization on ℤ𝑛 characterizes the (Exact) Annihilating Ideal Graph, especially in 1) the number of 

vertices in an annihilating ideal graph, 2) adjacency of the vertices, and 3) decomposition of exact annihilating 

ideal graph. The number of vertices of annihilating ideal is equal to the number vertices of exact annihilating 

graph of ring ℤ𝑛, that is 𝜑(𝑛) − 2, where 𝜑(𝑛) is the number of positive factors of 𝑛. In 𝔸𝔾(ℤ𝑛), two vertices 

〈𝑝〉 and 〈𝑞〉 are adjacent if and only if 𝑛 divides the product of 𝑝 and 𝑞. But, in 𝔼𝔸𝔾(ℤ𝑛) these two vertices 

are adjacent if and only if 𝑛 must equal to the product of 𝑝 and 𝑞. 𝔼𝔸𝔾(ℤ𝑛) is decomposed into ⌈
𝜑(𝑛)

2
− 1⌉ 

complete subgraph. 
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