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ABSTRACT 

Article History: 
A coprime graph is a representation of finite groups on graphs by defining the vertex graph as 

an element in a group and two vertices adjacent to each other's if and only if the order of the two 

elements is coprime. In this research, we discuss the generalized Quaternion group and its 

properties. Then we discuss the properties of the coprime graph over the generalized Quaternion 

group by looking at its Eulerian, Hamiltonian, and Planarity sides. In general, the coprime 

graphs of the generalized quaternion group are not Eulerian, not Hamilton, and not planar 

graphs. The coprime graph of the generalized quaternion group 𝑄4𝑛 is a planar graph if 𝑛 = 2𝑘 

for a natural number 𝑘.  
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1. INTRODUCTION 

The quaternion group was first introduced by Sir William Rowan Hamilton in 1843 and applied to 

mechanics in three-dimensional space [1]. Hamilton uses this group in both theoretical and applied 

mathematics, particularly for calculus, including three-dimensional rotations. Furthermore, the quaternion 

group is widely applied in various fields. In Physics, for example, this group has many roles, mainly in the 

field of quantum mechanics, as stated in [2]. The quaternion group also holds an important role in the field 

of computer graphics, primarily for 3D rotation transformations, as written in [3]. In addition, this group also 

has a role in the fields of aerospace, orbits, and virtual reality, as research has been done in [4]. 

One of the methods to learn about finite groups is to represent them on a graph. The history of 

representations of finite groups on graphs begins with the definition of the Cayley graph by Artur Cayley 

(1878) [5]. Artur Cayley represents the finite group G and a subset 𝐴 ⊂ 𝐺 (called the generator of Cayley 

graph) by defining the elements of the group as vertices and adjacency of any vertex 𝑔 and ℎ hold if only if 

𝑔 = 𝑎ℎ, with 𝑎 ∈ 𝐴. Further research on the Cayley graph was carried out by replacing the objects, finite 

groups replaced by finite semigroups, and it was discussed in many research, for example [6], [7], and [8]. 

Cayley graphs can also be applied to form cryptographic systems, as researched in [9]. 

The follow-up research on the representation of finite groups in graphs that give much attention to 

mathematical researchers is the power graph defined by Kalarev and Quinn [10]. They define the adjacency 

of two vertices 𝑔 and ℎ, on the power graph if there is a natural number 𝑛 such that 𝑔 = ℎ𝑛. The power graph 

was introduced by [10] is a representation of semigroups which are directed graphs, while the undirected 

version was discussed later by [11]. Discussions about power graphs on finite groups are done by [12], [13], 

and [14]. At the same time, the research on power graphs of torsion-free groups is discussed in [15]. 

The following research on the representation of finite groups in graphs that also received attention is 

the coprime graph. Coprime graph defined on finite groups 𝐺 by viewing the elements in the group as 

vertexes, and the elements 𝑔, ℎ ∈ 𝐺 are connected if the orders of 𝑔 and ℎ are coprime. Research on coprime 

graphs in cyclic and dihedral groups was done by [16] and [17], while [18]  discussed coprime graphs in 𝑍𝑛 

groups and their subgroups. Research from [19] discusses the coprime graph in the generalized quaternion 

group. In this research, we will complete the results of [19] by looking at the coprime graph of the generalized 

quaternion group from the Eulerian, Hamiltonian, and Planarity sides. 

2. RESEARCH METHODS 

The research method used is a literature study. The detailed steps in conducting research are as follows: 

 

Figure 1. Research method 

We study articles relating to the representation of finite groups on graphs, especially on coprime graphs 

and articles on generalized quaternion groups. In particular, the study began by looking for the properties of 

generalized quaternion groups, especially those relating to the order of elements. Furthermore, we look at the 
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properties of coprime graphs of generalized quaternion groups using the properties of generalized quaternion 

groups and looking at the specific properties of the quaternion group in certain orders. 

Terminology about graphs is taken from sources [20], [21], or [22], while terminology about finite 

groups theory is taken from sources [23].   

Theorem 1 [22] If Graph 𝐺 contains an odd cycle, then 𝐺 is not a bipartite graph.  

Theorem 2. [20] The connected graph 𝐺 is Eulerian if every vertex in 𝐺 has an even degree. 

Theorem 3. [21] Given graph G. If G is Hamilton's graph, then for any ∅ ≠ 𝑆 ⊆ 𝑉(𝐺), the number of 

components of 𝐺 − 𝑆 is less than the number of members of vertices is set 𝑆.  

Theorem 4. [20] A graph is a planar graph if and only if it does not contain a subgraph that is homeomorphic 

with 𝐾5 or 𝐾3,3. 

Definition 5. [21] A vertex cut of a connected graph 𝐺  is a subset of the vertex set 𝑆 ⊆ 𝑉(𝐺) such that 𝐺 −
𝑆 has more than one connected component. In other words, a vertex cut is a subset of vertices of a connected 

graph that disconnects the graph if removed together with any incident edges. 

Definition 6. [21] A graph 𝐺 on more than two vertices is said to be 𝑘-connected if there does not exist 

a vertex cut of size 𝑘 − 1 whose removal disconnects the graph.  

3. RESULTS AND DISCUSSION 

This section begins with a discussion of the properties of generalized quaternion groups. In this section 

two properties are found relating to the generalized quaternion group. The first theorem relates to the general 

form of the elements in the group, while the next corresponds to the order of each element of the group. These 

two properties are an important part of the next discussion. 

3.1 Generalized Quaternion Group 

The discussion begins with the definition of a generalized quaternion group as follows 

Definition 7. [9] A generalized quaternion group (𝑄4𝑛) is a group whose membership is defined as follows 

𝑄4𝑛 = {𝑎, 𝑏|𝑎2𝑛 = 𝑏4 = 𝑒, 𝑏−1𝑎𝑏 = 𝑎−1}. 

Here are some of the properties of the generalized quaternion group used in the next discussion. 

Theorem 8. [24] Let 𝑄4𝑛 be a generalized quaternion group. Then   

1. 𝑄4𝑛 abelian if and only if 𝑛 = 1 

2. Every element in 𝑄4𝑛 can be written uniquely as 𝑎𝑖𝑏𝑗 where 0 ≤ 𝑖 < 2𝑛 and 𝑏 = 0,1. 

3. |𝑄4𝑛| = 4𝑛 

Proof. Suppose Q4n is a generalized quaternion group. Then   

1. If 𝑛 = 1, then 𝑎 = 𝑏2  which means 𝑄4 ≅ 𝑍4 thus 𝑄4  is an abelian group. 

2. Based on the definition of a generalized Quaternion group, elements in that group will be 𝑎𝑖𝑏𝑗 , since 

𝑎2𝑛 = 𝑒 and 𝑏4 = 𝑒 are for 0 ≤ 𝑖 < 2𝑛 and 0 ≤ 𝑗 < 4, then 𝑎𝑛 = 𝑏2. Thus 𝑎𝑖𝑏2 = 𝑎𝑖𝑎𝑛 = 𝑎𝑖+𝑛 , 

while 𝑎𝑖𝑏3 = 𝑎𝑖𝑏2 𝑏 = 𝑎𝑖𝑎𝑛 𝑏 = 𝑎𝑖+𝑛  𝑏. So the limit for 𝑗 can be changed to 𝑗 = 0,1. 

3. As a result of the second statement, then the element contained in the 𝑄4𝑛 is 4𝑛. ∎ 

Since this research is based on the order elements of the quaternion group, so the following theorem 

plays an important role in the next discussion. This theorem has been written in [19], in this study we rewrite 

it with a different proof. 

Theorem 9. Suppose that 𝐺 = 𝑄4𝑛 is a generalized quaternion group. The order of each element in 𝑄4𝑛 

𝑜(𝑎𝑖𝑏𝑗) = {

2𝑛

gcd(𝑖, 2𝑛)
, 𝑗 = 0

4          , 𝑗 = 1
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Proof. Let  𝑔 = 𝑎𝑖 ∈ 𝑄4𝑛 where 0 ≤ 𝑖 < 2𝑛. Note that for any natural number 𝑛, gcd(𝑖, 2𝑛) |𝑖. If 

gcd(𝑖, 2𝑛) = 𝑙, then 𝑖 = 𝑘𝑙 for a natural number 𝑘. Then   

(𝑎𝑖)
2𝑛

gcd(𝑖,2𝑛) = (𝑎𝑖)
2𝑛

𝑙 = 𝑎
2𝑖

𝑙
𝑛 = 𝑎2𝑘𝑛 = (𝑎𝑛)2𝑘 = 𝑒. 

Its mean order of any 𝑎𝑖 ∈ 𝑄4𝑛 is 
2𝑛

gcd(𝑖,2𝑛)
.  

Furthermore, in the case of 𝑗 = 1, then the element in the 𝑄4𝑛 will be 𝑎𝑖𝑏 with 1 ≤ 𝑖 ≤ 2𝑛. Since 

𝑏−1 𝑎𝑏 = 𝑎−1, then 𝑎𝑏 = 𝑏𝑎−1, so the elaboration of (𝑎𝑖𝑏)
2

 gives the following results 

(𝑎𝑖𝑏)
2

= (𝑎𝑖𝑏)(𝑎𝑖𝑏) 

= 𝑎𝑖−1𝑏𝑎−1𝑎𝑎𝑖−1𝑏 

= 𝑎𝑖−1𝑏𝑎𝑖−1𝑏 

= 𝑎𝑖−1𝑏𝑎𝑖−1𝑏 

= (𝑎𝑖−2𝑏𝑎−1)(𝑎𝑎𝑖−2𝑏) 

= 𝑎𝑖−2𝑏𝑎𝑖−2𝑏. 

By continuing the process iteratively, the final equation will be in the form (𝑎𝑏)(𝑎𝑏) = 𝑏𝑎−1 𝑎𝑏 =

𝑏2. Its mean that (𝑎𝑖𝑏)
2

= 𝑏2 for any 0 ≤ 𝑖 < 2𝑛, so 

(𝑎𝑖𝑏)
4

= (ai𝑏)
2

(𝑎𝑖𝑏)
2

= (𝑏2)(𝑏2) = 𝑏4 = 𝑒. ∎ 

This section will discuss the coprime graph on the generalized quaternion group. We investigate the 

properties of the graph that appear form coprime graph on the generalized quaternion group (𝑄4𝑛) for any 

natural number 𝑛 of the. Then, based on the selected value of 𝑛, we will see Hamiltonian, Eulerian, and 

planarity of the graph formed.   

3.2 Coprime Graph of Generalized Quaternion Group 

The discussion in this section begins with the definition of a coprime graph in any group.   

Definition 10. [16] Given a finite group G. Coprime graph of G  (noted as 𝛤𝐺) is a graph with a vertex set is 

elements in group G and two vertexes 𝑔, ℎ ∈ 𝑉(𝛤𝐺) adjacent if and only if gcd (𝑜(𝑔), 𝑜(ℎ)) = 1. 

Based on the definition above, vertex 𝑔 and ℎ are adjacent if and only if  gcd (𝑜(𝑔), 𝑜(ℎ)) = 1. Since 

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎), so the coprime graph is an undirected graph.     

Example 11. Coprime graph of group quaternion 𝑄8 and 𝑄12 are as follows   

 

Figure 2. Coprime Graph of 𝑸𝟖 (𝚪𝑸𝟖
) 
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Figure 3. Coprime graph of 𝑸𝟏𝟐 (𝚪𝑸𝟏𝟐
)  

Theorem 12. Given Γ𝑄4𝑛
, the coprime graph of 𝑄4𝑛 with 𝑛 is odd numbers. Then  

1. 𝑑𝑒𝑟𝛤𝑄4𝑛
(𝑎𝑖𝑏) = 𝑛, for any 0 ≤ 𝑖 < 2𝑛. 

2. 𝑑𝑒𝑟𝛤𝑄4𝑛
(𝑎1) = 𝑑𝑒𝑟𝛤𝑄4𝑛

(𝑎2𝑛−1) = 1 

3. 𝛤𝑄4𝑛
 not Hamiltonian 

4. 𝛤𝑄4𝑛
 not Eulerian 

5. 𝛤𝑄4𝑛
 not Planar graph 

6. 𝛤𝑄4𝑛
 is 1 −connected 

Proof. Suppose  ΓQ4n
 is the coprime graph of 𝑄4𝑛 with 𝑛 is odd numbers. Then, 

1. Based on Theorem 9, 𝑜(𝑎𝑖𝑏) = 4  for any 0 ≤ 𝑖 ≤ 2𝑛. Since 𝑜(𝑎𝑗) =
2𝑛

gcd(𝑗,2𝑛)
 for any 𝑗 = 2𝑘, 1 ≤ 𝑘 ≤

𝑛, then 

𝑜(𝑎𝑗) = 𝑜(𝑎2𝑘) =
2𝑛

gcd(2𝑘, 2𝑛)
=

2𝑛

2
= 𝑛. 

As 𝑛 be odds numbers, then gcd (𝑜(𝑎2𝑘), 𝑜(𝑎𝑖𝑏)) = 1. So every vertex on {𝑎2𝑘|1 ≤ 𝑘 ≤ 𝑛} adjacent 

with every vertex on {𝑎𝑖𝑏|1 ≤ 𝑖 ≤ 2𝑛}. It means  𝑑𝑒𝑟Γ𝑄4𝑛
(𝑎𝑖𝑏) = 𝑛, for any 0 ≤ 𝑖 < 2𝑛. 

2. It clearly understands 𝑜(𝑎) = 𝑜(𝑎2𝑛−1) = 2𝑛. As a consequence of Theorem 9, the order of any element 

in 𝑄4𝑛 is a factor of 2𝑛 or 4. So vertex 𝑎 and 𝑎2𝑛−1 are only connected with the identity element on 𝑄4𝑛. 

Its mean   𝑑𝑒𝑟Γ𝑄4𝑛
(𝑎1) = 𝑑𝑒𝑟Γ𝑄4𝑛

(𝑎2𝑛−1) = 1 

3. As a consequence of the second statement, Γ𝑄4𝑛
 not Hamiltonian. 

4. As a result of the first statement and consequence of 𝑛 is an odd number than Γ𝑄4𝑛
, not Eulerian. 

5. Based on theorem 3, 𝑜(𝑎𝑖𝑏) = 4 for any 0 ≤ 𝑖 < 2𝑛 and 𝑜(𝑎2𝑘) = 𝑛 for any 1 ≤ 𝑘 < 𝑛. For 𝑛 = 3, 

𝑜(𝑒) = 1, 𝑜(𝑎2) = 3 and 𝑜(𝑎4) = 3, so vertexes 𝑒, 𝑎2, 𝑎3 and 𝑎𝑏, 𝑎2, 𝑎3𝑏 form a subgraf  𝐾3,3 of  Γ𝑄12
. 

So  Γ𝑄12
 not a planar graph. Furthermore for 𝑛 > 3, 𝑜(𝑎2 ) = (𝑎4 ) = ⋯ = 𝑜(𝑎2(𝑛−1) ) = 𝑛 so that the 

vertek set {𝑎2, 𝑎4, . . . , 𝑎2(𝑛−1) } is entirely connected to the vertek set {𝑎𝑖𝑏|0 ≤ 𝑖 < 2𝑛}. So 𝛤𝑄4𝑛
  with 

odd numbers 𝑛 > 3 contains a subgraph 𝐾3,3  which means not a planar graph. 

6. Based on the second statement, coprime graph Γ𝑄4𝑛
 contains end-vertex. So ΓQ4n

 is a 1-connected. ∎ 
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Theorem 13. If 𝛤𝑄4𝑛
 is a coprime graph of  𝑄4𝑛 with 𝑛 odd primes, then 𝛤𝑄4𝑛

 is a tripartite graph.  

Proof. We begin the proof by forming a partition of the element in 𝑄4𝑛 as follows 𝐴 = {𝑒}, 𝐵 = {𝑎2𝑘|1 ≤
𝑘 < 𝑛} and 𝐶 = {𝑎𝑖𝑏, 𝑎2𝑘+1|1 ≤ 𝑖 < 2𝑛, 1 ≤ 𝑘 < 𝑛}. Note that the order of each element from each partition 

is as follows 𝑜(𝑒) = 1, 𝑜(𝑎2𝑘) = 𝑛 and 𝑜(𝑎2𝑘+1) = 2𝑛 for 1 ≤ 𝑘 ≤ 𝑛, while 𝑜(𝑎𝑖𝑏) = 4 for 1 ≤ 𝑖 < 2𝑛. 

Since 𝑛 is an odd prime, then the vertex in each set of partitions  𝐴, 𝐵, or 𝐶 cannot be mutually adjacent. At 

the same time, the vertex in 𝐴 is adjacent with all vertices in 𝐵 and 𝐶 and the vertex in set 𝐵 is an adjacent 

with the vertex in set 𝐶 (except vertexes in the form 𝑎2𝑘+1). In other words, 𝛤𝑄4𝑛
 is a tripartite graph but not 

a complete tripartite graph. ∎ 

Theorem 14. If 𝛤𝑄4𝑛
 is a coprime graph of  𝑄4𝑛 with 𝑛 = 2𝑘 for a natural number k, then 𝛤𝑄4𝑛

 is a star graph 

𝑆4𝑛.  

Proof. Since 𝑛 = 2𝑘, then based on Theorem 9, the order of any element in the group 𝑄4𝑛 is a factor of 2𝑘+1 

for a natural number 𝑘. It mean that for any 𝑔, ℎ ∈ 𝑄4𝑛 with 𝑔, ℎ ≠ 𝑒, then the order of 𝑔 and ℎ will not be 

coprime, which means 𝑔 and ℎ are not adjacent in coprime graph 𝛤𝑄4𝑛
. Because the identity element is always 

adjacent to all the elements in the group, then  Γ𝑄4𝑛
 is star graph 𝑆4𝑛. ∎ 

Theorem 15. Let 𝛤𝑄4𝑛
 be the coprime graph of 𝑄4𝑛. If 𝑛 = 𝑝1

𝑘1𝑝2
𝑘2 … 𝑝𝑚

𝑘𝑚 ,  where 𝑝𝑖 is an odd prime number 

and 𝑘𝑖 is a non-negative integer for every i=1,2,…,m, then  

1. Graph 𝛤𝑄4𝑛
 has a vertex of degree one  

2. Graph 𝛤𝑄4𝑛
is not a planar graph. 

Proof. Suppose 𝛤𝑄4𝑛
 is a coprime graph of a generalized quaternion group 𝑄4𝑛 with 𝑛 = 𝑝1

𝑘1𝑝2
𝑘2 … 𝑝𝑚

𝑘𝑚. 

Then 

1.  Since 𝑜(𝑎) = 𝑜(𝑎2𝑛−1) = 2𝑛 = 2𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑚
𝑘𝑚, thus based on Theorem 9, the order of other 

elements will not be coprime with the order of 𝑎. So vertex 𝑎 and 𝑎2𝑛−1 are only connected with 

vertex identity 𝑒. In other words, vertex 𝑎 and 𝑎2𝑛−1 have a degree of one or become the end vertex 

of the graph 𝛤𝑄4𝑛
. 

2. The proof of this statement is in line with the proof of Theorem 12 number 5. ∎ 

Collorary 16.   If 𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑚
𝑘𝑚,  where 𝑝𝑖 is an odd prime number and 𝑘𝑖 is a non-negative integer 

for every i=1,2, …, m, then  

1. Graph 𝛤𝑄4𝑛
 is not Eulerian  

2. Graph 𝛤𝑄4𝑛
 is not Hamiltonian.  

Proof. Suppose 𝛤𝑄4𝑛
 is a coprime graph of a generalized quaternion group 𝑄4𝑛 with 𝑛 = 𝑝1

𝑘1𝑝2
𝑘2 … 𝑝𝑚

𝑘𝑚. 

Then 

1. Since vertexes 𝑎 and 𝑎2𝑛−1 have degrees one, so 𝛤𝑄4𝑛
 contains vertex with odd degrees. It means 

𝛤𝑄4𝑛
 is not an Eulerian graph. 

2. Note that vertex 𝑒 is connected to all vertices in the graph 𝛤𝑄4𝑛
. Based on Theorem 15, vertex 𝑎 and 

𝑎2𝑛−1 have degrees one. Chosen 𝑆 = {𝑒}, then 𝛤𝑄4𝑛
− 𝑆 has three components. Thus the components 

of 𝛤𝑄4𝑛
− 𝑆 are more than | 𝑆| for any 𝑛. Based on Theorem 3, then 𝛤𝑄4𝑛

 is not Hamilton's graph. ∎ 

The following corollary is a result of Theorem 14 and Theorem 15.  

Corollary 17. If 𝛤𝑄4𝑛
 is the coprime graph of 𝑄4𝑛, then 𝛤𝑄4𝑛

 is a planar graph if and only if 𝑛 = 2𝑘 for a 

natural number 𝑘.  

Corollary 18. If 𝛤𝑄4𝑛
 is the coprime graph of 𝑄4𝑛, then  𝛤𝑄4𝑛

 is not Eulerian and not Hamiltonian for any 

natural number 𝑛.  



BAREKENG: J. Math. & App., vol. 17(3), pp. 1373- 1380, September, 2023 1379 

4. CONCLUSIONS 

For any natural number 𝑛, the coprime graph of the generalized quaternion group is not a Hamilton graph 

and not an Euler graph. This is because for any n, it can always be found vertek with degree one in 𝛤𝑄4𝑛
. 

Furthermore, graph 𝛤𝑄4𝑛
 is a graph of stars if 𝑛 = 2𝑘 for a natural number 𝑘. So, 𝛤𝑄4𝑛

 is a planar graph if 

only if 𝑛 = 2𝑘 for a natural number 𝑘.  
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