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ABSTRACT 

Article History: 
An intuitionistic fuzzy set (IFS) can be helpful in decision-making as a concept to describe 

uncertainty. This study proposes the application of IFS in determining research topics for 

students of the mathematics education study program using the normalized Euclidean distance 

method. This study also shows the differences in the analysis results using the max-min 

composition method revised by De et al. (2001) with the normalized Hamming distance method 

and the normalized Euclidean distance method. The results show that the normalized Euclidean 

distance method can determine student research topics more accurately than other methods 

because they are careful in looking at distance differences. The normalized Euclidean distance 

method provides the best distance measure with a high confidence level in terms of accuracy. 
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1. INTRODUCTION 

The point of providing students with sufficient information for the right choice of research topics 

cannot be overemphasized by lecturers. This is very important because many of the problems of student's 

lack of appropriate research topic guide significantly affect the choice of research topics and their efficiency 

[1], [2]. Therefore, it is prudent that students be provided with sufficient information about discussing a 

research topic or promote adequate planning, preparation, and choice among the determinants of research 

topics, such as academic achievement, interests, and others [2]. The intuitionistic fuzzy set concept can solve 

these problems containing such uncertainty [3]–[6]. 

The set concept that is commonly used is the classical set concept. George Cantor and Richard Dedekin, 

in the 1870s, applied to set theory informally as a collection of clearly defined objects. Based on this, a 

question arises, what about a collection of objects that are not clearly defined or blurred? Zadeh answered 

this question by putting forward the idea of fuzzy sets [7]. The fuzzy set concept is a generalization or 

extension of the classical set concept. If the classical set is assessed based on bivalent conditions, it differs 

from fuzzy set theory based on assessment using membership functions in real number intervals [0,1]. 

In 1983, Atanassov contributed to developing the concept of fuzzy theory. Atanassov put forward an 

intuitionistic fuzzy set (IFS) concept that the elements of a set have not only degrees of membership but also 

degrees of non-membership [8], [9]. Szmidt and Kacprzyk revealed that intuitionistic fuzzy sets are 

considered more relevant in deciding problem that involves hesitation about the object being examined [10]. 

Various methods of solving can be used in the intuitionistic fuzzy set problem, including the max-min 

composition method and the distance method. Samuel and Balamurugan introduced the max-min composition 

method based on a study on the Sanchez approach [11], [12], which provides a solution to the composition 

fuzzy relation equation [13]. Experts have refined versions of the max-min composition method, including 

De et al., who improved the version of the intuitionistic fuzzy relation [14], and Sundari et al., who introduced 

the concept of max-min average composition [15]. 

Meanwhile, the distance method between intuitionistic fuzzy sets is based on the geometric 

interpretation proposed by Szmidt & Kacprzyk [16]–[18]. Four distances are most widely used for fuzzy sets: 

the Hamming distance method, the Euclidean distance method, the normalized Hamming distance method, 

and the normalized Euclidean distance method. Many studies have used this distance method, especially the 

normalized Euclidean distance method. Szmidt and Kacprzyk apply it to medical diagnosis [10]; Ejegwa et 

al. and Jothi et al. on career determination [19], [20], Tuğrul et al. on high school determination [21]; and 

Aggarwal et al. on house purchasing decisions [22]. Furthermore, the normalized Euclidean distance method 

was chosen because it provides the best distance measure with a high confidence level in terms of accuracy 

[20]. 

This article will discuss the application of IFS using normalized Euclidean distances in determining 

research topics for mathematics education students. This study also shows the differences in the analysis 

results using the max-min composition method revised by De et al. with the normalized Hamming distance 

method and the normalized Euclidean distance method [14]. 

 

 

2. RESEARCH METHODS 

This is an applied research of intuitionistic fuzzy set concept in mapping research topics for 

mathematics education study program students. This research involves three sets which are composed using 

two functions. The first function, Q maps, sets A (students) to set B (course cluster), and the second function, 

R maps, sets B (course cluster) to set C (research topic). 

The sets are as follows: A = {A1, A2, …, A30} is a set of students, B = {Mathematics, Assessment, RME-

Ethnomathematics, Innovative Learning, Learning Media} is a set of course clusters related to research 

topics, and C = {Mathematical Ability, Design of Models/Lesson Plan/Curriculum, Contextual 

Problems/RME/Mathematical Literacy, Learning Media/ Technology, Applied Mathematics} as a set of 

research topics. 
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The respondents of this study were 30 students in the 8th semester of the mathematics education study 

program at Universitas PGRI Semarang in the 2021/2022 academic year. Respondents were selected 

randomly with cluster random sampling, and one class was selected. 

The data collection technique used is documentation, so the instrument is a checklist of documents 

needed in the study. The secondary data used in this study were the course scores of 30 students in the 

mathematics education study program at the Universitas PGRI Semarang from semester 1 to semester 7. This 

value is considered in determining the degree of membership (µ) and non-membership (v) academic ability 

of students in each group of subjects. In addition, other data collected is the expert's assessment of the degree 

of membership (µ) and non-membership (v) of the course cluster on the research topic. This data retrieval 

uses a Focus Group Discussion between the researcher and the coordinator of the course cluster. 

The research data reflects the case of the intuitionistic fuzzy set. Various methods of solving can be 

used in the intuitionistic fuzzy set problem, including the max-min composition method and the distance 

method. Experts have used several refinement versions of the max-min composition method, including De et 

al., who improved the version of the intuitionistic fuzzy relation [14], and Sundari et al., who introduced the 

concept of max-min average composition [15]. Meanwhile, there are four types of distance methods: the 

Hamming distance method, the Euclidean distance method, the normalized Hamming distance method, and 

the normalized Euclidean distance method, described later. This study shows the differences in the analysis 

results using the max-min composition method revised by De et al. with the normalized Hamming distance 

method and the normalized Euclidean distance method [14]. Several fuzzy set concepts are described as 

follows. 

 

Definition 1 [7] 

Let X be a nonempty set. A fuzzy set A in X is defined as 

  , ( ) |AA x x x X=   (1) 

where ( ) : [0,1]A x X →  is the membership function of the fuzzy set A. 

 

Definition 2 [8], [9] 

Let X be a nonempty set. An intuitionistic fuzzy set A in X is an object having the form 

  , ( ), ( ) |A AA x x v x x X=   (2) 

define respectively, the degree of membership and degree of non-membership of the element x X , to the 

set A, which is a subset of X, and for every element x X , 

 0 ( ) ( ) 1A Ax v x +   (3) 

According to Fuzzy Set Theory, if the membership degree of an element x is ( )x  and the non-

membership degree of an element x is ( )v x , then 

 ( ) 1 ( ) ( )A A Ax x v x = − −  (4) 

called the intuitionistic fuzzy set index or hesitation on the margin of x in A. ( )A x  is the degree of 

indeterminacy of x X  to the IFS A and ( ) [0,1]A x   , i.e., 

 ( ) : [0,1]A x X →  (5) 

for every x X . ( )A x  express the lack of knowledge of whether x belongs to IFS A or not. It is clear that 

0 ( ) 1A x  , for each x X . 

On the other hand, for each fuzzy set 'A  in X, we have 

  ' ' '( ) 1 ( ) 1 ( ) 0A A Ax x x  = − − − = , for each x X  (6) 

Therefore, if you want to describe an intuitionistic fuzzy set fully, you need to use two functions of the 

triplet: (1) membership function, (2) non-membership function, and (3) hesitation margin. It can be 
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concluded. In other words, using an intuitionistic fuzzy set instead of a fuzzy set means introducing more 

degrees of freedom in the description of the set (that is, there are 
Av  or 

A  in addition to 
A ). 

 

 

Definition 3 [14] 

Let X be nonempty. Intuitionistic fuzzy sets , ,A B C X . The intuitionistic fuzzy relation Q is assigned from 

set A to set B. Furthermore, the intuitionistic fuzzy relation R is assigned from set B to set C. The composition 

T of the intuitionistic fuzzy relationship R and Q has the following membership function: 

 ( , ) ( , ) ( , )T i k Q i R k
b B

a c a b b c  

 =     (7) 

and 

 ( , ) ( , ) ( , )T i k Q i R k
b B

v a c v a b v b c

 =     (8) 

ia A  , jb B , and kc C , where   = max and   = min. 

The composition T R Q=  is obtained from the max-min composition method (Equation 7- 

Equation 8). In the next step, with the same composition T' as composition T but involving the hesitation 

margin (π) explicitly as well, we obtain an improved version of the intuitionistic fuzzy relation R, or SR is: 

 R R R RS v = −   (9) 

and applies: (1) SR is the largest, and (2) the T R Q=  equation is retained. 

This improved version of R (i.e., SR) will be a more significant intuitionistic fuzzy relation that 

translates to higher degrees of association, lower degrees of non-association, and lower degrees of hesitation. 

From the improved version of R (i.e., SR), one can conclude that paired values one is the degree of association, 

and the other is the degree of non-association. 

 

Definition 4 [16], [18] 

Let X be nonempty. Intuitionistic fuzzy sets , ,A B C X . The distance measure d between intuitionistic fuzzy 

sets A and B is a mapping d : X × X → [0, 1]; if d(A, B) satisfies the following axioms: 

1. 0 ≤ d(A, B) ≤ 1 

2. d(A, B) if and only if A = B 

3. d(A, B) = d(B, A) 

4. d(A, C) + d(B, C) ≥ d(A, B) 

5. if A B C  , then d(A, C) ≥ d(A, B) and d(A, C) ≥ d(B, C) 

The distance measure is a term that describes the difference between intuitionistic fuzzy sets and may 

be considered a twin idea of the similarity measure. Distance measures among intuitionistic fuzzy sets are 

proposed. 

 

Definition 5 [16], [18] 

Let 

  , ( ), ( ), ( ) |A A AA x x v x x x X =   (10) 

and 

  , ( ), ( ), ( ) |B B BB x x v x x x X =   (11) 

be two intuitionistic fuzzy sets in X = x1, x2, …, xn; i = 1, 2, …, n. Based on the geometric interpretation of an 

intuitionistic fuzzy set, Szmidt and Kacprzyk proposed the following four distance measures between A and 

B [16], [18]: 

The Hamming distance: 

 
1

1
( , ) (| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |)

2

n

H A B A B A B

i

d A B x x v x v x x x   
=

= − + − + −  (12) 
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The Euclidean distance: 

 
2 2 2

1

1
( , ) [( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ]

2

n

E A B A B A B

i

d A B x x v x v x x x   
=

= − + − + −  (13) 

The Normalized Hamming distance: 

 
1

1
( , ) (| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |)

2

n

n H A B A B A B

i

d A B x x v x v x x x
n

   −

=

= − + − + −  (14) 

The Normalized Euclidean distance: 

 
2 2 2

1

1
( , ) [( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ]

2

n

n E A B A B A B

i

d A B x x v x v x x x
n

   −

=

= − + − + −  (15) 

 

 

3. RESULTS AND DISCUSSION 

A data set containing 30 students was considered. For example, A = {A1, A2, …, A30} is the set of 

students, B = {Mathematics, Assessment, RME-Ethnomathematics, Innovative Learning, Learning Media} is 

the set of course clusters related to the research topic, and C = {Mathematics Ability, Design of Models/Lesson 

Plan/Curriculum, Contextual Problems/RME/ Mathematical Literacy, Learning Media/Technology, Applied 

Mathematics} become a set of research topics. The intuitionistic fuzzy relation ( )Q A B→  is given in Table 

1, and the intuitionistic fuzzy relation ( )R B C→  is given in Table 2. 

 
Table 1. Student vs Course Cluster 

Q Mathematics Assessment 

RME-

Ethnomathe-

matics 

Innovative 

Learning 
Learning Media 

A1 (0.7, 0.2) (0.8, 0.1) (0.8, 0.1) (0.8, 0.1) (0.6, 0.3) 

A2 (0.9, 0.0) (0.6, 0.3) (0.5, 0.4) (0.5, 0.3) (0.8, 0.1) 

A3 (0.7, 0.2) (0.7, 0.1) (0.6, 0.2) (0.8, 0.2) (0.8, 0.1) 

A4 (0.5, 0.2) (0.8, 0.0) (0.9, 0.0) (0.5, 0.4) (0.9, 0.0) 

A5 (0.6, 0.3) (0.7, 0.1) (0.8, 0.1) (0.8, 0.1) (0.8, 0.1) 

A6 (0.8, 0.1) (0.9, 0.0) (0.5, 0.3) (0.6, 0.4) (0.6, 0.2) 

A7 (0.9, 0.0) (0.7, 0.2) (0.5, 0.5) (0.5, 0.3) (0.9, 0.0) 

A8 (0.7, 0.1) (0.7, 0.2) (0.7, 0.1) (0.9, 0.1) (0.6, 0.3) 

A9 (0.8, 0.1) (0.8, 0.1) (0.7, 0.2) (0.5, 0.4) (0.5, 0.3) 

A10 (0.9, 0.1) (0.8, 0.1) (0.7, 0.1) (0.8, 0.1) (0.8, 0.2) 

A11 (0.8, 0.1) (0.7, 0.1) (0.5, 0.4) (0.5, 0.3) (0.6, 0.4) 

A12 (0.5, 0.3) (0.7, 0.2) (0.9, 0.1) (0.6, 0.3) (0.8, 0.1) 

A13 (0.7, 0.1) (0.8, 0.0) (0.7, 0.2) (0.8, 0.1) (0.5, 0.4) 

A14 (0.9, 0.0) (0.8, 0.1) (0.5, 0.4) (0.6, 0.2) (0.6, 0.3) 

A15 (0.9, 0.1) (0.8, 0.1) (0.5, 0.4) (0.6, 0.3) (0.6, 0.3) 

A16 (0.6, 0.1) (0.8, 0.1) (0.6, 0.3) (0.8, 0.1) (0.8, 0.1) 

A17 (0.7, 0.1) (0.8, 0.1) (0.9, 0.0) (0.9, 0.1) (0.6, 0.2) 

A18 (0.6, 0.3) (0.7, 0.1) (0.9, 0.1) (0.5, 0.5) (0.6, 0.3) 

A19 (0.9, 0.0) (0.8, 0.1) (0.5, 0.4) (0.5, 0.2) (0.6, 0.3) 

A20 (0.6, 0.4) (0.8, 0.1) (0.8, 0.2) (0.7, 0.2) (0.5, 0.4) 

A21 (0.5, 0.3) (0.6, 0.1) (0.8, 0.1) (0.6, 0.3) (0.6, 0.3) 

A22 (0.7, 0.2) (0.8, 0.0) (0.7, 0.0) (0.6, 0.2) (0.7, 0.2) 

A23 (0.9, 0.0) (0.6, 0.3) (0.5, 0.4) (0.5, 0.3) (0.9, 0.0) 

A24 (0.7, 0.3) (0.8, 0.0) (0.9, 0.0) (0.8, 0.2) (0.5, 0.0) 

A25 (0.7, 0.2) (0.8, 0.1) (0.8, 0.0) (0.8, 0.1) (0.6, 0.3) 

A26 (0.5, 0.2) (0.8, 0.1) (0.8, 0.1) (0.7, 0.2) (0.6, 0.2) 

A27 (0.5, 0.4) (0.7, 0.2) (0.7, 0.2) (0.5, 0.4) (0.8, 0.1) 

A28 (0.9, 0.1) (0.8, 0.1) (0.5, 0.4) (0.5, 0.3) (0.6, 0.3) 

A29 (0.8, 0.1) (0.7, 0.1) (0.7, 0.2) (0.5, 0.4) (0.6, 0.3) 

A30 (0.7, 0.2) (0.7, 0.1) (0.7, 0.2) (0.8, 0.1) (0.8, 0.1) 



1000 Sutrisno, et. al.     APPLICATION OF INTUITIONISTIC FUZZY SETS IN DETERMINING…  

Therefore, the compositions T R Q=  are given in Table 3. But since the max-min composition 

method is used when searching for the T composition, the "dominant" course cluster is only considered. So, 

the next step is to use Equation (9) to calculate the improved version of R (i.e., SR). In the calculation of the 

improved version of R (i.e., SR), it takes a composition of T' (Table 4) which is the same as the composition 

of T (Table 3) but explicitly involves the hesitation margin (π) as well, the values of all three parameters are 

required in this approach. The effects of the proposed improvements by De et al. [14] are presented in Table 

5. 

 
Table 2. Courses Clusters vs. Research Topics 

R 
Mathematics 

Ability 

Design of 

Models/ 

Lesson Plan/ 

Curriculum 

Contextual 

Problems/RME 

/Mathematical 

Literacy 

Learning 

Media/ 

Technology 

Applied 

Mathematics 

Mathematics (0.7, 0.2) (0.2, 0.7) (0.4, 0.5) (0.2, 0.8) (0.9, 0.0) 

Assessment (0.8, 0.1) (0.6, 0.3) (0.3, 0.6) (0.3, 0.5) (0.4, 0.5) 

RME-

Ethnomathe-

matics 

(0.2, 0.7) (0.7, 0.2) (0.7, 0.2) (0.5, 0.3) (0.2, 0.8) 

Innovative 

Learning 

(0.3, 0.5) (0.9, 0.1) (0.5, 0.3) (0.6, 0.3) (0.2, 0.7) 

Learning Media (0.1, 0.8) (0.1, 0.7) (0.2, 0.7) (0.8, 0.1) (0.5, 0.4) 

 
Table 3. T Compositions 

T 
Mathematics 

Ability 

Design of 

Models/ 

Lesson Plan/ 

Curriculum 

Contextual 

Problems/RME 

/Mathematical 

Literacy 

Learning 

Media/ 

Technology 

Applied 

Mathematics 

A1 (0.8, 0.1) (0.8, 0.1) (0.7, 0.2) (0.6, 0.3) (0.7, 0.2) 

A2 (0.7, 0.2) (0.6, 0.3) (0.5, 0.3) (0.8, 0.1) (0.9, 0.0) 

A3 (0.7, 0.1) (0.8, 0.2) (0.6, 0.2) (0.8, 0.1) (0.7, 0.2) 

A4 (0.8, 0.1) (0.7, 0.2) (0.7, 0.2) (0.8, 0.1) (0.5, 0.2) 

A5 (0.7, 0.1) (0.8, 0.1) (0.7, 0.2) (0.8, 0.1) (0.6, 0.3) 

A6 (0.8, 0.1) (0.6, 0.3) (0.5, 0.3) (0.6, 0.2) (0.8, 0.1) 

A7 (0.7, 0.2) (0.6, 0.3) (0.5, 0.3) (0.8, 0.1) (0.9, 0.0) 

A8 (0.7, 0.2) (0.9, 0.1) (0.7, 0.2) (0.6, 0.3) (0.7, 0.1) 

A9 (0.8, 0.1) (0.7, 0.2) (0.7, 0.2) (0.5, 0.3) (0.8, 0.1) 

A10 (0.8, 0.1) (0.8, 0.1) (0.7, 0.2) (0.8, 0.2) (0.9, 0.1) 

A11 (0.7, 0.1) (0.6, 0.3) (0.5, 0.3) (0.6, 0.3) (0.8, 0.1) 

A12 (0.7, 0.2) (0.7, 0.2) (0.7, 0.2) (0.8, 0.1) (0.5, 0.3) 

A13 (0.8, 0.1) (0.8, 0.1) (0.7, 0.2) (0.6, 0.3) (0.7, 0.1) 

A14 (0.8, 0.1) (0.6, 0.2) (0.5, 0.3) (0.6, 0.3) (0.9, 0.0) 

A15 (0.8, 0.1) (0.6, 0.3) (0.5, 0.3) (0.6, 0.3) (0.9, 0.1) 

A16 (0.8, 0.1) (0.8, 0.1) (0.6, 0.3) (0.8, 0.1) (0.6, 0.1) 

A17 (0.8, 0.1) (0.9, 0.1) (0.7, 0.2) (0.6, 0.2) (0.7, 0.1) 

A18 (0.7, 0.1) (0.7, 0.2) (0.7, 0.2) (0.6, 0.3) (0.6, 0.3) 

A19 (0.8, 0.1) (0.6, 0.2) (0.5, 0.3) (0.6, 0.3) (0.9, 0.0) 

A20 (0.8, 0.1) (0.7, 0.2) (0.7, 0.2) (0.6, 0.3) (0.6, 0.4) 

A21 (0.6, 0.1) (0.7, 0.2) (0.7, 0.2) (0.6, 0.3) (0.5, 0.3) 

A22 (0.8, 0.1) (0.7, 0.2) (0.7, 0.2) (0.7, 0.2) (0.7, 0.2) 

A23 (0.7, 0.2) (0.6, 0.3) (0.5, 0.3) (0.8, 0.1) (0.9, 0.0) 

A24 (0.8, 0.1) (0.8, 0.2) (0.7, 0.2) (0.6, 0.1) (0.7, 0.3) 

A25 (0.8, 0.1) (0.8, 0.1) (0.7, 0.2) (0.6, 0.3) (0.7, 0.2) 

A26 (0.8, 0.1) (0.7, 0.2) (0.7, 0.2) (0.6, 0.2) (0.5, 0.2) 

A27 (0.7, 0.2) (0.7, 0.2) (0.7, 0.2) (0.8, 0.1) (0.5, 0.4) 

A28 (0.8, 0.1) (0.6, 0.3) (0.5, 0.3) (0.6, 0.3) (0.9, 0.1) 

A29 (0.7, 0.1) (0.7, 0.2) (0.7, 0.2) (0.6, 0.3) (0.8, 0.1) 

A30 (0.7, 0.1) (0.8, 0.1) (0.7, 0.2) (0.8, 0.1) (0.7, 0.2) 
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Table 4. T' Compositions 

T' 
Mathematics 

Ability 

Design of 

Models/ 

Lesson Plan/ 

Curriculum 

Contextual 

Problems/RME 

/Mathematical 

Literacy 

Learning Media/ 

Technology 

Applied 

Mathematics 

A1 (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.6, 0.3, 0.1) (0.7, 0.2, 0.1) 

A2 (0.7, 0.2, 0.1) (0.6, 0.3, 0.1) (0.5, 0.3, 0.2) (0.8, 0.1, 0.1) (0.9, 0.0, 0.1) 

A3 (0.7, 0.1, 0.2) (0.8, 0.2, 0.0) (0.6, 0.2, 0.2) (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) 

A4 (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.8, 0.1, 0.1) (0.5, 0.2, 0.3) 

A5 (0.7, 0.1, 0.2) (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.8, 0.1, 0.1) (0.6, 0.3, 0.1) 

A6 (0.8, 0.1, 0.1) (0.6, 0.3, 0.1) (0.5, 0.3, 0.2) (0.6, 0.2, 0.2) (0.8, 0.1, 0.1) 

A7 (0.7, 0.2, 0.1) (0.6, 0.3, 0.1) (0.5, 0.3, 0.2) (0.8, 0.1, 0.1) (0.9, 0.0, 0.1) 

A8 (0.7, 0.2, 0.1) (0.9, 0.1, 0.0) (0.7, 0.2, 0.1) (0.6, 0.3, 0.1) (0.7, 0.1, 0.2) 

A9 (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.5, 0.3, 0.2) (0.8, 0.1, 0.1) 

A10 (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.8, 0.2, 0.0) (0.9, 0.1, 0.0) 

A11 (0.7, 0.1, 0.2) (0.6, 0.3, 0.1) (0.5, 0.3, 0.2) (0.6, 0.3, 0.1) (0.8, 0.1, 0.1) 

A12 (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.8, 0.1, 0.1) (0.5, 0.3, 0.2) 

A13 (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.6, 0.3, 0.1) (0.7, 0.1, 0.2) 

A14 (0.8, 0.1, 0.1) (0.6, 0.2, 0.2) (0.5, 0.3, 0.2) (0.6, 0.3, 0.1) (0.9, 0.0, 0.1) 

A15 (0.8, 0.1, 0.1) (0.6, 0.3, 0.1) (0.5, 0.3, 0.2) (0.6, 0.3, 0.1) (0.9, 0.1, 0.0) 

A16 (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.6, 0.3, 0.1) (0.8, 0.1, 0.1) (0.6, 0.1, 0.3) 

A17 (0.8, 0.1, 0.1) (0.9, 0.1, 0.0) (0.7, 0.2, 0.1) (0.6, 0.2, 0.2) (0.7, 0.1, 0.2) 

A18 (0.7, 0.1, 0.2) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.6, 0.3, 0.1) (0.6, 0.3, 0.1) 

A19 (0.8, 0.1, 0.1) (0.6, 0.2, 0.2) (0.5, 0.3, 0.2) (0.6, 0.3, 0.1) (0.9, 0.0, 0.1) 

A20 (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.6, 0.3, 0.1) (0.6, 0.4, 0.0) 

A21 (0.6, 0.1, 0.3) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.6, 0.3, 0.1) (0.5, 0.3, 0.2) 

A22 (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) 

A23 (0.7, 0.2, 0.1) (0.6, 0.3, 0.1) (0.5, 0.3, 0.2) (0.8, 0.1, 0.1) (0.9, 0.0, 0.1) 

A24 (0.8, 0.1, 0.1) (0.8, 0.2, 0.0) (0.7, 0.2, 0.1) (0.6, 0.1, 0.3) (0.7, 0.3, 0.0) 

A25 (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.6, 0.3, 0.1) (0.7, 0.2, 0.1) 

A26 (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.6, 0.2, 0.2) (0.5, 0.2, 0.3) 

A27 (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.8, 0.1, 0.1) (0.5, 0.4, 0.1) 

A28 (0.8, 0.1, 0.1) (0.6, 0.3, 0.1) (0.5, 0.3, 0.2) (0.6, 0.3, 0.1) (0.9, 0.1, 0.0) 

A29 (0.7, 0.1, 0.2) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.6, 0.3, 0.1) (0.8, 0.1, 0.1) 

A30 (0.7, 0.1, 0.2) (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) 

 
Table 5. Improved Version of R (i. e. SR) 

SR 
Mathematics 

Ability 

Design of 

Models/ 

Lesson Plan/ 

Curriculum 

Contextual 

Problems/RME 

/Mathematical 

Literacy 

Learning Media/ 

Technology 

Applied 

Mathematics 

A1 0.79 0.79 0.68 0.57 0.68 

A2 0.68 0.57 0.44 0.79 0.90 

A3 0.68 0.80 0.56 0.79 0.68 

A4 0.79 0.68 0.68 0.79 0.44 

A5 0.68 0.79 0.68 0.79 0.57 

A6 0.79 0.57 0.44 0.56 0.79 

A7 0.68 0.57 0.44 0.79 0.90 

A8 0.68 0.90 0.68 0.57 0.68 

A9 0.79 0.68 0.68 0.44 0.79 

A10 0.79 0.79 0.68 0.80 0.90 

A11 0.68 0.57 0.44 0.57 0.79 

A12 0.68 0.68 0.68 0.79 0.44 

A13 0.79 0.79 0.68 0.57 0.68 

A14 0.79 0.56 0.44 0.57 0.90 

A15 0.79 0.57 0.44 0.57 0.90 

A16 0.79 0.79 0.57 0.79 0.57 

A17 0.79 0.90 0.68 0.56 0.68 

A18 0.68 0.68 0.68 0.57 0.57 

A19 0.79 0.56 0.44 0.57 0.90 

A20 0.79 0.68 0.68 0.57 0.60 

A21 0.57 0.68 0.68 0.57 0.44 

A22 0.79 0.68 0.68 0.68 0.68 
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SR 
Mathematics 

Ability 

Design of 

Models/ 

Lesson Plan/ 

Curriculum 

Contextual 

Problems/RME 

/Mathematical 

Literacy 

Learning Media/ 

Technology 

Applied 

Mathematics 

A23 0.68 0.57 0.44 0.79 0.90 

A24 0.79 0.80 0.68 0.57 0.70 

A25 0.79 0.79 0.68 0.57 0.68 

A26 0.79 0.68 0.68 0.56 0.44 

A27 0.68 0.68 0.68 0.79 0.46 

A28 0.79 0.57 0.44 0.57 0.90 

A29 0.68 0.68 0.68 0.57 0.79 

A30 0.68 0.79 0.68 0.79 0.68 

 

The maximum value of SR indicates a suitable research topic for students. According to Szmidt and 

Kacprzyk [10], this SR approach has several weaknesses. First, the max-min composition method rule alone 

does not provide a solution, and De et al. proposed several changes to get a solution [14]. The second is a 

membership function that describes a weak R relation. 

To solve this problem, but without manipulation of the knowledge base on the research topic and taking 

into account all the characteristics of the course cluster for each student, a new method based on distance 

calculation is proposed (Definition 5, especially in this study, Equation 14 - Equation 15 are used). 

As in De et al., a knowledge base on the research topic is needed to determine the appropriate research 

topic C for student A with a given grade from course cluster B [14]. The knowledge base is formulated using 

an intuitionistic fuzzy set in this case. 

The same data are used to compare the approach proposed in this article with De et al.'s revised max-

min composition method [14]. The data are given in Table 6, and three numbers describe each course cluster: 

membership µ, non-membership v, and hesitation margin π. The data in Table 2 and Table 6 are the same, 

but by explicitly involving the hesitation margin, the values of the three parameters are required in this 

approach. 

 
Table 6. R' 

R' 
Mathematics 

Ability 

Design of 

Models/ 

Lesson Plan/ 

Curriculum 

Contextual 

Problems/RME 

/Mathematical 

Literacy 

Learning 

Media/ 

Technology 

Applied 

Mathematics 

Mathematics (0.7, 0.2, 0.1) (0.2, 0.7, 0.1) (0.4, 0.5, 0.1) (0.2, 0.8, 0.0) (0.9, 0.0, 0.1) 

Assessment (0.8, 0.1, 0.1) (0.6, 0.3, 0.1) (0.3, 0.6, 0.1) (0.3, 0.5, 0.2) (0.4, 0.5, 0.1) 

RME-

Ethnomathe-

matics 

(0.2, 0.7, 0.1) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.5, 0.3, 0.2) (0.2, 0.8, 0.0) 

Innovative 

Learning 

(0.3, 0.5, 0.2) (0.9, 0.1, 0.0) (0.5, 0.3, 0.2) (0.6, 0.3, 0.1) (0.2, 0.7, 0.1) 

Learning Media (0.1, 0.8, 0.1) (0.1, 0.7, 0.2) (0.2, 0.7, 0.1) (0.8, 0.1, 0.1) (0.5, 0.4, 0.1) 

 
The set of students considered is A = {A1, A2, …, A30}. The characteristics of the course clusters for 

students are given in Table 6. Three parameters (µ, v, π) are needed to describe each course cluster, but the 

data are the same as in Table 1. 

 
Table 7. Q' 

Q' 
Mathematics 

Ability 

Design of 

Models/ 

Lesson Plan/ 

Curriculum 

Contextual 

Problems/RME 

/Mathematical 

Literacy 

Learning Media/ 

Technology 

Applied 

Mathematics 

A1 (0.7, 0.2, 0.1) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.6, 0.3, 0.1) 

A2 (0.9, 0.0, 0.1) (0.6, 0.3, 0.1) (0.5, 0.4, 0.1) (0.5, 0.3, 0.2) (0.8, 0.1, 0.1) 

A3 (0.7, 0.2, 0.1) (0.7, 0.1, 0.2) (0.6, 0.2, 0.2) (0.8, 0.2, 0.0) (0.8, 0.1, 0.1) 

A4 (0.5, 0.2, 0.3) (0.8, 0.0, 0.2) (0.9, 0.0, 0.1) (0.5, 0.4, 0.1) (0.9, 0.0, 0.1) 

A5 (0.6, 0.3, 0.1) (0.7, 0.1, 0.2) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) 

A6 (0.8, 0.1, 0.1) (0.9, 0.0, 0.1) (0.5, 0.3, 0.2) (0.6, 0.4, 0.0) (0.6, 0.2, 0.2) 

A7 (0.9, 0.0, 0.1) (0.7, 0.2, 0.1) (0.5, 0.5, 0.0) (0.5, 0.3, 0.2) (0.9, 0.0, 0.1) 
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Q' 
Mathematics 

Ability 

Design of 

Models/ 

Lesson Plan/ 

Curriculum 

Contextual 

Problems/RME 

/Mathematical 

Literacy 

Learning Media/ 

Technology 

Applied 

Mathematics 

A8 (0.7, 0.1, 0.2) (0.7, 0.2, 0.1) (0.7, 0.1, 0.2) (0.9, 0.1, 0.0) (0.6, 0.3, 0.1) 

A9 (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.5, 0.4, 0.1) (0.5, 0.3, 0.2) 

A10 (0.9, 0.1, 0.0) (0.8, 0.1, 0.1) (0.7, 0.1, 0.2) (0.8, 0.1, 0.1) (0.8, 0.2, 0.0) 

A11 (0.8, 0.1, 0.1) (0.7, 0.1, 0.2) (0.5, 0.4, 0.1) (0.5, 0.3, 0.2) (0.6, 0.4, 0.0) 

A12 (0.5, 0.3, 0.2) (0.7, 0.2, 0.1) (0.9, 0.1, 0.0) (0.6, 0.3, 0.1) (0.8, 0.1, 0.1) 

A13 (0.7, 0.1, 0.2) (0.8, 0.0, 0.2) (0.7, 0.2, 0.1) (0.8, 0.1, 0.1) (0.5, 0.4, 0.1) 

A14 (0.9, 0.0, 0.1) (0.8, 0.1, 0.1) (0.5, 0.4, 0.1) (0.6, 0.2, 0.2) (0.6, 0.3, 0.1) 

A15 (0.9, 0.1, 0.0) (0.8, 0.1, 0.1) (0.5, 0.4, 0.1) (0.6, 0.3, 0.1) (0.6, 0.3, 0.1) 

A16 (0.6, 0.1, 0.3) (0.8, 0.1, 0.1) (0.6, 0.3, 0.1) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) 

A17 (0.7, 0.1, 0.2) (0.8, 0.1, 0.1) (0.9, 0.0, 0.1) (0.9, 0.1, 0.0) (0.6, 0.2, 0.2) 

A18 (0.6, 0.3, 0.1) (0.7, 0.1, 0.2) (0.9, 0.1, 0.0) (0.5, 0.5, 0.0) (0.6, 0.3, 0.1) 

A19 (0.9, 0.0, 0.1) (0.8, 0.1, 0.1) (0.5, 0.4, 0.1) (0.5, 0.2, 0.3) (0.6, 0.3, 0.1) 

A20 (0.6, 0.4, 0.0) (0.8, 0.1, 0.1) (0.8, 0.2, 0.0) (0.7, 0.2, 0.1) (0.5, 0.4, 0.1) 

A21 (0.5, 0.3, 0.2) (0.6, 0.1, 0.3) (0.8, 0.1, 0.1) (0.6, 0.3, 0.1) (0.6, 0.3, 0.1) 

A22 (0.7, 0.2, 0.1) (0.8, 0.0, 0.2) (0.7, 0.0, 0.3) (0.6, 0.2, 0.2) (0.7, 0.2, 0.1) 

A23 (0.9, 0.0, 0.1) (0.6, 0.3, 0.1) (0.5, 0.4, 0.1) (0.5, 0.3, 0.2) (0.9, 0.0, 0.1) 

A24 (0.7, 0.3, 0.0) (0.8, 0.0, 0.2) (0.9, 0.0, 0.1) (0.8, 0.2, 0.0) (0.5, 0.0, 0.5) 

A25 (0.7, 0.2, 0.1) (0.8, 0.1, 0.1) (0.8, 0.0, 0.2) (0.8, 0.1, 0.1) (0.6, 0.3, 0.1) 

A26 (0.5, 0.2, 0.3) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.6, 0.2, 0.2) 

A27 (0.5, 0.4, 0.1) (0.7, 0.2, 0.1) (0.7, 0.2, 0.1) (0.5, 0.4, 0.1) (0.8, 0.1, 0.1) 

A28 (0.9, 0.1, 0.0) (0.8, 0.1, 0.1) (0.5, 0.4, 0.1) (0.5, 0.3, 0.2) (0.6, 0.3, 0.1) 

A29 (0.8, 0.1, 0.1) (0.7, 0.1, 0.2) (0.7, 0.2, 0.1) (0.5, 0.4, 0.1) (0.6, 0.3, 0.1) 

A30 (0.7, 0.2, 0.1) (0.7, 0.1, 0.2) (0.7, 0.2, 0.1) (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) 

 

Our task is to determine the appropriate research topic for each student ai, i = 1, ..., 30. To fulfill this 

task, we propose to calculate for each student ai the academic ability distance in his course cluster (Table 7) 

from a set of courses clusters bj, j = 1, ..., 5 characteristics for each research topic ck, k = 1, ..., 5 (Table 6). 

The smallest distance obtained indicates the right research topic. 

In Szmidt & Kacprzyk [16], [18], it is proved that the only correct way to calculate the most widely 

used distance for an intuitionistic fuzzy set is to consider all three parameters: membership function, non-

member function, and hesitation margin. To be more precise, the normalized Hamming distance for all course 

clusters from the i-th student of the k-th research topic through Equation (15) for this case is equal to 
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1

1
( , ) (| ( ) ( ) | | ( ) ( ) | | ( ) ( ) |)

10
n H j i j k j i j k j i j k

j

d A C a c v a v c a c   −

=

= − + − + −  (16) 

The distance Equation (16) for each student from a series of possible research topics considered is 

given in Table 8. The smallest distance indicates the right research topic: A1 correctly chooses the research 

topic Design of Models/Lesson Plan/Curriculum, A2 chooses Learning Media/Technology or Applied 

Mathematics, A3 selects Learning Media/Technology, etc. 

 
Table 8. The Normalized Hamming Distance 

dn-H(A,C) 
Mathematics 

Ability 

Design of 

Models/ 

Lesson Plan/ 

Curriculum 

Contextual 

Problems/RME 

/Mathematical 

Literacy 

Learning 

Media/ 

Technology 

Applied 

Mathematics 

A1 0.32 0.28 0.32 0.36 0.40 

A2 0.32 0.40 0.32 0.26 0.26 

A3 0.36 0.32 0.36 0.26 0.42 

A4 0.40 0.44 0.38 0.34 0.48 

A5 0.40 0.30 0.34 0.28 0.46 

A6 0.30 0.38 0.38 0.32 0.34 

A7 0.32 0.46 0.38 0.32 0.28 

A8 0.38 0.26 0.34 0.36 0.40 

A9 0.26 0.32 0.28 0.36 0.30 

A10 0.40 0.36 0.40 0.34 0.42 
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dn-H(A,C) 
Mathematics 

Ability 

Design of 

Models/ 

Lesson Plan/ 

Curriculum 

Contextual 

Problems/RME 

/Mathematical 

Literacy 

Learning 

Media/ 

Technology 

Applied 

Mathematics 

A11 0.24 0.38 0.30 0.32 0.28 

A12 0.40 0.34 0.30 0.26 0.42 

A13 0.32 0.28 0.32 0.38 0.38 

A14 0.26 0.38 0.34 0.34 0.28 

A15 0.26 0.38 0.34 0.30 0.28 

A16 0.36 0.34 0.38 0.30 0.42 

A17 0.40 0.30 0.40 0.42 0.46 

A18 0.32 0.34 0.30 0.34 0.36 

A19 0.26 0.40 0.34 0.36 0.28 

A20 0.32 0.26 0.26 0.32 0.38 

A21 0.36 0.30 0.26 0.28 0.40 

A22 0.34 0.38 0.34 0.32 0.44 

A23 0.34 0.42 0.34 0.28 0.28 

A24 0.44 0.36 0.42 0.40 0.52 

A25 0.34 0.30 0.34 0.36 0.42 

A26 0.36 0.30 0.32 0.34 0.44 

A27 0.34 0.30 0.24 0.22 0.38 

A28 0.24 0.40 0.32 0.32 0.28 

A29 0.28 0.34 0.28 0.32 0.30 

A30 0.36 0.30 0.34 0.28 0.42 

 

We obtained the same and even more accurate results, namely the research topic of the same quality 

for each student when looking for a solution by applying the normalized Euclidean distance method [16], 

[18] through Equation (16) for this case is the same as 

 
5

2 2 2

1

1
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10
n E j i j k j i j k j i j k

j

d A C a c v a v c a c   −

=

= − + − + −  (17) 

The results of Equation (17) are given in Table 9, the lowest distance for each student ai from the 

possible research topic C indicates a solution. As before, A1 chose the right research topic for the Design of 

Models/Lesson Plan/Curriculum, A2 chose Applied Mathematics, A3 chose Learning Media/Technology, 

etc. This method looks more accurate in seeing the difference in distance. Initially, with the normalized 

Hamming distance method, A2 has two choices of research topics, but with the normalized Euclidean distance 

method, A2 has one more appropriate research topic. The normalized Euclidean distance method provides 

the best distance measure with a high confidence level in terms of accuracy [20]. 

 
Table 9. The Normalized Euclidean Distance 

dn-E(A,C) 
Mathematics 

Ability 

Design of 

Models/ 

Lesson Plan/ 

Curriculum 

Contextual 

Problems/RME 

/Mathematical 

Literacy 

Learning 

Media/ 

Technology 

Applied 

Mathematics 

A1 0.40 0.32 0.34 0.37 0.45 

A2 0.37 0.46 0.38 0.36 0.28 

A3 0.42 0.38 0.38 0.32 0.41 

A4 0.49 0.45 0.43 0.37 0.48 

A5 0.46 0.36 0.37 0.31 0.47 

A6 0.33 0.40 0.40 0.39 0.35 

A7 0.40 0.50 0.44 0.39 0.31 

A8 0.41 0.33 0.34 0.37 0.44 

A9 0.32 0.37 0.33 0.39 0.34 

A10 0.44 0.42 0.41 0.40 0.44 

A11 0.27 0.38 0.33 0.37 0.29 

A12 0.45 0.37 0.34 0.30 0.44 

A13 0.36 0.32 0.35 0.40 0.43 

A14 0.31 0.41 0.38 0.41 0.32 

A15 0.30 0.40 0.37 0.39 0.31 

A16 0.42 0.39 0.40 0.35 0.42 
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dn-E(A,C) 
Mathematics 

Ability 

Design of 

Models/ 

Lesson Plan/ 

Curriculum 

Contextual 

Problems/RME 

/Mathematical 

Literacy 

Learning 

Media/ 

Technology 

Applied 

Mathematics 

A17 0.47 0.36 0.39 0.41 0.49 

A18 0.38 0.34 0.31 0.33 0.40 

A19 0.30 0.43 0.38 0.41 0.31 

A20 0.35 0.26 0.29 0.33 0.42 

A21 0.39 0.30 0.28 0.29 0.41 

A22 0.41 0.38 0.37 0.36 0.44 

A23 0.41 0.49 0.42 0.37 0.30 

A24 0.49 0.37 0.41 0.40 0.51 

A25 0.42 0.33 0.35 0.37 0.47 

A26 0.41 0.32 0.34 0.34 0.44 

A27 0.40 0.36 0.33 0.24 0.38 

A28 0.29 0.41 0.36 0.39 0.30 

A29 0.33 0.38 0.33 0.37 0.33 

A30 0.44 0.38 0.38 0.33 0.43 

 

 

4. CONCLUSIONS 

An intuitionistic fuzzy set can express hesitation about the object being examined. The method 

proposed in this article performs a diagnosis based on calculating the distance from the case to all the research 

topics considered, considering the scores of all students' academic abilities in each course cluster. As a result, 

our approach makes it possible to include weights for all students' academic abilities in each course cluster. 

The normalized Euclidean distance method can determine students' research topics more accurately than other 

methods because they are careful in seeing distance differences. The normalized Euclidean distance method 

provides the best distance measure with a high confidence level in terms of accuracy. Such an approach is 

impossible in the method described by De et al. because the rules of the max-min composition method 

actually "ignore" most values except the extremes [14]. 
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