
          https://doi.org/10.30598/barekengvol17iss3pp1449-1462 

 

September 2023     Volume 17 Issue 3 Page 1449–1462 

P-ISSN: 1978-7227   E-ISSN: 2615-3017 

 

BAREKENG: Journal of Mathematics and Its Applications 

   

1449 
      

 

THE APPLICATION OF DISCRETE HIDDEN MARKOV MODEL ON 

CROSSES OF DIPLOID PLANT 

 Nahrul Hayati 1*, Berlian Setiawaty2, I Gusti Putu Purnaba3  

 
1,2,3Mathematics Department, IPB University 

Raya Dramaga Street, Bogor, 16680, Indonesia 

Corresponding author’s e-mail: * nahrul.ney@gmail.com 

ABSTRACT 

Article History: 
The hidden Markov model consists of a pair of an unobserved Markov chain {Xk} and an 

observation process {Yk}. In this research, the crosses of diploid plant apply the model. The 

Markov chain {Xk} represents genetic structure, which is genotype of the kth generation of an 

organism. The observation process {Yk} represents the appearance or the observed trait, which 

is the phenotype of the kth generation of an organism. Since it is unlikely to observe the genetic 

structure directly, the Hidden Markov model can be used to model pairs of events and 

unobservable their causes. Forming the model requires the use of the theory of heredity from 

Mendel. This model can be used to explain the characteristic of true breeding on crosses of 

diploid plants. The more traits crossed, the smaller probability of plants having a dominant 

phenotype in that period. Monohybrid, dihybrid, and trihybrid crosses have a dominant 

phenotype probability of 99% in the seventh, eighth, and ninth generations, with the condition 

of previous generations having a dominant phenotype. But in seventh generation, monohybrid 

crosses only have the probability of an optimal genotype of 50%, dihybrid crosses have a 

probability of an optimal genotype of 25% in the eighth generation, and trihybrid crosses have 

a probability of an optimal genotype of 12.5% in the ninth generation. 
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1. INTRODUCTION 

Heredity is a trait inheritance or forwarding from one generation to the next. For thousand of years, the 

principles of heredity and variation have been exploited by farmers so they can produce plants and animals 

with desired traits. Gregor Mendel, who found the first acceptable theory of the trait inheritance system, 

proposed several hypotheses about the inheritance of genetic material from the parent to the offspring. 

According to Mendel, for each character, the organism inherits two alleles, one from each parent. He makes 

this deduction without knowing about the roles or even the existence of chromosomes. Any cell with two 

chromosome sets is called a diploid cell, where one set is inherited from each parent [1].  

Although this law of Mendel’s can provide hypotheses about the inheritance of genetic material from 

the parent to the offspring, searching for the trait is only done based on the observed appearance in the 

organism. The characteristics of an organism do not always reveal its genetic composition. Therefore, the 

appearance of the observed trait in the organism, namely phenotype, can be distinguished from its genetic 

structure, namely genotype. This genetic structure is unlikely to be observed. The hidden Markov model can 

help model pairs of events and their causes that cannot be observed directly [2]. This models have also been 

used in bioinformatics and biochemistry, some of them are [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. 

In the state space of the finite observation process and the time index is countable, the model is known 

as the discrete version of the hidden Markov model [2]. Thorvaldsen [14] in his research, revealed interesting 

ideas about the role of hidden Markov models in bioinformatics. In his research, he found that the hidden 

Markov model can be applied to Mendel’s experiments. In this research the model is applied to crosses of 

diploid plant and used to explain the characteristic of true-breeding in diploid plant crosses. The true-breeding 

generation of a plant can help to find seeds that have both feasible appearances and genetics. 

2. RESEARCH METHODS 

2.1 Discrete Hidden Markov Models 

The hidden Markov model (𝑋, 𝑌) is a model generated by a Markov chain 𝑋 = {𝑋𝑘}𝑘∈𝑁 that is 

unobserved and an observation process 𝑌 = {𝑌𝑘}𝑘∈𝑁. The observation is influanced by 𝑋𝑘, while 𝑋𝑘 is 

influenced by 𝑋𝑘−1. This relationship is illustrated in Figure 1. 

 
Figure 1. Hidden Markov Model (𝑿, 𝒀) 

Characteristics of hidden Markov model: 

1) The sequence {𝑋𝑘}𝑘∈𝑁 forms a Markov chain with finite state space 𝑆𝑋 = {1,2,⋯ ,𝑁} and 𝑨 = (𝑎𝑖𝑗)𝑁×𝑁
 

is a matrix of transition probability with 

𝑎𝑖𝑗 = 𝑃(𝑋𝑘+1 = 𝑗|𝑋𝑘 = 𝑖), 

for 𝑖, 𝑗 = 1,2,⋯ , 𝑁; 𝑎𝑖𝑗 ≥ 0 and ∑ 𝑎𝑖𝑗
𝑁
𝑗=1 = 1. Furthemore, 𝝅 = (𝜋𝑖)𝑁×1 is a probability matrix of the 

initial state with  

𝜋𝑖 = 𝑃(𝑋1 = 𝑖), 

for 𝑖 = 1,2,⋯ ,𝑁 and ∑ 𝜋𝑖
𝑁
𝑖=1 = 1. 

2) The sequence {𝑌𝑘}𝑘∈𝑁 is the observation process with state space 𝑆𝑌 = {1,2,⋯ ,𝑀}. The relationship of 

{𝑋𝑘, 𝑌𝑘}𝑘∈𝑁 process is represented by emission probability matrix 𝑩 = (𝑏𝑖(𝑗))𝑁×𝑀
 with  

𝑏𝑖(𝑗) = 𝑃(𝑌𝑘 = 𝑗|𝑋𝑘 = 𝑖), 

for 𝑖 = 1,2,⋯ ,𝑁; 𝑗 = 1,2,⋯ ,𝑀; 𝑏𝑖(𝑗) ≥ 0 and ∑ 𝑏𝑖(𝑗) = 1𝑀
𝑗=1 . 

3) It is assumed that {𝑌𝑘|𝑋𝑘}𝑘∈𝑁 are independent, this means  

𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾|𝑋1 = 𝑥1,⋯ , 𝑋𝐾 = 𝑥𝐾) = ∏ 𝑃(𝑌𝑘 = 𝑦𝑘|𝑋𝑘 = 𝑥𝑘)
𝐾
𝑘=1   
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Therefore, based on those characteristics, we obtain a set of parameters as the characteristic of the 

hidden Markov model, namely 

𝜆 = (𝑨,𝑩, 𝝅). 

Given observation sequence 𝑦1, 𝑦2, ⋯ , 𝑦𝐾; 𝑦𝑘 ∈ 𝑆𝑦 for 𝑘 = 1,2,⋯ ,𝐾 and 𝜆 = (𝑨,𝑩, 𝝅). There are 

three main problems in the hidden Markov model. The first is calculating the probability of the emergence of 

an observation sequence 𝑦1, 𝑦2, ⋯ , 𝑦𝐾 which is solved by forward and backward algorithms. The second 

problem is determining the sequence of a hidden state 𝑥1, 𝑥2, ⋯ , 𝑥𝐾 that is optimally solved by the Veterbi 

algorithm. The third problem is estimating the parameters of the hidden Markov model 𝜆 = (𝑨,𝑩,𝝅), so that 

𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾|𝜆) is maximum which is done with the Baum-Welch algorithm [15]. 

2.2 Forward and Backward Algorithms 

The probability of the appearance of an observation sequence 𝑦1, 𝑦2, ⋯ , 𝑦𝐾 given 𝜆 = (𝑨,𝑩,𝝅) i.e 

𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾|𝜆) is calculated using forward and backward algorithms. Defined variables  

𝛼𝑘(𝑗) = 𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 , 𝑋𝑘 = 𝑗|𝜆),    (1) 

for 𝑘 = 1,2,⋯ ,𝐾. The forward algorithm consists of three stages: 

1) Initialization stage 

𝛼1(𝑗) = 𝑃(𝑌1 = 𝑦1, 𝑋1 = 𝑗|𝜆) 

𝛼1(𝑗) = 𝑃(𝑋1 = 𝑗|𝜆)𝑃(𝑌1 = 𝑦1|𝑋1 = 𝑗, 𝜆) 

𝛼1(𝑗) = 𝜋𝑗𝑏𝑗(𝑦1), for  𝑗 = 1,2,⋯ ,𝑁. 

2) Induction stage 

𝛼𝑘+1(𝑗) = 𝑃(𝑌1 = 𝑦1,⋯ , 𝑌𝑘+1 = 𝑦𝑘+1, 𝑋𝑘+1 = 𝑗|𝜆) 

𝛼𝑘+1(𝑗) = (∑ 𝛼𝑘(𝑖)𝑎𝑖𝑗
𝑁
𝑖=1 )𝑏𝑗(𝑦𝑘+1), for  𝑗 = 1,2,⋯ ,𝑁 and 𝑘 = 1,2,⋯ ,𝐾 − 1.  

3) Termination stage 

𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾|𝜆) = ∑ 𝛼𝐾(𝑗)𝑁
𝑗=1 . 

Defined variables  

𝛽𝑘(𝑗) = 𝑃(𝑌𝑘+1 = 𝑦𝑘+1,⋯ , 𝑌𝐾 = 𝑦𝐾|𝑋𝑘 = 𝑗, 𝜆),   (2) 

for 𝑘 = 1,2,⋯ ,𝐾. The backward algorithm consists of three stages: 

1) Initialization stage 

𝛽𝐾(𝑗) = 𝑃(𝑌𝐾+1 = 𝑦𝐾+1|𝑋𝐾 = 𝑗, 𝜆) 

𝛽𝐾(𝑗) = 1, for  𝑗 = 1,2,⋯ ,𝑁. 

2) Induction stage 

𝛽𝑘(𝑗) = 𝑃(𝑌𝑘+1 = 𝑦𝑘+1,⋯ , 𝑌𝐾 = 𝑦𝐾|𝑋𝑘 = 𝑗, 𝜆) 

𝛽𝑘(𝑗) = ∑ 𝑏𝑖(𝑦𝑘+1)𝛽𝑘+1(𝑗)𝑎𝑗𝑖
𝑁
𝑖=1 , for  𝑗 = 1,2,⋯ ,𝑁 and 𝑘 = 𝐾 − 1,𝐾 − 2,⋯ ,2,1.  

3) Termination stage 

𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾|𝜆) = ∑ 𝜋𝑗𝑏𝑗(𝑦1)𝛽1(𝑗)
𝑁
𝑗=1 . 

Forward and backward algorithms produce probability of observation sequence as follows 

𝐿𝐾 = 𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾|𝜆) 

𝐿𝐾 = ∑ 𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 , 𝑋𝑘 = 𝑗|𝜆)𝑁
𝑗=1   

𝐿𝐾 = ∑ 𝛼𝑘(𝑗)𝛽𝑘(𝑗)
𝑁
𝑗=1 , for  𝑘 = 1,2,⋯ ,𝐾.                  (3) 
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2.3 Veterbi Algorithm 

The selection of hidden state sequence 𝑥1, 𝑥2,⋯ , 𝑥𝐾 in order to optimize the probability of hidden state 

is done by using Veterbi algorithm. Defined variables 

𝛿𝑘(𝑗) = max
𝑥1,⋯,𝑥𝑘−1

𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝑘 = 𝑦𝑘 , 𝑋1 = 𝑥1, ⋯ , 𝑋𝑘 = 𝑗|𝜆) 

𝛿𝑘(𝑗) = ( max
𝑖=1,2,⋯,𝑁

𝛿𝑘−1(𝑖)𝑎𝑖𝑗) 𝑏𝑗(𝑦𝑘), for 𝑘 = 1,2,⋯ ,𝐾. 

The Veterbi algorithm consists of four stages: 

1) Initialization stage 

𝛿1(𝑗) = 𝑃(𝑌1 = 𝑦1, 𝑋1 = 𝑗) 

𝛿1(𝑗) = 𝑃(𝑌1 = 𝑦1|𝑋1 = 𝑗)𝑃(𝑋1 = 𝑗) 

𝛿1(𝑗) = 𝜋𝑗𝑏𝑗(𝑦1), 

𝜓1(𝑗) = arg max
𝑖=1,2,⋯,𝑁

𝛿0(𝑖) 𝑎𝑖𝑗 

𝜓1(𝑗) = ∅. 

2) Recursion stage 

𝛿𝑘(𝑗)  = 𝑏𝑗(𝑦𝑘) max
1≤𝑖≤𝑁

{𝑎𝑖𝑗𝛿𝑘−1(𝑖)}, 

𝜓𝑘(𝑗) = arg max
1≤𝑖≤𝑁

{𝑎𝑖𝑗𝛿𝑘−1(𝑖)}, for 𝑘 = 2,3,⋯ ,𝐾 − 1. 

3) Termination stage 

𝑃∗       = max
1≤𝑖≤𝑁

{𝛿𝐾(𝑖)}, 

𝑥𝐾
∗     = arg max

1≤𝑖≤𝑁
{𝛿𝐾(𝑖)}. 

4) Backtracking stage 

𝑥𝑘
∗     = 𝜓𝑘+1(𝑥𝑘+1

∗), for 𝑘 = 𝐾 − 1,𝐾 − 2,⋯2,1. 

The backtracking stage allows the optimal hidden state sequence to be found from the last point that is stored 

at the recursion stage. 

2.4 Baum-Welch Algorithm 

The problem that must be solved on the third problem is to obtain the best model that can explain an 

observation sequence 𝑦1, 𝑦2, ⋯ , 𝑦𝐾. To solve this last problem, the Baum-Welch algorithm is used. 

Estimation problems are solved by the Maximum Likelihood (ML) method. 

Defined likelihood function  

ℒ(𝜆|𝑌1 = 𝑦1, 𝑌2 = 𝑦2, ⋯ , 𝑌𝐾 = 𝑦𝐾) = 𝑃(𝑌1 = 𝑦1, 𝑌2 = 𝑦2, ⋯ , 𝑌𝐾 = 𝑦𝐾|𝜆) 
and 

�̂�𝑀𝐿 = argmax
𝜆

𝑃(𝑌1 = 𝑦1, 𝑌2 = 𝑦2, ⋯ , 𝑌𝐾 = 𝑦𝐾|𝜆). 

Finding �̂�𝑀𝐿 cannot be done analytically. Hence, the numerical recursive method of Expectation Maximiza-

tion (EM) is used. An initial value 

𝜆 = (𝑨,𝑩, 𝝅) 

is given as the characteristic of the hidden Markov model by using Mendel’s law. Then, we find the new 

estimation model parameter namely �̂�. Furthermore, the �̂� model can be said to be a better model then the 𝜆 

model if it fulfills 

𝑃(𝑌1 = 𝑦1, 𝑌2 = 𝑦2, ⋯ , 𝑌𝐾 = 𝑦𝐾|�̂�) ≥ 𝑃(𝑌1 = 𝑦1, 𝑌2 = 𝑦2, ⋯ , 𝑌𝐾 = 𝑦𝐾|𝜆). 

If this process is done repeatedly using �̂� as 𝜆 for the new process, then the better probability value 𝑌1 =

𝑦1, 𝑌2 = 𝑦2, ⋯ , 𝑌𝐾 = 𝑦𝐾 can be determined. The process is carried out until �̂�, which maximizes probabilities 
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𝑌1 = 𝑦1, 𝑌2 = 𝑦2, ⋯ , 𝑌𝐾 = 𝑦𝐾, is obtained. The final result of re-estimating the parameters of the hidden 

Markov model is called the ML estimator. 

The formula to re-estimate the parameters of the model is obtained by maximizing Baum-Welch’s 

function 

𝒬(𝜆, �̂�) = ∑ 𝑃(𝑋1 = 𝑥1,⋯ , 𝑋𝐾 = 𝑥𝐾|𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 , 𝜆)𝑥   

log[𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 , 𝑋1 = 𝑥1, ⋯ , 𝑋𝐾 = 𝑥𝐾|�̂�)]. 

Maximizing Baum-Welch’s function can cause an increase in the likelihood function, namely 

max
𝜆

[𝒬(𝜆, �̂�)] →𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾|�̂�) ≥ 𝑃(𝑌1 = 𝑦1,⋯ , 𝑌𝐾 = 𝑦𝐾|𝜆). 

The sequence {𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾|�̂�)} is obtained so that it converges to a local maximum point. The 

formula to re-estimate the next parameters model can be expressed as an implementation of the EM algorithm. 

Start : given an estimator 𝜆 = (𝑨,𝑩,𝝅),  

Step E : calculate the value 

 : 𝒬(𝜆, �̂�) = ∑ 𝑃(𝑋1 = 𝑥1,⋯ , 𝑋𝐾 = 𝑥𝐾|𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 , 𝜆)𝑥   

 log[𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 , 𝑋1 = 𝑥1,⋯ , 𝑋𝐾 = 𝑥𝐾|�̂�)], 

Step M : determine 

 : �̂�𝑀𝐿 = argmax
𝜆

[𝒬(𝜆, �̂�)] →𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾|�̂�) ≥ 𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾|𝜆). 

If the sequence {𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾|�̂�)} converges to a local maximum point, then it is done. Otherwise, 

�̂� is replaced with 𝜆, then step E is repeated, and so on. Beside that, it is worth to note that in each iteration, 

there are conditions that must be fulfilled by the parameters of the new hidden Markov model, namely 

∑ �̂�𝑖𝑗 = 1𝑁
𝑗=1 , ∑ �̂�𝑖 = 1𝑁

𝑖=1 , and ∑ �̂�𝑖(𝑗)
𝑁
𝑗=1 = 1 for 𝑖 = 1,2,⋯ ,𝑁.  (4) 

Looking at the estimation problem as an optimization constraint function of 𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 =
𝑦𝐾|𝜆), the Lagrange multiplication technique can be a solution to find the value of 𝜆 = (𝑨,𝑩,𝝅) that 

maximizes 𝑃(𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾|𝜆). Based on the standard form of Lagrange optimization, Equation (4) 

is a constraint function and Equation 𝒬(𝜆, �̂�) is a maximized objective function. Defined variables  

𝜉𝑘(𝑖, 𝑗) = 𝑃(𝑋𝑘 = 𝑖, 𝑋𝑘+1 = 𝑗|𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 , 𝜆)    (5) 

for 𝑖, 𝑗 = 1,2,⋯ ,𝑁 and 𝑘 = 1,2,⋯ ,𝐾, is probability of 𝑖 state at 𝑘 time and 𝑗 state at 𝑘 + 1 time. If the 𝜆 

model and observation sequence is given, by using Equation (1), Equation (2), Equation (3), and Equation 

(5), can be obtained 

𝜉𝑘(𝑖, 𝑗) =
𝛼𝑘(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑦𝑘+1)𝛽𝑘+1(𝑗)

∑ 𝛼𝑘(𝑗)𝛽𝑘(𝑗)
𝑁
𝑗=1

. 

Defined variables 

𝛾𝑘(𝑖) = 𝑃(𝑋𝑘 = 𝑖|𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 , 𝜆) 

for 𝑘 = 1,2,⋯ ,𝐾, is probability of 𝑖 state at 𝑘 time if given an observation sequence 𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 

and 𝜆 model, so can be obtained 

𝛾𝑘(𝑖) = 𝑃(𝑋𝑘 = 𝑖|𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 , 𝜆) 

=
𝛼𝑘(𝑖)𝛽𝑘(𝑖)

∑ 𝛼𝑘(𝑖)𝛽𝑘(𝑖)𝑁
𝑖=1

. 

Then, the relationship between 𝜉𝑘(𝑖, 𝑗) and 𝛾𝑘(𝑖) is obtained by summing up 𝜉𝑘(𝑖, 𝑗) for each 𝑗 as follows: 

𝛾𝑘(𝑖) = 𝑃(𝑋𝑘 = 𝑖|𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 , 𝜆) 

= ∑ 𝜉𝑘(𝑖, 𝑗)𝑁
𝑗=1 , 
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for 𝑖 = 1,2,⋯ ,𝑁 and 𝑘 = 1,2,⋯ ,𝐾. Summing up 𝜉𝑘(𝑖, 𝑗) on 1 ≤ 𝑘 ≤ 𝐾 − 1 produces the probability value 

of moving 𝑖 state to 𝑗 state until 𝐾 − 1 time, as follows: 

∑ 𝜉𝑘(𝑖, 𝑗)𝐾−1
𝑘=1 = ∑ 𝑃(𝑋𝑘 = 𝑖, 𝑋𝑘+1 = 𝑗|𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 , 𝜆)𝐾−1

𝑘=1 . 

Summing up 𝛾𝑘(𝑖) on 1 ≤ 𝑘 ≤ 𝐾 − 1 produces the probability value at 𝑖 state until 𝐾 − 1 time, as follows: 

∑ 𝛾𝑘(𝑖)𝐾−1
𝑘=1 = ∑ 𝑃(𝑋𝑘 = 𝑖|𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 , 𝜆)𝐾−1

𝑘=1 . 

The formula to re-estimate the parameters of the hidden Markov model is as follows:  

�̂�𝑖 = the probability value in 𝑖 state at 𝑘 = 1 time 

�̂�𝑖 = 𝑃(𝑋1 = 𝑖|𝑌1 = 𝑦1, ⋯ , 𝑌𝐾 = 𝑦𝐾 , 𝜆) 

�̂�𝑖 = 𝛾1(𝑖),  for 𝑖 = 1,2,⋯ ,𝑁. 

�̂�𝑖𝑗 =
the transition probability of 𝑖 state to 𝑗 state until 𝐾 − 1 time 

the probability value in 𝑖 state until 𝐾 − 1 time
 

�̂�𝑖𝑗 =
∑ 𝜉𝑘(𝑖, 𝑗)𝐾−1

𝑘=1

∑ 𝛾𝑘(𝑖)𝐾−1
𝑘=1

, , , for 𝑖 = 1,2,⋯ , 𝑁 and 𝑗 = 1,2,⋯ ,𝐾. 

�̂�𝑖(𝑗) =
the probability of appearance 𝑋𝑘 = 𝑖 and 𝑌𝑘 = 𝑗  until 𝐾 time 

the probability value in 𝑖 state until 𝐾 time
 

�̂�𝑖(𝑗) =
∑ 𝛾𝑘(𝑖)𝐾

𝑘=1,,𝑠.𝑡 𝑦𝑘=𝑗

∑ 𝛾𝑘(𝑖)𝐾
𝑘=1

. 

 

3. RESULTS AND DISCUSSION 

3.1 Mendel’s Law 

Gregor Mendel developed the theory of inheritance by experimenting with various varieties, which for 

several generations carried out self-fertilization and only produced the same variety as its parent plant. Plants 

that have these properties are called true breeding. In his experiments, Mendel crossed two contradicting 

variations of true breeding in peas. The crossing of two true-breeding varieties is called hybridization. The 

true-breeding parent is called a parental generation (𝑃 generation), hybrid offspring is called the first filial 

generation (𝐹1 generation), and the offspring produced from self-fertilization 𝐹1 hybrids are called the second 

filial generation (𝐹2 generation). Mendel concluded the result of quantitative analysis of 𝐹2, which has 

become the fundamental principle of heredity known as segregation law and free sorting law. 

He describes four concepts used to develop a model that explains the pattern of trait inheritance. First, 

alternative versions of genes (alleles) cause variations in inherited characters. For example, at the color locus 

of the peas flower, there are alleles of purple flowers and alleles of white flowers. Second, for each character, 

the organism inherits two alleles, one from each parent. Every somatic cell in a diploid organism has two set 

of chromosomes, one set inherited from each parent. Third, if the two alleles at a locus are different, then one 

of them is the dominant allele that determines the organism’s appearance, and the other is the recessive allele 

that has no visible effect on the appearance of the organism. Fourth, at the same time, the law of segregation 

from Mendel state that two alleles for an inherited character segregate during gametes formation, and 

eventually, it is at the different gametes. 

Organisms that have a pair of identical alleles for a character are called homozygotes. Meanwhile, 

organisms with two different alleles for a character are called heterozygotes. The characteristics of an 

organism do not always reveal its genetic composition. Therefore, the appearance of the observed trait in the 

organism, namely the phenotype, can be distinguished from its genetic structure, namely the genotype. 

Individuals that are heterozygotes only for one character are called monohybrids, and crosses between 

heterozygotes are called monohybrid crosses. Likewise, individuals that heterozygotes for two characters are 

dihybrids, while three characters are called trihybrids. The results of Mendel’s dihybrid experiments are the 

basis of the free sorting law which states that each pair of alleles segregates freely against other alleles during 

gamete formation [1]. 
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3.1.1 Monohybrid Crosses 

𝑃1 :   𝐴𝐴  ×   𝑎𝑎 

𝐹1 :          𝐴𝑎 

𝑃2 :    𝐴𝑎  ×   𝐴𝑎 

Gamete : (𝐴, 𝑎)    (𝐴, 𝑎) 

Table 1. The Second Filial Generation of Monohybrid Crosses 

 

 

 

 

The random variable 𝑋𝑘 is the 𝑘𝑡ℎ progenic genotype and {𝑋𝑘} is a Markov chain with state space  

𝑆𝑋 = {𝐴𝐴, 𝐴𝑎, 𝑎𝑎}.  

The random variable 𝑌𝑘 is the 𝑘𝑡ℎ progenic phenotype and {𝑌𝑘} is an observation process with state 

space        𝑆𝑌 = {𝐴, 𝑎}.  

The observation 𝑌𝑘 is influenced by 𝑋𝑘, while 𝑋𝑘 is influenced by 𝑋𝑘−1. Figure 2 shows this 

relationship for a case when the observation (phenotype) sequence is 𝐴, 𝐴,⋯ , 𝐴. 

 

Figure 2. Hidden Markov Model of Monohybrid Crosses 

Based on Figure 2 it is known that in the first generation, there is dominant phenotype 𝐴 and 

heterozygote genotype 𝐴𝑎. The second generation has dominant phenotype 𝐴, but its genotype is unknown 

whether it is heterozygote 𝐴𝑎 or homozygote 𝐴𝐴. This happens until 𝑘𝑡ℎ generation. 

The characteristic of hidden Markov model for monohybrid crosses are as follows: 

1) The determination of matrix 𝑨 

The first is determining matrix 𝑨 = (𝑎𝑖𝑗)𝑁×𝑁
. The dimensions of matrix 𝑨 is determined by the number 

of state space 𝑆𝑋, that is 𝑁 = 3. Then, 𝑎𝑖𝑗 represents a conditional probability of genotype 𝑗 with genotype 

𝑖 given. Index 𝑖 represents a genotype of an organism at 𝑘 + 1 time, while index 𝑗 represents genotype of 

an organism at 𝑘 time. Matrix 𝑨 is obtained by using Mendel’s law (Table 2). 

Table 2. The Mendel’s Law of Monohybrid Crosses 

𝑨𝑨 
× 

𝑨𝑨 

(𝐴) (𝐴) 

𝐴𝐴 100% 

𝑎𝐴𝐴,𝑗 = [1 0 0] 

𝑨𝒂 
× 

𝑨𝒂 

(𝐴, 𝑎) (𝐴, 𝑎) 

𝐴𝐴 (
1

4
), 𝐴𝑎 (

1

2
), 𝑎𝑎 (

1

4
) 

𝑎𝐴𝑎,𝑗 = [
1

4

1

2

1

4
]  

𝒂𝒂 
× 

𝒂𝒂 

(𝑎) (𝑎) 

𝑎𝑎 100% 

𝑎𝑎𝑎,𝑗 = [0 0 1] 

So, we have the transition probability matrix as follows: 

𝑨 = [

𝑎𝐴𝐴,𝐴𝐴 𝑎𝐴𝐴,𝐴𝑎 𝑎𝐴𝐴,𝑎𝑎

𝑎𝐴𝑎,𝐴𝐴 𝑎𝐴𝑎,𝐴𝑎 𝑎𝐴𝑎,𝑎𝑎

𝑎𝑎𝑎,𝐴𝐴 𝑎𝑎𝑎,𝐴𝑎 𝑎𝑎𝑎,𝑎𝑎

] = [
1 0 0
1

4

1

2

1

4

0 0 1

]. 

2) The determination of matrix 𝑩 

The second characteristic is determining matrix 𝑩 = (𝑏𝑖(𝑗))𝑁×𝑀
. The dimensions of matrix 𝑩 is deter-

mined by the number of state space 𝑆𝑋 and 𝑆𝑌, that is 𝑁 = 3 and 𝑀 = 2. Then, 𝑏𝑖(𝑗) represents a 

conditional probability of phenotype 𝑗 with genotype 𝑖 given. Index 𝑖 represents a genotype of an organism 

at 𝑘 time while index 𝑗 represents phenotype of an organism at the same time. The first column in matrix 

𝑩 tells that type 𝐴𝐴 and 𝐴𝑎 of genotype will be observed as phenotype type 𝐴, whereas the second column 

 𝑨 𝒂 

𝑨 𝐴𝐴 𝐴𝑎 

𝒂 𝐴𝑎 𝑎𝑎 
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tells that type 𝑎𝑎 of genotype will be observed as phenotype type 𝑎. Thus, we have obtained the emission 

probability matrix as follows: 

𝑩 = [

𝑏𝐴𝐴(𝐴) 𝑏𝐴𝐴(𝑎)

𝑏𝐴𝑎(𝐴) 𝑏𝐴𝑎(𝑎)

𝑏𝑎𝑎(𝐴) 𝑏𝑎𝑎(𝑎)
] = [

1 0
1 0
0 1

]. 

 

3) The determination of matrix 𝝅 

The third is determining matrix 𝝅 = (𝜋𝑖)𝑁×1. The dimensions of matrix 𝜋 is determined by the number 

of state space 𝑆𝑋, that is 𝑁 = 3. Then, 𝜋𝑖 represents an initial probability of genotype 𝑖. Index 𝑖 represents 

a genotype of an organism at an initial time. Since Mendel started with a founder population of hetero-

zygote plants, the initial value of 𝜋𝑖 is zero to homozygote plants and one to heterozygote plants. Hence, 

we have obtained the initializing parameter of matrix 𝝅 for monohybrid crosses, which is as follows: 

𝜋 = [

𝜋𝐴𝐴

𝜋𝐴𝑎

𝜋𝑎𝑎

] = [
0
1
0
]. 

3.1.2 Dihybrid Crosses 

𝑃1 :           𝐴𝐴𝐵𝐵        ×           𝑎𝑎𝑏𝑏 

𝐹1 :   𝐴𝑎𝐵𝑏 

𝑃2 :           𝐴𝑎𝐵𝑏         ×           𝐴𝑎𝐵𝑏 

Gamete : (𝐴𝐵, 𝐴𝑏, 𝑎𝐵, 𝑎𝑏)    (𝐴𝐵, 𝐴𝑏, 𝑎𝐵, 𝑎𝑏) 

Table 3. The Second Filial Generation of Dihybrid Crosses 

           

 
 
 

 

 

The random variable 𝑋𝑘 is the 𝑘𝑡ℎ progenic genotype and {𝑋𝑘} is a Markov chain with state space  

                              𝑆𝑋 = {𝐴𝐴𝐵𝐵, 𝐴𝑎𝐵𝐵, 𝑎𝑎𝐵𝐵, 𝐴𝐴𝐵𝑏, 𝐴𝑎𝐵𝑏, 𝑎𝑎𝐵𝑏, 𝐴𝐴𝑏𝑏, 𝐴𝑎𝑏𝑏, 𝑎𝑎𝑏𝑏}.  

The random variable 𝑌𝑘 is the 𝑘𝑡ℎ progenic phenotype and {𝑌𝑘} is an observation process with state space     

  𝑆𝑌 = {𝐴𝐵, 𝐴𝑏, 𝑎𝐵, 𝑎𝑏}.  

The observation 𝑌𝑘 is influenced by 𝑋𝑘, while 𝑋𝑘 is influenced by 𝑋𝑘−1. Figure 3 shows this 

relationship for a case when the observation (phenotype) sequence is 𝐴𝐵, 𝐴𝐵,⋯ , 𝐴𝐵. 

 
Figure 3. Hidden Markov Model of Dihybrid Crosses 

Based on Figure 3 it is known that in the first generation, there is dominant phenotype 𝐴𝐵 and 

heterozygote genotype 𝐴𝑎𝐵𝑏. The second generation has dominant phenotype 𝐴𝐵, but its genotype is 

unknown whether it is heterozygote 𝐴𝑎𝐵𝐵, 𝐴𝐴𝐵𝑏, 𝐴𝑎𝐵𝑏 or homozygote 𝐴𝐴𝐵𝐵. This happens until 𝑘𝑡ℎ 

generation. The initializing parameters of the hidden Markov model on dihybrid crosses can be obtained in 

the same way with monohybrid crosses. So, we have the initializing parameters as follows: 

 𝑨𝑩 𝑨𝒃 𝒂𝑩 𝒂𝒃 

𝑨𝑩 𝐴𝐴𝐵𝐵 𝐴𝐴𝐵𝑏 𝐴𝑎𝐵𝐵 𝐴𝑎𝐵𝑏 

𝑨𝒃 𝐴𝐴𝐵𝑏 𝐴𝐴𝑏𝑏 𝐴𝑎𝐵𝑏 𝐴𝑎𝑏𝑏 

𝒂𝑩 𝐴𝑎𝐵𝐵 𝐴𝑎𝐵𝑏 𝑎𝑎𝐵𝐵 𝑎𝑎𝐵𝑏 

𝒂𝒃 𝐴𝑎𝐵𝑏 𝐴𝑎𝑏𝑏 𝑎𝑎𝐵𝑏 𝑎𝑎𝑏𝑏 
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𝑨 =

[
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0
1
4

1
2

1
4

0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
1
4

0 0 1
2

0 0 1
4

0 0
1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

0 0 1
4

0 0 1
2

0 0 1
4

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1

4
1
2

1
4

0 0 0 0 0 0 0 0 1]
 
 
 
 
 
 
 
 
 

, 𝑩 =

[
 
 
 
 
 
 
 
 
1 0 0 0
1 0 0 0
0 0 1 0
1 0 0 0
1 0 0 0
0 0 1 0
0 1 0 0
0 1 0 0
0 0 0 1]

 
 
 
 
 
 
 
 

  and  𝝅 =

[
 
 
 
 
 
 
 
 
0
0
0
0
1
0
0
0
0]
 
 
 
 
 
 
 
 

. 

3.1.3 Trihybrid Crosses 

𝑃1 :                               𝐴𝐴𝐵𝐵𝐶𝐶                               ×                                 𝑎𝑎𝑏𝑏𝑐𝑐  

𝐹1 :                                                                          𝐴𝑎𝐵𝑏𝐶𝑐 

𝑃2 :                               𝐴𝑎𝐵𝑏𝐶𝑐                                 ×                                 𝐴𝑎𝐵𝑏𝐶𝑐 

Gamete : (𝐴𝐵𝐶, 𝐴𝐵𝑐, 𝐴𝑏𝐶, 𝐴𝑏𝑐, 𝑎𝐵𝐶, 𝑎𝐵𝑐, 𝑎𝑏𝐶, 𝑎𝑏𝑐)    (𝐴𝐵𝐶, 𝐴𝐵𝑐, 𝐴𝑏𝐶, 𝐴𝑏𝑐, 𝑎𝐵𝐶, 𝑎𝐵𝑐, 𝑎𝑏𝐶, 𝑎𝑏𝑐) 

Table 4. The Second Filial Generation of Trihybrid Crosses 

 

 

 

 
 
 
 
 
 
 

The random variable 𝑋𝑘 is the 𝑘𝑡ℎ progenic genotype and {𝑋𝑘} is a Markov chain with state space 

 𝑆𝑋 = {𝐴𝐴𝐵𝐵𝐶𝐶, 𝐴𝐴𝐵𝐵𝐶𝑐, 𝐴𝐴𝐵𝐵𝑐𝑐, 𝐴𝐴𝐵𝑏𝐶𝐶, 𝐴𝐴𝐵𝑏𝐶𝑐, 𝐴𝐴𝐵𝑏𝑐𝑐, 𝐴𝐴𝑏𝑏𝐶𝐶, 𝐴𝐴𝑏𝑏𝐶𝑐, 𝐴𝐴𝑏𝑏𝑐𝑐, 

     𝐴𝑎𝐵𝐵𝐶𝐶, 𝐴𝑎𝐵𝐵𝐶𝑐, 𝐴𝑎𝐵𝐵𝑐𝑐, 𝐴𝑎𝐵𝑏𝐶𝐶, 𝐴𝑎𝐵𝑏𝐶𝑐, 𝐴𝑎𝐵𝑏𝑐𝑐, 𝐴𝑎𝑏𝑏𝐶𝐶, 𝐴𝑎𝑏𝑏𝐶𝑐, 𝐴𝑎𝑏𝑏𝑐𝑐, 

    𝑎𝑎𝐵𝐵𝐶𝐶, 𝑎𝑎𝐵𝐵𝐶𝑐, 𝑎𝑎𝐵𝐵𝑐𝑐, 𝑎𝑎𝐵𝑏𝐶𝐶, 𝑎𝑎𝐵𝑏𝐶𝑐, 𝑎𝑎𝐵𝑏𝑐𝑐, 𝑎𝑎𝑏𝑏𝐶𝐶, 𝑎𝑎𝑏𝑏𝐶𝑐, 𝑎𝑎𝑏𝑏𝑐𝑐}. 

The random variable 𝑌𝑘 is the 𝑘𝑡ℎ progenic phenotype and {𝑌𝑘} is an observation process with state space     

 𝑆𝑌 = {𝐴𝐵𝐶, 𝐴𝐵𝑐, 𝐴𝑏𝐶, 𝐴𝑏𝑐, 𝑎𝐵𝐶, 𝑎𝐵𝑐, 𝑎𝑏𝐶, 𝑎𝑏𝑐}. 

The observation 𝑌𝑘 is influenced by 𝑋𝑘, while 𝑋𝑘 is influenced by 𝑋𝑘−1. Figure 4 shows this 

relationship for a case when the observation (phenotype) sequence is 𝐴𝐵𝐶, 𝐴𝐵𝐶,⋯ , 𝐴𝐵𝐶. 

 
Figure 4. Hidden Markov Model of Trihybrid Crosses 

Based on Figure 4 it is known that in the first generation, there is dominant phenotype 𝐴𝐵𝐶 and 

heterozygote genotype 𝐴𝑎𝐵𝑏𝐶𝑐. The second generation has dominant phenotype 𝐴𝐵𝐶, but its genotype is 

unknown whether it is heterozygote 𝐴𝐴𝐵𝐵𝐶𝑐, 𝐴𝐴𝐵𝑏𝐶𝐶, 𝐴𝐴𝐵𝑏𝐶𝑐, 𝐴𝑎𝐵𝐵𝐶𝐶, 𝐴𝑎𝐵𝐵𝐶𝑐, 𝐴𝑎𝐵𝑏𝐶𝐶, 𝐴𝑎𝐵𝑏𝐶𝑐 

or homozygote 𝐴𝐴𝐵𝐵𝐶𝐶. This happens until 𝑘𝑡ℎ generation. The initializing parameters of the hidden 

Markov model on trihybrid crosses can be obtained in the same way with monohybrid crosses. So, we have 

the initializing parameters as follows: 

 𝑨𝑩𝑪 𝑨𝑩𝒄 𝑨𝒃𝑪 𝑨𝒃𝒄 𝒂𝑩𝑪 𝒂𝑩𝒄 𝒂𝒃𝑪 𝒂𝒃𝒄 

𝑨𝑩𝑪 𝐴𝐴𝐵𝐵𝐶𝐶 𝐴𝐴𝐵𝐵𝐶𝑐 𝐴𝐴𝐵𝑏𝐶𝐶 𝐴𝐴𝐵𝑏𝐶𝑐 𝐴𝑎𝐵𝐵𝐶𝐶 𝐴𝑎𝐵𝐵𝐶𝑐 𝐴𝑎𝐵𝑏𝐶𝐶 𝐴𝑎𝐵𝑏𝐶𝑐 

𝑨𝑩𝒄 𝐴𝐴𝐵𝐵𝐶𝑐 𝐴𝐴𝐵𝐵𝑐𝑐 𝐴𝐴𝐵𝑏𝐶𝑐 𝐴𝐴𝐵𝑏𝑐𝑐 𝐴𝑎𝐵𝐵𝐶𝑐 𝐴𝑎𝐵𝐵𝑐𝑐 𝐴𝑎𝐵𝑏𝐶𝑐 𝐴𝑎𝐵𝑏𝑐𝑐 

𝑨𝒃𝑪 𝐴𝐴𝐵𝑏𝐶𝐶 𝐴𝐴𝐵𝑏𝐶𝑐 𝐴𝐴𝑏𝑏𝐶𝐶 𝐴𝐴𝑏𝑏𝐶𝑐 𝐴𝑎𝐵𝑏𝐶𝐶 𝐴𝑎𝐵𝑏𝐶𝑐 𝐴𝑎𝑏𝑏𝐶𝐶 𝐴𝑎𝑏𝑏𝐶𝑐 

𝑨𝒃𝒄 𝐴𝐴𝐵𝑏𝐶𝑐 𝐴𝐴𝐵𝑏𝑐𝑐 𝐴𝐴𝑏𝑏𝐶𝑐 𝐴𝐴𝑏𝑏𝑐𝑐 𝐴𝑎𝐵𝑏𝐶𝑐 𝐴𝑎𝐵𝑏𝑐𝑐 𝐴𝑎𝑏𝑏𝐶𝑐 𝐴𝑎𝑏𝑏𝑐𝑐 

𝒂𝑩𝑪 𝐴𝑎𝐵𝐵𝐶𝐶 𝐴𝑎𝐵𝐵𝐶𝑐 𝐴𝑎𝐵𝑏𝐶𝐶 𝐴𝑎𝐵𝑏𝐶𝑐 𝑎𝑎𝐵𝐵𝐶𝐶 𝑎𝑎𝐵𝐵𝐶𝑐 𝑎𝑎𝐵𝑏𝐶𝐶 𝑎𝑎𝐵𝑏𝐶𝑐 

𝒂𝑩𝒄 𝐴𝑎𝐵𝐵𝐶𝑐 𝐴𝑎𝐵𝐵𝑐𝑐 𝐴𝑎𝐵𝑏𝐶𝑐 𝐴𝑎𝐵𝑏𝑐𝑐 𝑎𝑎𝐵𝐵𝐶𝑐 𝑎𝑎𝐵𝐵𝑐𝑐 𝑎𝑎𝐵𝑏𝐶𝑐 𝑎𝑎𝐵𝑏𝑐𝑐 

𝒂𝒃𝑪 𝐴𝑎𝐵𝑏𝐶𝐶 𝐴𝑎𝐵𝑏𝐶𝑐 𝐴𝑎𝑏𝑏𝐶𝐶 𝐴𝑎𝑏𝑏𝐶𝑐 𝑎𝑎𝐵𝑏𝐶𝐶 𝑎𝑎𝐵𝑏𝐶𝑐 𝑎𝑎𝑏𝑏𝐶𝐶 𝑎𝑎𝑏𝑏𝐶𝑐 

𝒂𝒃𝒄 𝐴𝑎𝐵𝑏𝐶𝑐 𝐴𝑎𝐵𝑏𝑐𝑐 𝐴𝑎𝑏𝑏𝐶𝑐 𝐴𝑎𝑏𝑏𝑐𝑐 𝑎𝑎𝐵𝑏𝐶𝑐 𝑎𝑎𝐵𝑏𝑐𝑐 𝑎𝑎𝑏𝑏𝐶𝑐 𝑎𝑎𝑏𝑏𝑐𝑐 
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𝑨 = [

𝑨𝟏 𝟎 𝟎
𝑨𝟐 𝑨𝟑 𝑨𝟐

𝟎 𝟎 𝑨𝟏

] , 𝑩 = [

𝑩𝟏

𝑩𝟏

𝑩𝟐

]  and 𝝅 = [
𝟎
𝝅𝟏

𝟎
] with 

𝑨𝟏 =

[
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0
1
4

1
2

1
4 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
1
4 0 0 1

2 0 0 1
4 0 0

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

0 0 1
4 0 0 1

2 0 0 1
4

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1

4
1
2

1
4

0 0 0 0 0 0 0 0 1]
 
 
 
 
 
 
 
 
 

, 𝑨𝟐 =

[
 
 
 
 
 
 
 
 
 

1
4 0 0 0 0 0 0 0 0
1
16

1
8

1
16 0 0 0 0 0 0

0 0 1
4 0 0 0 0 0 0

1
16 0 0 1

8 0 0 1
16 0 0

1
64

1
32

1
64

1
32

1
16

1
32

1
64

1
32

1
64

0 0 1
16 0 0 1

8 0 0 1
16

0 0 0 0 0 0 1
4 0 0

0 0 0 0 0 0 1
16

1
8

1
16

0 0 0 0 0 0 0 0 1
4 ]
 
 
 
 
 
 
 
 
 

,  

𝑨𝟑 =

[
 
 
 
 
 
 
 
 
 

1
2 0 0 0 0 0 0 0 0
1
8

1
4

1
8 0 0 0 0 0 0

0 0 1
2 0 0 0 0 0 0

1
8 0 0 1

4 0 0 1
8 0 0

1
32

1
16

1
32

1
16

1
8

1
16

1
32

1
16

1
32

0 0 1
8 0 0 1

4 0 0 1
8

0 0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 1
8

1
4

1
8

0 0 0 0 0 0 0 0 1
2 ]
 
 
 
 
 
 
 
 
 

, 𝑩𝟏 =

[
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0]

 
 
 
 
 
 
 
 

,  

𝑩𝟐 =

[
 
 
 
 
 
 
 
 
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 
 

  and  𝝅𝟏 =

[
 
 
 
 
 
 
 
 
0
0
0
0
1
0
0
0
0]
 
 
 
 
 
 
 
 

. 

Searching for the genotype, from generation to generation, is done to obtain good quality seeds 

(dominant homogenous of genotype). Although the phenotype that is planted in 𝑘𝑡ℎ generation is dominant, 

it is uncertain whether it is good quality seeds. The fewer generations that are necessary to be planted to 

obtain quality seeds, the better.  

3.2 True Breeding Generation in Diploid Plant Crosses 

Suppose the discrete hidden Markov model is applied to monohybrid, dihybrid and trihybrid crosses. 

With forward, backward, Veterbi and Baum-Welch algorithms, and 𝑨, 𝑩, and 𝝅 in Subsection 2.2, 2.3, and 

2.4 in Section 2 as initial values which are obtained by Mendel’s law, the conditional probability of 𝑃 =
(𝑌𝑘+1 = 𝑦𝑘+1|𝑌1 = 𝑦1, ⋯ , 𝑌𝑘 = 𝑦𝑘) and 𝑃 = (𝑋1 = 𝑥1,⋯ , 𝑋𝑘 = 𝑥𝑘|𝑌1 = 𝑦1, ⋯ , 𝑌𝑘 = 𝑦𝑘) can be calculated 

as follows: 

3.2.1 Monohybrid Crosses 

We have obtained the optimal value of �̂� = (�̂�, �̂�, �̂�) for monohybrid crosses over 2734 plants during 

twenty generations by using package Mathematica 11 software, as follows: 

�̂� = [
1 0 0

0.254892 0.49355 0.251558
0 0 1

] , �̂� = [
1 0
1 0
0 1

] ,  and  �̂� = [
0
1
0
]. 

Here, we have obtained the conditional probability 𝑃 = (𝑌𝑘+1 = 𝑦𝑘+1|𝑌1 = 𝑦1, ⋯ , 𝑌𝑘 = 𝑦𝑘) and 𝑃 =
(𝑋1 = 𝑥1,⋯ , 𝑋𝑘 = 𝑥𝑘|𝑌1 = 𝑦1, ⋯ , 𝑌𝑘 = 𝑦𝑘) on monohybrid crosses (Table 5). To simplify the notation, it 

is defined that 𝑌1
𝑛 = 𝐴 represents 𝑌1 = 𝐴, 𝑌2 = 𝐴,⋯ , 𝑌𝑛 = 𝐴 and 𝑋2

𝑛 = 𝐴𝐴 represents 𝑋2 = 𝐴𝐴, 𝑋3 =
𝐴𝐴,⋯ , 𝑋𝑛 = 𝐴𝐴. 
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Table 5. The Conditional Probability of Monohybrid Crosses 

Probability   Value   Probability     Value 

𝑃(𝑌2 = 𝐴|𝑌1 = 𝐴) 0.748442 𝑃(𝑋1 = 𝐴𝑎, 𝑋2 = 𝐴𝐴|𝑌1
2 = 𝐴) 0.340563 

𝑃(𝑌3 = 𝐴|𝑌1
2 = 𝐴) 0.834113 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

3 = 𝐴𝐴|𝑌1
3 = 𝐴) 0.408294 

𝑃(𝑌4 = 𝐴|𝑌1
3 = 𝐴) 0.901844 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

4 = 𝐴𝐴|𝑌1
4 = 𝐴) 0.452732 

𝑃(𝑌5 = 𝐴|𝑌1
4 = 𝐴) 0.946282 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

5 = 𝐴𝐴|𝑌1
5 = 𝐴) 0.478433 

𝑃(𝑌6 = 𝐴|𝑌1
5 = 𝐴) 0.971983 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

6 = 𝐴𝐴|𝑌1
6 = 𝐴) 0.492223 

𝑃(𝑌7 = 𝐴|𝑌1
6 = 𝐴) 0.985773 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

7 = 𝐴𝐴|𝑌1
7 = 𝐴) 0.499327 

𝑃(𝑌8 = 𝐴|𝑌1
7 = 𝐴) 0.992877 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

8 = 𝐴𝐴|𝑌1
8 = 𝐴) 0.502909 

𝑃(𝑌9 = 𝐴|𝑌1
8 = 𝐴) 0.996459 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

9 = 𝐴𝐴|𝑌1
9 = 𝐴) 0.504696 

𝑃(𝑌10 = 𝐴|𝑌1
9 = 𝐴) 0.998246 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

10 = 𝐴𝐴|𝑌1
10 = 𝐴) 0.505583 

𝑃(𝑌11 = 𝐴|𝑌1
10 = 𝐴)  0.999133 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

11 = 𝐴𝐴|𝑌1
11 = 𝐴) 0.506022 

𝑃(𝑌12 = 𝐴|𝑌1
11 = 𝐴)  0.999672 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

12 = 𝐴𝐴|𝑌1
12 = 𝐴) 0.506239 

𝑃(𝑌13 = 𝐴|𝑌1
12 = 𝐴) 0.999789 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

13 = 𝐴𝐴|𝑌1
13 = 𝐴) 0.506346 

𝑃(𝑌14 = 𝐴|𝑌1
13 = 𝐴) 0.999896 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

14 = 𝐴𝐴|𝑌1
14 = 𝐴) 0.506398 

𝑃(𝑌15 = 𝐴|𝑌1
14 = 𝐴) 0.999948 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

15 = 𝐴𝐴|𝑌1
15 = 𝐴) 0.506425 

𝑃(𝑌16 = 𝐴|𝑌1
15 = 𝐴) 0.999975 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

16 = 𝐴𝐴|𝑌1
16 = 𝐴) 0.506437 

𝑃(𝑌17 = 𝐴|𝑌1
16 = 𝐴) 0.999987 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

17 = 𝐴𝐴|𝑌1
17 = 𝐴) 0.506444 

𝑃(𝑌18 = 𝐴|𝑌1
17 = 𝐴) 0.999994 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

18 = 𝐴𝐴|𝑌1
18 = 𝐴) 0.506447 

𝑃(𝑌19 = 𝐴|𝑌1
18 = 𝐴) 0.999997 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

19 = 𝐴𝐴|𝑌1
19 = 𝐴) 0.506448 

𝑃(𝑌20 = 𝐴|𝑌1
19 = 𝐴) 0.999998 𝑃(𝑋1 = 𝐴𝑎, 𝑋2

20 = 𝐴𝐴|𝑌1
20 = 𝐴) 0.506449 

 

From Table 5, it is known that the seventh generation monohybrid crosses has the probability of a 

dominant phenotype of 99% but the probability of an optimal genotype is only 50%. With more generations 

of plants, the probability of the plants having a dominant phenotype and an optimal genotype is bigger. 

However, the increase is very slow.  

3.2.2 Dihybrid Crosses 

We have obtained the optimal value of �̂� = (�̂�, �̂�, �̂�) for dihybrid crosses over 2734 plants during 

twenty generations by using package Mathematica 11 software, as follows: 

�̂� = [

�̂�𝟏 𝟎 𝟎

�̂�𝟐 �̂�𝟑 �̂�𝟒

𝟎 𝟎 �̂�𝟓

] , �̂� = [

�̂�𝟏

�̂�𝟏

�̂�𝟐

]  and  �̂� = [
𝟎
�̂�𝟏

𝟎
] with 

�̂�𝟏 = [
1 0 0

0.274512 0.515042 0.210446
0 0 1

] , �̂�𝟐 = [
0.257295 0 0
0.066717 0.117863 0.065342

0 0 0.266882
], 

�̂�𝟑 = [
0.507058 0 0
0.12782 0.241037 0.125859

0 0 0.48594
] , �̂�𝟒 = [

0.235647 0 0
0.064249 0.132817 0.058296

0 0 0.247178
], 

�̂�𝟓 = [
1 0 0

0.241372 0.501032 0.257596
0 0 1

] , �̂�𝟏 = [
1 0 0 0
1 0 0 0
0 0 1 0

] , �̂�𝟐 = [
0 1 0 0
0 1 0 0
0 0 0 1

]  and �̂�𝟏 = [
0
1
0
]. 

Here, we have obtained the conditional probability 𝑃 = (𝑌𝑘+1 = 𝑦𝑘+1|𝑌1 = 𝑦1, ⋯ , 𝑌𝑘 = 𝑦𝑘) and 𝑃 =
(𝑋1 = 𝑥1,⋯ , 𝑋𝑘 = 𝑥𝑘|𝑌1 = 𝑦1, ⋯ , 𝑌𝑘 = 𝑦𝑘) on dihybrid crosses (Table 6). To simplify the notation, it is 

defined that 𝑌1
𝑛 = 𝐴𝐵 represents 𝑌1 = 𝐴𝐵, 𝑌2 = 𝐴𝐵,⋯ , 𝑌𝑛 = 𝐴𝐵 and 𝑋2

𝑛 = 𝐴𝐴𝐵𝐵 represents 𝑋2 =
𝐴𝐴𝐵𝐵, 𝑋3 = 𝐴𝐴𝐵𝐵,⋯ , 𝑋𝑛 = 𝐴𝐴𝐵𝐵. 

Table 6. The Conditional Probability of Dihybrid Crosses 

Probability   Value Probability   Value 

𝑃(𝑌2 = 𝐴𝐵|𝑌1 = 𝐴𝐵) 0.553437 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2 = 𝐴𝐴𝐵𝐵|𝑌1
2 = 𝐴𝐵) 0.120550 

𝑃(𝑌3 = 𝐴𝐵|𝑌1
2 = 𝐴𝐵) 0.706268 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

3 = 𝐴𝐴𝐵𝐵|𝑌1
3 = 𝐴𝐵) 0.170686 

𝑃(𝑌4 = 𝐴𝐵|𝑌1
3 = 𝐴𝐵) 0.827998 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

4 = 𝐴𝐴𝐵𝐵|𝑌1
4 = 𝐴𝐵) 0.206144 

𝑃(𝑌5 = 𝐴𝐵|𝑌1
4 = 𝐴𝐵) 0.905671 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

5 = 𝐴𝐴𝐵𝐵|𝑌1
5 = 𝐴𝐵) 0.227614 

𝑃(𝑌6 = 𝐴𝐵|𝑌1
5 = 𝐴𝐵) 0.949937 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

6 = 𝐴𝐴𝐵𝐵|𝑌1
6 = 𝐴𝐵) 0.239610 

𝑃(𝑌7 = 𝐴𝐵|𝑌1
6 = 𝐴𝐵) 0.973878 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

7 = 𝐴𝐴𝐵𝐵|𝑌1
7 = 𝐴𝐵) 0.246037 
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𝑃(𝑌8 = 𝐴𝐵|𝑌1
7 = 𝐴𝐵) 0.986496 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

8 = 𝐴𝐴𝐵𝐵|𝑌1
8 = 𝐴𝐵) 0.249405 

𝑃(𝑌9 = 𝐴𝐵|𝑌1
8 = 𝐴𝐵) 0.993056 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

9 = 𝐴𝐴𝐵𝐵|𝑌1
9 = 𝐴𝐵) 0.251149 

𝑃(𝑌10 = 𝐴𝐵|𝑌1
9 = 𝐴𝐵) 0.996440 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

10 = 𝐴𝐴𝐵𝐵|𝑌1
10 = 𝐴𝐵) 0.252046 

𝑃(𝑌11 = 𝐴𝐵|𝑌1
10 = 𝐴𝐵) 0.998178 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

11 = 𝐴𝐴𝐵𝐵|𝑌1
11 = 𝐴𝐵) 0.252506 

𝑃(𝑌12 = 𝐴𝐵|𝑌1
11 = 𝐴𝐵) 0.999068 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

12 = 𝐴𝐴𝐵𝐵|𝑌1
12 = 𝐴𝐵) 0.252742 

𝑃(𝑌13 = 𝐴𝐵|𝑌1
12 = 𝐴𝐵) 0.999524 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

13 = 𝐴𝐴𝐵𝐵|𝑌1
13 = 𝐴𝐵) 0.252862 

𝑃(𝑌14 = 𝐴𝐵|𝑌1
13 = 𝐴𝐵) 0.999756 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

14 = 𝐴𝐴𝐵𝐵|𝑌1
14 = 𝐴𝐵) 0.252924 

𝑃(𝑌15 = 𝐴𝐵|𝑌1
14 = 𝐴𝐵) 0.999876 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

15 = 𝐴𝐴𝐵𝐵|𝑌1
15 = 𝐴𝐵) 0.252956 

𝑃(𝑌16 = 𝐴𝐵|𝑌1
15 = 𝐴𝐵) 0.999936 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

16 = 𝐴𝐴𝐵𝐵|𝑌1
16 = 𝐴𝐵) 0.252972 

𝑃(𝑌17 = 𝐴𝐵|𝑌1
16 = 𝐴𝐵) 0.999967 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

17 = 𝐴𝐴𝐵𝐵|𝑌1
17 = 𝐴𝐵) 0.252980 

𝑃(𝑌18 = 𝐴𝐵|𝑌1
17 = 𝐴𝐵) 0.999983 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

18 = 𝐴𝐴𝐵𝐵|𝑌1
18 = 𝐴𝐵) 0.252984 

𝑃(𝑌19 = 𝐴𝐵|𝑌1
18 = 𝐴𝐵) 0.999992 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

19 = 𝐴𝐴𝐵𝐵|𝑌1
19 = 𝐴𝐵) 0.252986 

𝑃(𝑌20 = 𝐴𝐵|𝑌1
19 = 𝐴𝐵) 0.999996 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏, 𝑋2

20 = 𝐴𝐴𝐵𝐵|𝑌1
20 = 𝐴𝐵) 0.252987 

From Table 6, it is known that the eighth generation dihybrid crosses has the probability of a dominant 

phenotype of 99% but the probability of an optimal genotype is only 25%. With more generations of plants, 

the probability of the plants having a dominant phenotype and an optimal genotype is rising. However, the 

growth is slow-moving. 

3.2.3 Trihybrid Crosses 

We have obtained the optimal value of �̂� = (�̂�, �̂�, �̂�) for trihybrid crosses over 2734 plants during 

twenty generations by using package Mathematica 11 software, as follows: 

�̂� = [

�̂�𝟏 𝟎 𝟎

�̂�𝟐 �̂�𝟑 �̂�𝟒

𝟎 𝟎 �̂�𝟓

] , �̂� = [

�̂�𝟏

�̂�𝟏

�̂�𝟐

]  and  �̂� = [
𝟎
�̂�𝟏

𝟎
] with  �̂�𝟏 = [

�̂�𝟏𝟏 𝟎 𝟎

�̂�𝟏𝟐 �̂�𝟏𝟑 �̂�𝟏𝟒

𝟎 𝟎 �̂�𝟏𝟓

] , �̂�𝟐 = [

�̂�𝟐𝟏 𝟎 𝟎

�̂�𝟐𝟐 �̂�𝟐𝟑 �̂�𝟐𝟒

𝟎 𝟎 �̂�𝟐𝟓

], 

�̂�𝟑 = [

�̂�𝟑𝟏 𝟎 𝟎

�̂�𝟑𝟐 �̂�𝟑𝟑 �̂�𝟑𝟒

𝟎 𝟎 �̂�𝟑𝟓

] , �̂�𝟒 = [

�̂�𝟒𝟏 𝟎 𝟎

�̂�𝟒𝟐 �̂�𝟒𝟑 �̂�𝟒𝟒

𝟎 𝟎 �̂�𝟒𝟓

] , �̂�𝟓 = [

�̂�𝟓𝟏 𝟎 𝟎

�̂�𝟓𝟐 �̂�𝟓𝟑 �̂�𝟓𝟒

𝟎 𝟎 �̂�𝟓𝟓

] , �̂�𝟏 = [

�̂�𝟏𝟏

�̂�𝟏𝟏

�̂�𝟏𝟐

] , �̂�𝟐 = [

�̂�𝟐𝟏

�̂�𝟐𝟏

�̂�𝟐𝟐

], 

�̂�𝟏 = [
𝟎

�̂�𝟏𝟏

𝟎
] , �̂�𝟏𝟏 = [

1 0 0
0.241436 0.466738 0.291826

0 0 1
] , �̂�𝟏𝟐 = [

0.23068 0 0
0.0681 0.18086 0.048

0 0 0.265266
], 

�̂�𝟏𝟑 = [
0.415959 0 0
0.2438 0.13 0.11354

0 0 0.42853
], 

�̂�𝟏𝟓 = [
1 0 0

0.2602 0.42375 0.31605
0 0 1

], 

�̂�𝟐𝟐 = [
0.04922 0 0

0.0146097 0.0288199 0.0161306
0 0 0.07683

], 

�̂�𝟐𝟒 = [
0.0353531 0 0
0.0166043 0.036169 0.0150533

0 0 0.03124
], 

�̂�𝟑𝟏 = [
0.35587 0 0
0.201831 0.208235 0.121611

0 0 0.44262
], 

�̂�𝟑𝟑 = [
0.314799 0 0
0.0677946 0.115186 0.0623103

0 0 0.10961
], 

�̂�𝟑𝟓 = [
0.498554 0 0
0.11702 0.212 0.11109

0 0 0.56514
], 

�̂�𝟒𝟐 = [
0.02725 0 0

0.0189525 0.0294926 0.0146145
0 0 0.04226

], 

�̂�𝟏𝟒 = [
0.353361 0 0
0.0381 0.1046 0.073

0 0 0.306204
], 

�̂�𝟐𝟏 = [
0.276713 0 0
0.058241 0.143769 0.046177

0 0 0.26342
], 

�̂�𝟐𝟑 = [
0.161175 0 0
0.0282563 0.0622467 0.0285505

0 0 0.24469
], 

�̂�𝟐𝟓 = [
0.242718 0 0
0.06527 0.14009 0.0793

0 0 0.21098
], 

�̂�𝟑𝟐 = [
0.15848 0 0

0.0241246 0.0662044 0.0292756
0 0 0.199195

], 

�̂�𝟑𝟒 = [
0.081455 0 0
0.0352632 0.0668199 0.0308375

0 0 0.116435
], 

�̂�𝟒𝟏 = [
0.367417 0 0
0.026431 0.130234 0.063471

0 0 0.29396
], 

�̂�𝟒𝟑 = [
0.109018 0 0
0.0328038 0.0637264 0.0338015

0 0 0.10112
], 
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�̂�𝟒𝟒 = [
0.0632499 0 0
0.0139362 0.029969 0.0184471

0 0 0.07862
], 

�̂�𝟓𝟏 = [
1 0 0

0.216276 0.529313 0.254411
0 0 1

], 

�̂�𝟓𝟑 = [
0.471316 0 0
0.11792 0.189926 0.0967128

0 0 0.463864
], 

�̂�𝟓𝟓 = [
1 0 0

0.24405 0.51502 0.24093
0 0 1

], 

�̂�𝟏𝟐 = [
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

], 

�̂�𝟐𝟐 = [
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

]         and 

�̂�𝟒𝟓 = [
0.258728 0 0
0.08733 0.12302 0.06488

0 0 0.22388
], 

�̂�𝟓𝟐 = [
0.267289 0 0
0.080306 0.205324 0.0249849

0 0 0.217642
], 

�̂�𝟓𝟒 = [
0.261395 0 0
0.070001 0.15723 0.0575953

0 0 0.318494
], 

�̂�𝟏𝟏 = [
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

], 

�̂�𝟐𝟏 = [
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

], 

�̂�𝟏𝟏 = [
0
1
0
]. 

Here, we have obtained the conditional probability 𝑃 = (𝑌𝑘+1 = 𝑦𝑘+1|𝑌1 = 𝑦1, ⋯ , 𝑌𝑘 = 𝑦𝑘) and 𝑃 =
(𝑋1 = 𝑥1,⋯ , 𝑋𝑘 = 𝑥𝑘|𝑌1 = 𝑦1, ⋯ , 𝑌𝑘 = 𝑦𝑘) on trihybrid crosses (Table 7). To simplify the notation, it is 

defined that 𝑌1
𝑛 = 𝐴𝐵𝐶 represents 𝑌1 = 𝐴𝐵𝐶, 𝑌2 = 𝐴𝐵𝐶,⋯ , 𝑌𝑛 = 𝐴𝐵𝐶 and 𝑋2

𝑛 = 𝐴𝐴𝐵𝐵𝐶𝐶 represents 

𝑋2 = 𝐴𝐴𝐵𝐵𝐶𝐶, 𝑋3 = 𝐴𝐴𝐵𝐵𝐶𝐶,⋯ , 𝑋𝑛 = 𝐴𝐴𝐵𝐵𝐶𝐶. 

Table 7. The Conditional Probability of Trihybrid Crosses 

From Table 7, it is known that the ninth generation trihybrid crosses has the probability of a dominant 

phenotype of 99% but the probability of an optimal genotype is only 12.5%. With more generations of plants, 

the probability of the plants having a dominant phenotype and an optimal genotype is increasing. However, 

the rise is significantly slow. 

The more traits that are crossed, the smaller probability of plants having a dominant phenotype in that 

period. Therefore, although the probability of diploid plants to obtain dominant phenotype reaches 99% on a 

generation, the probability of having an optimal genotype for those plants on that generation is tiny. 

4. CONCLUSIONS 

The discrete hidden Markov model can be applied to diploid plant crosses and can be used to explain 

the characteristic of true breeding. Initializing the parameters to estimate genotype from diploid plants with 

Probability     Value   Probability Value 

𝑃(𝑌2 = 𝐴𝐵𝐶|𝑌1 = 𝐴𝐵𝐶) 0.407242 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
2 = 𝐴𝐵𝐶) 0.035875 

𝑃(𝑌3 = 𝐴𝐵𝐶|𝑌1
2 = 𝐴𝐵𝐶) 0.592022 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

3 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
3 = 𝐴𝐵𝐶) 0.060597 

𝑃(𝑌4 = 𝐴𝐵𝐶|𝑌1
3 = 𝐴𝐵𝐶) 0.711046 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

4 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
4 = 𝐴𝐵𝐶) 0.085222 

𝑃(𝑌5 = 𝐴𝐵𝐶|𝑌1
4 = 𝐴𝐵𝐶) 0.817162 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

5 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
5 = 𝐴𝐵𝐶) 0.104290 

𝑃(𝑌6 = 𝐴𝐵𝐶|𝑌1
5 = 𝐴𝐵𝐶) 0.900785 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

6 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
6 = 𝐴𝐵𝐶) 0.115777 

𝑃(𝑌7 = 𝐴𝐵𝐶|𝑌1
6 = 𝐴𝐵𝐶) 0.952064 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

7 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
7 = 𝐴𝐵𝐶) 0.121607 

𝑃(𝑌8 = 𝐴𝐵𝐶|𝑌1
7 = 𝐴𝐵𝐶) 0.978333 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

8 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
8 = 𝐴𝐵𝐶) 0.124300 

𝑃(𝑌9 = 𝐴𝐵𝐶|𝑌1
8 = 𝐴𝐵𝐶) 0.990516 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

9 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
9 = 𝐴𝐵𝐶) 0.125490 

𝑃(𝑌10 = 𝐴𝐵𝐶|𝑌1
9 = 𝐴𝐵𝐶) 0.995902 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

10 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
10 = 𝐴𝐵𝐶) 0.126006 

𝑃(𝑌11 = 𝐴𝐵𝐶|𝑌1
10 = 𝐴𝐵𝐶) 0.998235 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

11 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
11 = 𝐴𝐵𝐶) 0.126229 

𝑃(𝑌12 = 𝐴𝐵𝐶|𝑌1
11 = 𝐴𝐵𝐶) 0.999239 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

12 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
12 = 𝐴𝐵𝐶) 0.126325 

𝑃(𝑌13 = 𝐴𝐵𝐶|𝑌1
12 = 𝐴𝐵𝐶) 0.999670 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

13 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
13 = 𝐴𝐵𝐶) 0.126367 

𝑃(𝑌14 = 𝐴𝐵𝐶|𝑌1
13 = 𝐴𝐵𝐶) 0.999857 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

14 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
14 = 𝐴𝐵𝐶) 0.126385 

𝑃(𝑌15 = 𝐴𝐵𝐶|𝑌1
14 = 𝐴𝐵𝐶) 0.999937 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

15 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
15 = 𝐴𝐵𝐶) 0.126393 

𝑃(𝑌16 = 𝐴𝐵𝐶|𝑌1
15 = 𝐴𝐵𝐶) 0.999972 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

16 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
16 = 𝐴𝐵𝐶) 0.126397 

𝑃(𝑌17 = 𝐴𝐵𝐶|𝑌1
16 = 𝐴𝐵𝐶) 0.999988 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

17 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
17 = 𝐴𝐵𝐶) 0.126398 

𝑃(𝑌18 = 𝐴𝐵𝐶|𝑌1
17 = 𝐴𝐵𝐶) 0.999995 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

18 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
18 = 𝐴𝐵𝐶) 0.126399 

𝑃(𝑌19 = 𝐴𝐵𝐶|𝑌1
18 = 𝐴𝐵𝐶) 0.999998 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

19 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
19 = 𝐴𝐵𝐶) 0.126399 

𝑃(𝑌20 = 𝐴𝐵𝐶|𝑌1
19 = 𝐴𝐵𝐶) 0.999999 𝑃(𝑋1 = 𝐴𝑎𝐵𝑏𝐶𝑐, 𝑋2

20 = 𝐴𝐴𝐵𝐵𝐶𝐶|𝑌1
20 = 𝐴𝐵𝐶) 0.126399 
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the dominant phenotype produces the same genotype for monohybrid, dihybrid, and trihybrid crosses that are 

heterozygous in the first generation and homozygous dominant in the next generation. The more traits 

crossed, the smaller probability of plants having a dominant phenotype in that period. Monohybrid, dihybrid, 

and trihybrid crosses have a dominant phenotype probability of 99% in the seventh, eighth, and ninth 

generations, with the condition of previous generations having a dominant phenotype. But in seventh 

generation, monohybrid crosses only have the probability of an optimal genotype of 50%, dihybrid crosses 

have a probability of an optimal genotype of 25% in the eighth generation, and trihybrid crosses have a 

probability of an optimal genotype of 12.5% in the ninth generation. Although the probability for diploid 

plants has obtained a dominant phenotype by 99% on a generation, the probability of plants having an optimal 

genotype on that generation is tiny. 
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