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ABSTRACT 

Article History: 
The prime ideal graph of 𝑃 in a finite commutative ring 𝑅 with unity, denoted by 𝛤𝑃, is a graph 

with elements of 𝑅 as its vertices and two elements in 𝑅 are adjacent if their product is in 𝑃. In 

this paper, we explore some interesting properties of 𝛤𝑃. We determined some properties of 𝛤𝑃 

such as radius, diameter, degree of vertex, girth, clique number, chromatic number, 

independence number, and domination number. In addition to these properties, we study 

dimensions of prime ideal graphs, including metric dimension, local metric dimension, and 

partition dimension; furthermore, we examined topological indices such as atom bond 

connectivity index, Balaban index, Szeged index, and edge-Szeged index. 
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1. INTRODUCTION 

The concept of graphs has been used since the 17th century, namely in the Konigsberg bridge problem 

[1]. Although graph theory is a subject that has been appeared since a long time ago, graph theory is still an 

interesting topic to discuss today, because graphs can be used to illustrate discrete objects and the 

relationships between one object with another. As a result of this usage, graphs can be applied in various 

fields of mathematics and science. 

In its development, graphs are used as a representation of mathematical systems namely groups, rings, 

and modules. Some graphs that can be used to represent a group are coprime graph [2], non-coprime graph 

[3], power graph [4], and intersection graph [5]. Graphs that can be used to represent a ring are zero divisor 

graph [6], prime graph [7], and Jacobson graph [8]. In addition, graphs that can be used to represent a module 

are annihilator graphs [9]. 

In 2022, Salih and Jund developed a graph used to represent a commutative ring with connection to a 

prime ideal. This graph was later named as prime ideal graph. They defined a prime ideal graph 𝑃 of ring 𝑅, 

denoted by 𝛤𝑃, as a graph where the set of vertices is 𝑅 ∖ {0} and two vertices 𝑟1, 𝑟2 are adjacent if and only 

if 𝑟1𝑟2 ∈ 𝑃 [10]. Since the definition of prime ideal graph in that research is made to find relationships 

between prime ideal graphs and zero-divisor graphs, 0 is not included as a vertex in prime ideal graphs. In 

this study, we focus more on discussing properties of prime ideal graphs without looking at its relationship 

with other graph over another rings. We include 0 as a vertex in our definition of prime ideal graph in this 

study to give a more complete view of the base commutative ring as a graph. By including 0, the set of 

vertices of prime ideal graphs is all elements of commutative ring 𝑅 and this also gives the ability to consider 

and analyze the ideal {0} of 𝑅. This trivial ideal is a prime ideal if and only if the base ring 𝑅 is an integral 

domain. 

Based on the description above, as a continuation and generalization of the research in [10], the authors 

are inclined in discussing some properties of the prime ideal graph of the commutative ring including vertex 

degree, radius, diameter, chromatic number, clique number, independence number, dominance number and 

girth. The authors also study the dimensions of this prime ideal graphs of commutative rings. Graphs 

dimensions examined in this research including metric dimension, local metric dimension, and partition 

dimension. For each type of dimension, we give the minimum resolving sets. Furthermore, we examine some 

degree-based and distance-based topological indices on prime ideal graph of commutative ring i.e., atom 

bond connectivity index (𝐴𝐵𝐶), Balaban index (𝐽), Szeged index (𝑆𝑧), and edge-Szeged index (𝑆𝑧𝑒). 

2. RESEARCH METHODS 

This research used a literature study method which aimed to study properties of prime ideal graphs 

from recent research papers and identifying properties that have not been discussed in previous studies. This 

research was conducted as follows: first, recent papers are collected and discussed to get an overview of this 

topic. Next, we analyzed properties of prime ideal graphs that have not been discussed in the earlier papers. 

The final step was proving each conjecture we made for relating to those properties. 

3. RESULTS AND DISCUSSION 

This section provides a brief description of concepts in graph theory. After mentioning definitions that 

we need, we give the exact values of radius, diameter, dimensions, topological indices, and other properties 

of prime ideal graphs of commutative rings. 

3.1 Basic Concepts 

In this study, we consider only simple graphs which are undirected, with no edges connecting a vertex 

to itself or multiple edges. If two vertices are adjacent, then we assume there is only one edge that connect 

these two. The undirected part comes from the commutativity of the ring. Below is a list of definitions that 

we will study in this paper. 
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Definition 1. [1] Let 𝛤 be a graph, 𝑉(𝛤) and 𝐸(𝛤) will denote the set of vertices and edges of 𝛤, respectively. 

Graph 𝛤 is called empty if the vertex set is empty. The other common structure of graph is called a complete 

graph denoted by 𝐾𝑛, which is if every two distinct vertices in 𝑉(𝛤) are adjacent to each other. 

Definition 2. [1] The degree of a vertex 𝑣, denoted by deg(𝑣), is the number of edges which are incident to 

𝑣; or in other words, it is the number of vertices adjacent to 𝑣. 

Definition 3. [1] A subset 𝛺 of 𝑉(𝛤) is called a clique if the induced subgraph of 𝛺 is complete. The order 

of the largest clique in 𝛤 is called its clique number, which is denoted by 𝜔(𝛤). 

Definition 4. [1] If 𝑢, 𝑣 ∈ 𝑉(𝛤), then 𝑑(𝑢, 𝑣) denotes the length of the shortest path between 𝑢 and 𝑣. The 

largest distance between all pair of vertices of Γ is called the diameter of 𝛤 and denoted by 𝑑𝑖𝑎𝑚(𝛤). 

Definition 5. [1] A set 𝑆 of vertices of 𝛤 is called a dominating set of 𝛤 if every vertex in 𝑉(𝛤) ∖ 𝑆 is adjacent 

to some vertex in 𝑆; the cardinality of a minimum dominating set is called a domination number of 𝛤 and is 

denoted by 𝛾(𝛤). 

Definition 6. [1] The chromatic number of a graph 𝛤, denoted by 𝜒(𝛤), is the minimal number of colors 

needed to color the vertices in such a way that if two vertices are adjacent then they will have a different 

color. 

Definition 7. [11] Let 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑘} be an ordered subset of vertices in graph 𝛤. For 𝑣 ∈ 𝑉(Γ), the 

𝑘-tuple 𝑟(𝑣|𝑊) = (𝑑(𝑣, 𝑤1), 𝑑(𝑣, 𝑤2), … , 𝑑(𝑣, 𝑤𝑘)) of the distance between 𝑣 and every vertex on 𝑊 is 

called a representation of 𝑣 with respect to 𝑊. The set 𝑊 is called a resolving set of 𝛤 if every two distinct 

vertices 𝑥, 𝑦 ∈ 𝑉(𝛤) have a different representation with respect to 𝑊. A basis of 𝛤 is a resolving set of 𝛤 

with the minimum number of vertices, and the metric dimension of 𝛤 refers to its cardinality and is denoted 

by 𝛽(𝛤). 

Definition 8. [12] If 𝑟(𝑥|𝑊) ≠ 𝑟(𝑦|𝑊) for every pair 𝑥, 𝑦 of adjacent vertices in 𝛤, then 𝑊 is called a local 

metric set of 𝛤. The minimum 𝑘 for which 𝛤 has a local metric 𝑘-set is the local metric dimension of 𝛤, 

denoted by 𝑙𝑚𝑑(𝛤). A local metric set of cardinalities 𝑙𝑚𝑑(𝛤) in 𝛤 is a local metric basis of 𝛤. 

Definition 9. [13] Suppose 𝛥 = {𝛥1, 𝛥2, . . . , 𝛥𝑙} is an 𝑙-partition of 𝑉(𝐺). A partition representation of a 

vertex 𝛼 with respect to 𝛥 is the 𝑙−vector (𝑑(𝛼, 𝛥1), 𝑑(𝛼, 𝛥2), . . . , 𝑑(𝛼, 𝛥𝑙)), denoted by 𝑟(𝛼|𝛥). Any partition 

𝛥 is referred as resolving partition if only if for every 𝛼𝑖 ≠ 𝛼𝑗 ∈ 𝑉(𝐺), 𝑟(𝛼𝑖|𝛥) ≠ 𝑟(𝛼𝑗|𝛥). The smallest 

integer 𝑙 is referred as the partition dimension 𝑝𝑑(𝐺) of 𝐺 if the 𝑙-partition 𝛥 is a resolving partition. 

Definition 10. [14] Suppose 𝑢𝑣 is an edge of Γ𝑃 then atom bond connectivity index of Γ𝑃 is defined as 

𝐴𝐵𝐶(Γ𝑃) = ∑ √
deg(𝑢)+deg(𝑣)−2

deg(𝑢) deg(𝑣)𝑢𝑣 ∈ 𝐸(Γ𝑃) . 

Definition 11. [15] Let 𝐷Γ𝑃(𝑢) = ∑ 𝑑(𝑢, 𝑣)𝑣 ∈ 𝑉(Γ𝑃)  and 𝑞 = |𝐸(Γ𝑃)| − |𝑉(Γ𝑃)| − 1. Then Balaban Index (𝐽 

index) of Γ𝑃 defined by 𝐽(Γ𝑃) =
|𝐸(Γ𝑃)|

𝑞+1
∑

1

√DΓP (u)DΓP (v)
𝑢𝑣 ∈ 𝐸(Γ𝑃) . 

Definition 12. [16] Suppose an edge 𝑒 =  𝑢𝑣 ∈  𝐸(Γ𝑃 ). The values 𝑛1(𝑒) and 𝑛2(𝑒) are defined as the 

number of vertices which are closer to 𝑢 and 𝑣 respectively. Similarly, the quantities 𝑚1(𝑒) and 𝑚2(𝑒) are 

defined as the number of edges that are closer to 𝑢 and 𝑣 respectively. For an arbitrary edge 𝑒 =  𝑢𝑣 and 

vertex 𝑥, the distance between 𝑒 and 𝑥 is defined as 𝑑(𝑒, 𝑥) = min{𝑑(𝑢, 𝑥), 𝑑(𝑣, 𝑥)}. Szeged index and edge-

Szeged index are defined as 𝑆𝑧(Γ𝑃) = ∑ 𝑛1(𝑒)𝑛2(𝑒)𝑒 ∈ 𝐸(Γ𝑃)  and 𝑆𝑧𝑒(Γ𝑃) = ∑ 𝑚1(𝑒)𝑒 ∈ 𝐸(Γ𝑃) 𝑚2(𝑒). 

Below is the definition of prime ideal graph that we used in this paper. 

Definition 13. Let (𝑅,+,∘) be a finite commutative ring and 𝑃 be a prime ideal of 𝑅. The prime ideal graph 

of 𝑃 in 𝑅, denoted by Γ𝑃, is a graph where the set of vertices is 𝑅 and two vertices 𝑟1, 𝑟2 are adjacent if and 

only if 𝑟1𝑟2 ∈ 𝑃. 

3.2 Properties of Prime Ideal Graphs 

Let (𝑅,+,∘) be a finite commutative ring with cardinality |𝑅| = 𝜂 and 𝑃 be a prime ideal of 𝑅 with 

cardinality |𝑃| = 𝜇. In this section, 𝛤𝑃 always denotes prime ideal graph of 𝑃 in commutative ring 𝑅. Based 
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on Lagrange’s theorem, since 𝑃 can be seen as a subgroup of 𝑅, we have 𝜇|𝜂. Therefore if 𝑃 ≠ 𝑅, then it 

must be 𝜇 ≤ 𝜂/2. 

From the definition of prime ideal graph of a commutative ring, we can see that the number of vertices 

in this graph is 𝜂 = |𝑅|. Let 𝑣 ∈ 𝑃 be a vertex in prime ideal graph 𝛤𝑃. For all 𝑤 ∈ 𝛤𝑃, we have 𝑣 ∘ 𝑤 ∈ 𝑃 

since 𝑃 is an ideal. Therefore, 𝑣 ∈ 𝑃 is adjacent to all other vertices in 𝛤𝑃. Otherwise, if 𝑣 ∉ 𝑃 then 𝑣 adjacent 

to all vertices in 𝑃 and not adjacent to all 𝑤 ∉ 𝑃. Using this observation and assuming |𝑃| = 𝜇 we get 

∑ deg (𝑣)

𝑣∈𝛤𝑃

= 𝜇(𝜂 − 1) + 𝜂𝜇 = 𝜇(2𝜂 − 1). 

Therefore, the number of edges in 𝛤𝑃 is given by 𝜇(2𝜂 − 𝜇 − 1)/2. 

Note that for a finite commutative ring 𝑅,the shape of prime ideal graph with 𝑅 as the set of vertices 

depends on prime ideal 𝑃 of 𝑅 taken. If 𝑃 = 𝑅 then 𝑥 ∘ 𝑦 ∈ 𝑃 for all 𝑥, 𝑦 ∈ 𝑅, hence we have 𝛤𝑃 ≅ 𝐾𝜂, a 

complete graph with 𝜂 = |𝑅| vertices. If 𝑃 = {0} and 𝑅 is an integral domain then 𝑥, 𝑦 ∈ 𝑅 ∖ {0} implying 

𝑥 ∘ 𝑦 ≠ 0 and so 𝑥 and 𝑦 is not adjacent in 𝛤𝑃. Therefore, for 𝑃 = {0}, the resulting prime ideal graph is a 

star graph 𝐾1,𝜂−1 with 𝜂 vertices. This can be seen in the example below. 

Example 1. Some examples of a prime ideal graph are given below. In the first figure, we illustrate the prime 

ideal graph of 𝑃 = {0,5} in the commutative ring ℤ10. The second figure is the prime ideal of 𝑃 = {0} in 𝑅 =
ℤ7. In the last figure, we take 𝑃 = 𝑅 = ℤ7. 

  
(a)                                                       (b) 

 
(c) 

Figure 1. Prime ideal graph of (a) 𝑷 = {𝟎, 𝟓}, 𝑹 = ℤ𝟏𝟎, (b) 𝑷 = {𝟎},𝑹 = ℤ𝟕, (c) 𝑷 = 𝑹 = ℤ𝟕. 

On the following theorems, we analyze properties of prime ideal graph. Despite some of the properties 

investigated here, i.e., theorems that preceded metric dimension theorem, being the same with the one 

discussed in [10], there is a subtle difference on the graph that we define here. In this paper we consider the 



BAREKENG: J. Math. & App., vol. 17(3), pp. 1463- 1472, September, 2023 1467 

 

   

 

prime ideal graph that include zero element as one of its vertices, therefore that graph we discussed here is 

not identical to the graph considered in [10]. 

First, we described degree of vertices in a prime ideal graph of a commutative ring. The degree of a 

vertex 𝑣 can be classified into two numbers depending on whether it is an element of 𝑃 or not. 

Theorem 1. Let 𝑣 be a vertex on 𝛤𝑃. Then 

deg(𝑣) = {
𝜂 − 1, 𝑣 ∈ 𝑃

𝜇, 𝑣 ∉ 𝑃
 

Therefore, the largest degree of vertices on 𝛤𝑃 is 𝛥 = 𝜂 − 1 and the smallest degree is 𝛿 = 𝜇. 

Proof. Let 𝑣 ∈ 𝑃. Based on the definition of ideal in a commutative ring, we have 𝑣 ∘ 𝑤 ∈ 𝑃 for all 𝑤 ∈ 𝑅. 

Therefore, 𝑣 is adjacent to all other vertices in 𝛤𝑃. Thus, in this case deg(𝑣) = 𝜂 − 1. Now let 𝑣 ∉ 𝑃. If 𝑤1 ∈
𝑃, then it is clear that 𝑣 ∘ 𝑤1 ∈ 𝑃. Note that if 𝑤2 ∉ 𝑃, then 𝑣 ∘ 𝑤2 ∉ 𝑃. Therefore, 𝑣 is adjacent to all 𝑤1 ∈
𝑃 and not adjacent to all 𝑤2 ∉ 𝑃. Thus, in this case deg(𝑣) = |𝑃| = 𝜇.∎ 

Now, by looking at distance of every two vertices, we can study the radius and diameter of a prime ideal 

graph of commutative ring. In Theorem 2 and Theorem 3, we give the exact values of radius and diameter. 

Theorem 2. Radius of 𝛤𝑃  is 1. The Center set of 𝛤𝑃 is 𝑃.  

Proof. Note that all vertices on 𝑃 are adjacent to all vertices on 𝛤𝑃. Therefore, max
𝑤
𝑑(𝑣, 𝑤) = 1 if 𝑣 ∈ 𝑃 and 

𝑟𝑎𝑑(Γ𝑃) = min
𝑣
max
𝑤
𝑑(𝑣, 𝑤) = 1. Next, note that for 𝑣, 𝑤 ∉ 𝑃 we have 𝑑(𝑣, 𝑤) = 2 so that max

𝑤
𝑑(𝑣, 𝑤) =

2. Thus, center of 𝛤𝑃 is given by {𝑣 ∈ 𝛤𝑃|max
𝑤
𝑑(𝑣, 𝑤) = 1} = 𝑃. So, we have proved that radius of 𝛤𝑃 is 1 

and its center is 𝑃.∎ 

Theorem 3. Diameter of  𝛤𝑃 is given by  

𝑑𝑖𝑎𝑚(𝛤𝑃) = {
1, 𝑃 = 𝑅 𝑜𝑟 𝑅 ≅ ℤ2,
2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Proof. If 𝑃 = 𝑅 then 𝛤𝑃 is a complete graph 𝐾𝜂. Therefore 𝑑𝑖𝑎𝑚(𝛤𝑃) = 1. If 𝑅 ≅ ℤ2 then 𝛤𝑝 form a path 𝑃2 

so that we get 𝑑𝑖𝑎𝑚(𝛤𝑃) = 1. 

Next, let 𝑃 ≠ 𝑅 with |𝑅| ≥ 3 and 𝑣,𝑤 ∈ 𝛤𝑃. If 𝑣 ∈ 𝑃 or 𝑤 ∈ 𝑃 then 𝑣 and 𝑤 are adjacent to each other and 

thus 𝑑(𝑣, 𝑤) = 1. If 𝑣, 𝑤 ∉ 𝑃 then 𝑣 and 𝑤 are not adjacent. Take an arbitrary 𝑝 ∈ 𝑃, then 𝑝 is adjacent to 

both 𝑣 and 𝑤 by the property of prime ideal. Therefore 𝑑(𝑣, 𝑤) = 2. Since the distance of every two elements 

in 𝛤𝑃 is at most 2, then 𝑑𝑖𝑎𝑚(Γ𝑃) = 2.∎ 

On the following theorem, we will consider the existence of a cycle subgraph in a prime ideal graph of a 

commutative ring. We can see that a prime ideal graph of a commutative ring is an acyclic graph if and only 

if 𝑅 ≅ ℤ2 or 𝑃 = {0}. 

Theorem 4. Girth of a  𝛤𝑃 is given by 

𝑔𝑖𝑟𝑡ℎ(𝛤𝑃) = {
∞, 𝑃 = {0} 𝑜𝑟 𝑅 ≅ ℤ2
3, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Proof. If 𝑅 ≅ ℤ2 then there are two possible prime ideals, that is 𝑃 = 𝑅 and 𝑃 = {0}. Both cases give us path 

graph 𝑃2 with no cycle. This implies that 𝑔𝑖𝑟𝑡ℎ(𝛤𝑃) = ∞ for 𝑅 ≅ ℤ2. We know that 𝑃 = {0} is a prime ideal 

if and only if 𝑅 is an integral domain and in this case, the prime ideal graph is given by 𝛤𝑃 ≅ 𝐾1,𝜂−1. Thus, 

there is no cycle in the graph and the girth is ∞. 

Let 𝜂 ≥ 3. If 𝑃 = 𝑅 then 𝛤𝑃 is a complete graph so that it contains a cycle of order 3. If 𝑃 ≠ 𝑅 then for 𝑟 ∈
𝑅\𝑃 and 𝑝1, 𝑝2 ∈ 𝑃, we have all these three vertices adjacent to each other. Therefore Γ𝑃 always contain 𝐶3 

and its girth is equal to 3.∎ 

Theorem 5. The clique number  𝛤𝑃 is equal to 

𝜔(𝛤𝑃) = {
𝜂, 𝑃 = 𝑅

𝜇 + 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Proof. Note that every vertex in 𝑃 adjacent to each other, hence vertices of 𝑃 induce a complete graph 𝐾𝜇. 

Suppose that 𝑃 ≠ 𝑅 and 𝑟 ∈ 𝑅 ∖ 𝑃. Since 𝑟 is adjacent to all vertices in 𝑃 then {𝑟} ∪ 𝑃 induce complete graph 
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𝐾𝜇+1. If 𝑟′ is another vertex in 𝑅 ∖ 𝑃 then 𝑟′ will not be adjacent to 𝑟. Therefore, {𝑟, 𝑟′} ∪ 𝑃 is not a complete 

graph. So, the clique number of Γ𝑃 is 𝜇 + 1 if 𝑃 ≠ 𝑅. If 𝑃 = 𝑅 then 𝛤𝑃 induce complete graph of order 𝜂.∎ 

Using the above property, we can determine specifically the chromatic number of a prime ideal graph of 

commutative ring. 

Theorem 6. Chromatic number of  𝛤𝑃 is given below. 

𝜒(𝛤𝑃) = {
𝜂, 𝑃 = 𝑅

𝜇 + 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Proof. Since every vertex in 𝑃 is adjacent to each other, this means that we need at least 𝜇 colors to make 

sure every vertex on 𝑃 has different color. Thus, if 𝑃 = 𝑅 then the chromatic number of 𝛤𝑃 is equal to 𝜂.  

If 𝑃 ≠ 𝑅 then since every vertex on 𝑅\𝑃 is not adjacent to each other, we can make every vertex in 𝑅\𝑃 have 

the same color. Therefore, we need at most 𝜇 + 1 colors to do the coloring on 𝛤𝑃. Now, we show that 𝜇 + 1 

is the minimum number of colors. Suppose that we only need 𝜇 colors to do the coloring for 𝛤𝑃. According 

to Theorem 5, 𝛤𝑃 contains a complete subgraph of order 𝜇 + 1. This means there will be at least two vertices 

on this complete subgraph that have the same color. This is a contradiction with the assumption that we need 

only 𝜇 vertices. Therefore, the chromatic number of 𝛤𝑃 if 𝑃 ≠ 𝑅 is equal to 𝜇 + 1. ∎ 

In the next two theorems, we find the largest number of vertices that is not adjacent to each other and the 

smallest number of vertices such that every vertex in 𝛤𝑃 adjacent to one or more of these vertices. 

Theorem 7. The independence number of  𝛤𝑃 is equal to 1 if  𝑃 = 𝑅 and is equal 𝜂 − 𝜇 if 𝑃 ≠ 𝑅. 

Proof. Note that if 𝑃 = 𝑅, the graph 𝛤𝑃 is a complete graph 𝐾𝜇 where every vertex is adjacent to another 

vertex. Therefore, in this case the independent number is equal to 1. Suppose 𝑃 ≠ 𝑅 and note that for two 

vertices 𝑟𝑖 , 𝑟𝑗 ∈ 𝑅 ∖ 𝑃 we know that 𝑟𝑖 and 𝑟𝑗 is not adjacent. Using this observation, 𝑅 ∖ 𝑃 is an independent 

set. We will show that 𝑅 ∖ 𝑃 is a maximum independent set. Suppose 𝑊 is an independent set with |𝑊| >
|𝑅 ∖ 𝑃|, then there is 𝑝 ∈ 𝑊 with 𝑝 ∈ 𝑃. Since 𝑝 ∈ 𝑃 then 𝑝 must be adjacent to all other vertex in 𝑊. This 

contradicts the assumption that 𝑊 is an independent set. So, 𝑅 ∖ 𝑃 is a maximum independent set and the 

independence number of 𝛤𝑃 is 𝜂 − 𝜇. ∎ 

Theorem 8. The domination number of  𝛤𝑃 is equal to 1. 

Proof. Take an element 𝑝 ∈ 𝑃. Note that every other vertex in 𝛤𝑃 will be adjacent to 𝑝 since 𝑟 ∘ 𝑝 ∈ 𝑃 for all 

𝑟 ∈ 𝑅 from definition of ideal of a ring. So {𝑝} is a dominating set in graph 𝛤𝑃. Therefore, the domination 

number of 𝛤𝑃 is equal to 1.∎ 

In the following three theorems, given the metric dimension, local metric dimension, and partition dimension 

of prime ideal graph of commutative ring. 

Theorem 9. The metric dimension of  𝛤𝑃 is 𝜂 − 1 if 𝑃 = 𝑅 and 𝜂 − 2 if 𝑃 ≠ 𝑅. 

Proof. First, suppose that 𝑃 = 𝑅, then 𝛤𝑃 is a complete graph 𝐾𝜂. So, the metric dimension is given by 𝜂 − 1 

(see Theorem 3 in [11]). Suppose that 𝑃 ≠ 𝑅. Take 𝑊 ⊂ 𝑉(Γ𝑃) such that |𝑊| = 𝜂 − 2 and 𝑉(ΓP)\𝑊 =
{𝑎, 𝑏} where 𝑎 ∈ 𝑃 and 𝑏 ∉ 𝑃. Since 𝑎 and 𝑏 have different distance to all 𝑟 ∈ 𝑊 ∩ (𝑅\𝑃) then they have 

distinct representation and hence 𝑊 is a resolving set. Suppose that there is a resolving set 𝑊′ with |𝑊′| =
𝜂 − 3. Then at least there are two elements in 𝑃 (or in 𝑅\𝑃) but not in 𝑊′. These two elements will have the 

same representation with respect to 𝑊′. Hence 𝑊′ is not a resolving set. This shows that in this case 𝛽(Γ𝑃) =
𝜂 − 2.∎ 

Theorem 10. The local metric dimension of  𝛤𝑃 is equal to 𝜇 − 1 if 𝑃 = 𝑅 and 𝜇 if 𝑃 ≠ 𝑅. 

Proof. First, suppose that 𝑃 = 𝑅. In this case, Γ𝑃 is a complete graph 𝐾𝜂. Therefore, the local metric 

dimension of Γ𝑃 is equal to 𝜂 − 1. 

Suppose that 𝑃 ≠ 𝑅. In this case, take 𝑊 = 𝑃. Let 𝑣, 𝑤 ∈ Γ𝑃 are adjacent, then 𝑣 ∈ 𝑃 or 𝑤 ∈ 𝑃. If both 𝑣, 𝑤 ∈
𝑃 then they are in the set 𝑊 and hence they will have distinct representation. If 𝑣 ∈ 𝑃 and 𝑤 ∉ 𝑃 then 

representation of 𝑣 contains a 0 and representation of 𝑤 does not contain 0. So, 𝑊 is a local metric set. 

Note that all vertices in 𝑃 have common closed neighborhood, so at least 𝜇 − 1 vertices in 𝑃 should be in 

local metric set. If 𝑊′ is a minimum local resolving set with |𝑊′| = 𝜇 − 1 then without losing of generality, 
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we can assume 𝑊′ = {𝑝2, … , 𝑝𝜇}. But in this case 𝑝1 and all 𝑟 ∉ 𝑃 have the same representation. So, the local 

metric dimension of Γ𝑃 in this case is equal to 𝜇.∎ 

Theorem 11. The partition dimension of  𝛤𝑃 is equal to 𝜂 if 𝑃 = 𝑅 and 𝑚𝑎𝑥{𝜂 − 𝜇, 𝜇 + 1} if 𝑃 ≠ 𝑅. 

Proof. If 𝑃 = 𝑅 then Γ𝑃 is a complete graph 𝐾𝜂 whose vertices are twin vertices. Therefore, every vertex 

must be in different partition. So, in this case 𝑝𝑑(Γ𝑃) = 𝜂. If 𝑃 ≠  𝑅, Γ𝑃 contains a complete graph with 𝑚 +
1 vertices and all vertices in 𝑅\𝑃 are twin vertices. Divide into two cases, when 𝜇 + 1 > 𝜂 − 𝜇 and when 

𝜇 + 1 ≤ 𝜂 − 𝜇.  

Case I. If 𝜇 + 1 > 𝜂 − 𝜇 then the 𝜇 + 1 vertices including 𝜇 vertices in 𝑃 is the largest twin vertices 

equivalence class, hence 𝑝𝑑(Γ𝑃) ≥ 𝜇 + 1. Define (𝜇 + 1)-partitions of 𝑉(Γ𝑃) as Δ = {𝐿1, … , 𝐿𝜇+1} where 

𝐿𝑖 = {𝑝𝑖 , 𝑟𝑖} for 𝑖 = 1,… , 𝜇 − 1, 𝐿𝜇 = {𝑝𝜇}, and 𝐿𝜇+1 = {𝑟𝜇}. Then 𝑝𝑖 and 𝑟𝑖, 1 ≤ 𝑖 ≤ 𝜇 − 1, will have 

different distance to 𝑟𝜇 (or 𝑝𝜇) and thus Δ is minimum resolving partition of Γ𝑃. Therefore 𝑝𝑑(Γ𝑃) = 𝜇 + 1.  

Case II. If 𝜇 + 1 ≤ 𝜂 − 𝜇 then 𝜇 < 𝜂 − 𝜇. The largest twin vertices equivalence class is 𝑅\𝑃, hence 

𝑝𝑑(Γ𝑃) ≥ 𝜂 − 𝜇. Define  Δ = {𝐿1, … , 𝐿𝜂−𝜇} as a (𝜂 − 𝜇)-partitions of 𝑉(Γ𝑃) where 𝐿𝑖 = {𝑟𝑖 , 𝑝𝑖} for 1 ≤ 𝑖 ≤

𝜇 and 𝐿𝑖 = {𝑟𝑖} for 𝑖 = 𝜇 + 1,… , 𝜂 − 𝜇. For 𝑟𝑖 , 𝑝𝑖 where 1 ≤ 𝑖 ≤ 𝜇, their distance to 𝑟𝜂−𝜇 is different and 

hence Δ is a minimum resolving partition. So, in this case 𝑝𝑑(Γ𝑃) = 𝜂 − 𝜇.∎ 

The following theorems describing the atom bond connectivity index, Balaban index, Szeged index, and 

edge-Szeged index of any given prime ideal graph of commutative ring. First, we give the atom bond 

connectivity index of 𝛤𝑃. This topological index is used in chemical graph theory to study the stability of 

alkane as a structure. 

Theorem 12. The atom bond connectivity index of 𝛤𝑃 is given by 

𝐴𝐵𝐶(Γ𝑃) =
𝜇(𝜇 − 1)

2(𝜂 − 1)
√2𝜂 − 4 + 𝜇(𝜂 − 𝜇)√

𝜇 + 𝜂 − 3

(𝜂 − 1)𝜇
. 

Proof. Suppose 𝑢𝑣 ∈ 𝐸(Γ𝑃) is an edge in a prime ideal graph. If 𝑢, 𝑣 ∈ 𝑃 then from Theorem 1, 𝑑(𝑢) =

𝑑(𝑣) = 𝜂 − 1. Therefore, 
1

𝑑(𝑢)
+

1

𝑑(𝑣)
−

2

𝑑(𝑢)𝑑(𝑣)
=

2

𝜂−1
−

2

(𝜂−1)2
=

2𝜂−4

(𝜂−1)2
. Note that there are 

𝜇(𝜇−1)

2
 edges of 

this form. If 𝑢 ∈ 𝑃, 𝑣 ∉ 𝑃 then from Theorem 1, 𝑑(𝑢) = 𝜂 − 1 and 𝑑(𝑣) = 𝜇. Hence, we obtained 
1

𝑑(𝑢)
+

1

𝑑(𝑣)
−

2

𝑑(𝑢)𝑑(𝑣)
=

1

𝜂−1
+
1

𝜇
−

2

(𝜂−1)𝜇
=
𝜇+𝜂−3

𝜇(𝜂−1)
. There are 𝜇(𝜂 − 𝜇) edges of this form. By taking sum, the atom 

bond connectivity of prime ideal graph equal to 

𝜇(𝜇 − 1)

2
√
2𝜂 − 4

(𝜂 − 1)2
+ 𝜇(𝜂 − 𝜇)√

𝜇 + 𝜂 − 3

𝜇(𝜂 − 1)
. 

So, we have proved the desired result.∎ 

 Another index that can gives a description of chemical molecules as a graph is Balaban index. This 

topological index is a distance-based topological index. Balaban index gives us description of a graph based 

on distances from each vertex to another vertices in the graph. 

Theorem 13. The Balaban index  𝛤𝑃 is given by 

𝐽(Γ𝑃) =
𝜇(2𝜂 − 𝜇 − 1)

2𝜂(𝜇 − 1) − 𝜇(𝜇 + 1)
(
𝜇(𝜇 − 1)

2(𝜂 − 1)
+

(𝜂 − 𝜇)𝜇

√(𝜂 − 1)(2𝜂 − 𝜇 − 2)
). 

Proof. Note that the number of edges in a prime ideal graph is 
𝜇

2
(2𝜂 − 𝜇 − 1). This gives 𝑞 =

𝜇

2
(2𝜂 − 𝜇 − 1) − 𝜂 − 1. Since all vertex 𝑣 ∈ 𝑃 adjacent to all other vertices and all vertex 𝑣 ∉ 𝑃 adjacent 

only to vertices in 𝑃, then 

𝐷(𝑢) = {
              𝜂 − 1, 𝑢 ∈ 𝑃,

𝜇 + 2(𝜂 − 𝜇 − 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

So that 
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𝐽(Γ𝑃) =

𝜇
2
(2𝜂 − 𝜇 − 1)

𝜇
2
(2𝜂 − 𝜇 − 1) − 𝜂

(

 
𝜇(𝜇 − 1)

2

1

𝜂 − 1
+ 𝜇(𝜂 − 𝜇)

1

√(𝜇 + 2(𝜂 − 𝜇 − 1))(𝜂 − 1)
)

 . 

We have proved the statement in theorem above.∎ 

The last topological index we study is Szeged index. This index is also introduced to measure the 

properties of drugs and chemical compounds. 

Theorem 14. The Szeged index of  𝛤𝑃 is given by 

𝑆𝑧(𝛤𝑃) =
𝜇

2
(𝜇 − 1) + (𝜂 − 𝜇)2. 

And the edge-Szeged index of  𝛤𝑃 is given by 

𝑆𝑧𝑒(𝛤𝑃) =
𝜇(𝜇 − 1)

2
(𝜇2 − 2𝜇𝜂 + 2𝜂2 − 4𝜂 + 4). 

Proof. Let 𝑒 = 𝑢𝑣 is an arbitrary edge of Γ𝑃. If 𝑢, 𝑣 ∈ 𝑃 then 𝑛1(𝑒) = 𝑛2(𝑣) = 1 and 𝑚1 = 𝑚2 = 𝜂 − 2. If 

one of endpoint of 𝑒 is not in 𝑃, say 𝑣, then the only vertex closer to 𝑣 than 𝑢 is 𝑣 itself, vertices closer to 𝑢 

than 𝑣 are all vertices in 𝑅\𝑃 ∪ {𝑣}, and edges closer to 𝑢 (or 𝑣) are all edges which incident to 𝑢 (or 𝑣) but 

𝑒. We obtain 𝑛1(𝑒) = 𝑛2(𝑣) = 1, 𝑚1 = 𝜂 − 2, and 𝑚2 = 𝜇 − 1. Hence, 𝑆𝑧(Γ𝑃)  =
𝜇

2
(𝜇 − 1) + (𝜂 − 𝜇)2𝜇 

and 𝑆𝑧𝑒(Γ𝑃) =
𝜇

2
(𝜇 − 1)(𝜂 − 2)2   + 𝜇(𝜂 − 𝜇)(𝜂 − 2)(𝜇 − 1).∎ 

4. CONCLUSIONS 

In this paper, we have determined some values relating to properties of prime ideal graph of 

commutative ring including radius of graph, diameter, degree of vertex, girth, clique number, chromatic 

number, independence number, and domination number. We also determined metric dimension, local metric 

dimension, partition dimension, atom bond connectivity index, Balaban index, Szeged index, and edge-

Szeged index of any given prime ideal graph. 
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