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 ABSTRACT 

Article History: 
Tuberculosis is an infectious disease caused by Mycobacterium Tuberculosis. Tuberculosis 

patients undergoing long-term tuberculosis treatment have a high risk to get asthma as a second 

infection. A person suffering from asthma cannot recover. Asthma therapy is only to control the 

development of asthma so that asthma does not get worse. In this study we discusses the spread 

of tuberculosis with asthma as a secondary infection. We perform the model into system of non- 

linear differential equation that consist of  six equation because the population divided into six 

sub-population which are susceptible, infected by tuberculosis, undergoing tuberculosis 

treatment, infected by asthma, undergoing asthma treatment and recovered from tuberculosis. 

From the model that has been formed, we perform the analysis to obtain the equilibrium point 

and the basic reproduction number. Then we show the local stability of the equilibrium point 

and perform simulations to provide an illustration. From the analytical result, we got that the 

spread influence by recruitment rate, infection rate, natural death rate, tuberculosis treatment 

rate and death rate because of tuberculosis. 
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1. INTRODUCTION 

Tuberculosis infects more than 9 million people and causes the death of 1.5 million people every year 

worldwide. Treatment of tuberculosis takes at least 6 months, causing drug resistance worldwide to increase 

and threaten the effectiveness of tuberculosis treatment [1]. Tuberculosis is a respiratory disease associated 

with asthma. Asthma become a common infection in patients with a history of tuberculosis who was 

successfully treated in the past [2], [3]. Asthma is a disease caused by inflammation of the bronchi which 

causes the bronchi to narrow, so that air flow in the bronchi to the lungs is limited [4]. Current asthma 

treatment including long-term control care and environmental control measures can reduce asthma 

exacerbations due to airborne allergens [5], [6]. 

Some mathematical modelling on tuberculosis has been done such as in [7] which purposes optimal 

control strategies to reduce the number of tuberculosis patient in Philippines. Another researchers in [8] 

purpose mathematical model which include diagnosis and treatment on their model. Mathematical modelling 

on asthma currently not an epidemiological models because asthma is not an infectious disease, such as in 

[9]. They present a computational model that describe mechanism in the lug. 

Secondary infection mathematical model has been done by [10] but they were taking influenza as a 

primary infection and Bronchitis as a secondary infection. In their model, they gave treatment for influenzas 

but didn’t put any treatment for the second infection. Based on this, we will do a mathematical modelling of 

the tuberculosis transmission with asthma as a secondary infection with each infection undergoing a different 

treatment. Next, an analysis of the equilibrium point and its local stability will be carried out on the 

mathematical model that has been formed. As a representation, a numerical simulation will be carried out 

using Maple software. Maple is a computer-based mathematical application for analytical and numerical 

mathematical calculations [11]. 

2. RESEARCH METHODS 

To conduct this research first we collect the medical literature about tuberculosis and asthma. We also 

look up the mathematical model of secondary infection. Base on those literatures we build some assumption 

that proper to the medical phenomena then construct the mathematical models. After the mathematical models 

formed, we analyse the equilibrium points, the basic reproduction number, and their local stability. Finally, 

we do some simulation by choosing some parameters values. Some are based on data, but the others are by 

assumption. We describe the methods on Figure 1. 

 
 

 
Figure 2. Research methods 
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3. RESULTS AND DISCUSSION 

3.1 Mathematical Model 

An infectious disease in a population will divide the population into several classes [11]. Mathematical 

modelling in this study was divided into 6 classes, which are healthy individuals are susceptible to 

tuberculosis infection (𝑆), individuals infected with tuberculosis (𝐼1), individuals infected with tuberculosis 

undergoing treatment (𝑇1), individuals infected with asthma (𝐼2), individuals infected with asthma 

undergoing treatment (𝑇2), and individuals recovering from tuberculosis infection (𝑅). The parameters used 

in the model are presented in the following Table 1. 

Table 1. List of Parameter 

Symbol Definition Condition 

𝛬 Recruitment rate 𝛬 > 0 

𝛽 Tuberculosis infection rate 𝛽 > 0 

𝛾1 Rate of tuberculosis patient into treatment 𝛾1 > 0 

𝛾2 Rate of asthma patient into asthma treatment 𝛾2 > 0 

𝑑1 Dead rate of tuberculosis infected individuals 𝑑1 > 0 

𝑑2 Dead rate of asthma infected individuals 𝑑2 > 0 

𝜎 Rate of recovered tuberculosis patient 0 < 𝜎 < 1 

𝜇 Natural dead rate  𝜇 > 0 

The transmission model for tuberculosis disease with asthma as a secondary infection is illustrated in 

the modelling diagram is show in Figure 2 below 

 

 

 

 

 

 

 

Figure 2. Transfer Diagram 

 

The equation of the mathematical model is obtained as follows 

𝑆 ′ = 𝛬 − 𝛽𝑆𝐼1 − 𝜇𝑆 

𝐼1
′ = 𝛽𝑆𝐼1 − 𝛾1𝐼1 − 𝜇𝐼1 − 𝑑1𝐼1 

𝑇1
′ = 𝛾1𝐼1 − 𝜎𝑇1 − (1 − 𝜎)𝑇1 − 𝜇𝑇1 

𝐼2
′ = (1 − 𝜎)𝑇1 − 𝛾2𝐼2 − 𝜇𝐼2 − 𝑑2𝐼2 

𝑇2
′ = 𝛾2𝐼2 − 𝜇𝑇2 

𝑅′ = 𝜎𝑇1 − 𝜇𝑅 

 

Through Equation (1), the equilibrium point can be found by making zeros on the right side of the 

equation. As a result, two equilibrium points are obtained, namely 

1. Disease-free equilibrium point (𝐸0) = (𝑆
∗, 𝐼1

∗, 𝑇1
∗, 𝐼2

∗, 𝑇2
∗, 𝑅∗) = (

𝛬

𝜇
, 0,0,0,0,0). 

2. Endemic equilibrium point (𝐸1) = (𝑆
∗∗, 𝐼1

∗∗, 𝑇1
∗∗, 𝐼2

∗∗, 𝑇2
∗∗, 𝑅∗∗) with 

 

𝑆∗∗ =
𝛾1 + 𝜇 + 𝑑1

𝛽
 

𝐼1
∗∗ =

𝛬𝛽 − 𝜇(𝛾1 + 𝜇 + 𝑑1)

𝛽(𝛾1 + 𝜇 + 𝑑1)
 

𝑇1
∗∗ =

𝛾1(𝛬𝛽 − 𝜇(𝛾1 + 𝜇 + 𝑑1))

𝛽(1 + 𝜇)(𝛾1 + 𝜇 + 𝑑1)
 

𝐼2
∗∗ =

𝛾1(1 − 𝜎)(𝛬𝛽 − 𝜇(𝛾1 + 𝜇 + 𝑑1))

𝛽(1 + 𝜇)(𝛾1 + 𝜇 + 𝑑1)(𝛾2 + 𝜇 + 𝑑2)
 

𝑇2
∗∗ =

𝛾1𝛾2(1 − 𝜎)(𝛬𝛽 − 𝜇(𝛾1 + 𝜇 + 𝑑1))

𝜇𝛽(1 + 𝜇)(𝛾1 + 𝜇 + 𝑑1)(𝛾2 + 𝜇 + 𝑑2)
 

𝑅∗∗ =
𝜎𝛾1(𝛬𝛽 − 𝜇(𝛾1 + 𝜇 + 𝑑1))

𝛽𝜇(𝜎 + 𝜇)(𝛾1 + 𝜇 + 𝑑1)
 

 

𝑆 𝐼1 𝑇1 

𝑅 

𝐼2 𝑇2 
𝛽 1 − 𝜎 𝛾1 

𝜇 

𝛾2 

𝜇 

𝜎 

𝜇 𝜇 

𝛬 

𝜇 

𝑑1 𝑑2 

𝜇 

(1) 
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The development of transmission of tuberculosis disease with asthma as a secondary infection is 

determined by the basic reproduction number (𝑅0) by finding the largest positive eigen values with the next 

generation matrix involving compartments that cause infection [12], namely 𝐼1, 𝑇1, 𝐼2, and 𝑇2. By some 

computation obtained the value of 𝑅0 =
𝛬𝛽

𝜇(𝛾1+𝜇+𝑑1)
. The existence of the equilibrium points given in 

Theorem 1 as follows. 

Theorem 1. Given 𝑅0 =
𝛬𝛽

𝜇(𝛾1+𝜇+𝑑1)
. 

1. If 𝑅0 ≤ 1, then the system of Equation (1) has one equilibrium point, which is the disease-free 

equilibrium point (𝐸0). 
2. If 𝑅0 > 1, then the system of Equation (1) has two equilibrium points, which are the disease-free 

equilibrium point (𝐸0) and the endemic equilibrium point (𝐸1). 
 

Proof. To find the equilibrium we solve the system equal to zero, so we will have 

 

Λ − 𝛽𝑆𝐼1 − 𝜇𝑆 = 0          

𝛽𝑆𝐼1 − 𝛾1𝐼1 − 𝜇𝐼1 − 𝑑1𝐼1 = 0      

𝛾1𝐼1 − 𝜎𝑇1 − (1 − 𝜎)𝑇1 − 𝜇𝑇1 = 0      
(1 − 𝜎)𝑇1 − 𝛾2𝐼2 − 𝜇𝐼2 − 𝑑2𝐼2 = 0     

𝛾2𝐼2 − 𝜇𝑇2 = 0        

𝜎𝑇1 − 𝜇𝑅 = 0         

From the second equation we got 

𝛽𝑆𝐼1 − 𝛾1𝐼1 − 𝜇𝐼1 − 𝑑1𝐼1 = 0 ⇔ (𝛽𝑆 − 𝛾1 − 𝜇 − 𝑑1)𝐼1 = 0 

And we can conclude that 

𝐼1 = 0 or 𝛽𝑆 − 𝛾1 − 𝜇 − 𝑑1 = 0 

While 𝐼1 = 0 it is easy to substitute and get the free disease equilibrium point 

𝐸0 = (𝑆
∗, 𝐼1

∗, 𝑇1
∗, 𝐼2

∗, 𝑇2
∗, 𝑅∗) = (

Λ

𝜇
, 0,0,0,0,0). 

 

While 𝛽𝑆 − 𝛾1 − 𝜇 − 𝑑1 = 0, then 𝑆 =
𝛾1+𝜇+𝑑1

𝛽
. Substituting this 𝑆 into system (1) then we will get the 

second equilibrium point 

𝐸1 = (𝑆
∗∗, 𝐼1

∗∗, 𝑇1
∗∗, 𝐼2

∗∗, 𝑇2
∗∗, 𝑅∗∗) 

as mentioned above. But we need a positive equilibrium point, and by define 𝑅0 =
𝛬𝛽

𝜇(𝛾1+𝜇+𝑑1)
 the existence 

of the second equilibrium point will be guaranteed while 𝑅0 > 1 .∎ 

 

Then stability analysis will be carried out using the linearization method. So that the eigen values of 

the Jacobian matrix are obtained. The Jacobian matrix is as follows. 

 

𝐽(𝐸) =

(

 
 
 

−𝛽𝐼1 − 𝜇 −𝛽𝑆 0 0 0 0
𝛽𝐼1 𝛽𝑆 − 𝛾1 − 𝜇 − 𝑑1 0 0 0 0
0 𝛾1 −𝜇 − 1 0 0 0
0 0 1 − 𝜎 −𝜇 − 𝛾2 − 𝑑2 0 0
0 0 0 𝛾2 −𝜇 0
0 0 𝜎 0 0 −𝜇)

 
 
 

 

 

Next, substitute the value of the equilibrium point into the Jacobian matrix and look for the eigen values 

from matrix 𝐽(𝐸) using the formula 𝑑𝑒𝑡(𝜆𝐼 − 𝐽(𝐸)) = 0. Equality this called equality characteristics from 

𝐽(𝐸) [13], [14] , [8], [9]. The results were analyzed using the Routh-Hurwitz criteria. Theorem 2 was 

obtained as follows. 

 

Theorem 2. Given 𝑅0 by the system of Equation (1). Based on 𝑅0 this obtained 

1. The disease-free equilibrium point is (𝐸0) locally asymptotically stable if R0 < 1. 
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2. The endemic equilibrium point is (𝐸1) locally asymptotically stable if R0 > 1. 

 

Proof. Substitute 𝐸0 to the Jacobian we got characteristic equation as follow: 

(𝜆 + 𝜇)(𝜆 + 𝜇)(𝜆 + 𝜇 + 𝛾2 + 𝑑2)(𝜆 + 𝜇)(𝜆 − (𝛽𝑆
∗ − 𝛾1 − 𝜇 − 𝑑1))(𝜆 + 𝜇 + 1) = 0. 

So that we will have six eigen value which are 

𝜆1 = −𝜇 

𝜆2 = −𝜇 

𝜆3 = −(𝜇 + 𝛾2 + 𝑑2) 
𝜆4 = −𝜇 

𝜆5 = 𝛽𝑆
∗ − 𝛾1 − 𝜇 − 𝑑1 

𝜆6 = −(𝜇 + 1). 

Because all parameters are non-negative we only need to check 𝜆5. From the previous result, we got 𝑆∗ =
𝑅0(𝛾1+𝜇+𝑑1)

𝛽
, and substitute it to 𝜆5, we will have 

𝜆5 = 𝛽𝑆
∗ − 𝛾1 − 𝜇 − 𝑑1 

𝜆5 = 𝛽 (
𝑅0(𝛾1 + 𝜇 + 𝑑1)

𝛽
) − 𝛾1 − 𝜇 − 𝑑1 

𝜆5 = 𝑅0(𝛾1 + 𝜇 + 𝑑1) − 𝛾1 − 𝜇 − 𝑑1 

𝜆5 = 𝑅0(𝛾1 + 𝜇 + 𝑑1) − (𝛾1 + 𝜇 + 𝑑1) 
𝜆5 = (𝛾1 + 𝜇 + 𝑑1)(𝑅0 − 1). 

Here we can conclude that if 𝑅0 < 1 then all of the eigen values are negative, or in other word 𝐸0 is locally 

asymptotically stable. 

Substitute 𝐸1 to the Jacobian we got the characteristic equation as follow: 

(𝜆 + 𝜇)(𝜆 + 𝜇)(𝜆 + 𝜇 + 𝛾2 + 𝑑2) [(𝜆 + 𝜇(𝑅0 − 1) + 𝜇)(𝜆)(𝜆 + 𝜇 + 1)

− ((−(𝛾1 + 𝜇 + 𝑑1))(𝜇(𝑅0 − 1))(𝜆 + 𝜇 + 1))] = 0 

Then the eigen values are 

𝜆1 = −𝜇 

𝜆2 = −𝜇 

𝜆3 = −(𝜇 + 𝛾2) 

and 𝜆4, 𝜆5, dan 𝜆6are solutions of 

(𝜆 + 𝜇(𝑅0 − 1) + 𝜇)(𝜆)(𝜆 + 𝜇 + 1) − ((−(𝛾1 + 𝜇 + 𝑑1))(𝜇(𝑅0 − 1))(𝜆 + 𝜇 + 1)) = 0. 

Using Ruth-Hurwitz criterion can be seen that if 𝑅0 > 1 then all real part of the eigen values are negative, or 

in other word 𝐸1 is locally asymptotically stable.∎ 

3.2 Numerical Simulations 

Then the model is simulated using the initial values 𝑆(0) = 2, 𝐼1(0) = 1, 𝑇1(0) = 0, 𝐼2(0) = 0, 

𝑇2(0) = 0, and 𝑅(0) = 0. The parameter values stated are as in Table 2 below 

Table 2. Parameter Value 

Parameter Values Source 

𝛬 0.45 [15] 

𝛽 0.5 [16] 

𝛾1 0.3 [15] 

𝛾2 0.9767 [17] 

𝑑1 0.022722 [15] 

𝑑2 0.001737 [18] 

𝜎 0.304 [2] 

𝜇 0.3 [19] 
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𝑆(𝑡) 
𝐼1(𝑡) 
𝑇1(𝑡) 
𝐼2(𝑡) 
𝑇2(𝑡) 
𝑅(𝑡) 

𝑆(𝑡) 
𝐼1(𝑡) 
𝑇1(𝑡) 
𝐼2(𝑡) 
𝑇2(𝑡) 
𝑅(𝑡) 

3.2.1 Simulation around the Disease-Free Equilibrium Point(𝑬𝟎) 
The parameter value is γ1 enlarged to 0.5 then the basic reproduction number is obtained 𝑅0 =

0,9116080523. Because 𝑅0 < 1 then there is a disease-free condition. Obtained value 𝐸0 =
(𝑆∗, 𝐼1

∗, 𝑇1
∗, 𝐼2

∗, 𝑇2
∗, 𝑅∗) = (1.5, 0, 0, 0, 0, 0). The graph is shown in Figure 2 below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Simulation of Disease-Free Equilibrium Point 

 

Based on Figure 2 above, it can be seen that healthy individuals who are susceptible to tuberculosis 

(𝑆) have decreased in their initial conditions. Then the size of susceptible individuals increases to a certain 𝑡 
and there is no change or constant at a point 1,5 at a certain 𝑡. As for the other populations, individuals 

infected with tuberculosis (𝐼1), individuals infected with tuberculosis underwent treatment for tuberculosis 

(𝑇1), individuals infected with asthma (𝐼2), individuals infected with asthma underwent treatment for asthma 
(𝑇2), and individuals recovered from tuberculosis (𝑅) experienced an increase over time 𝑡. Then it decreases 

until a time 𝑡 and is constant at zero. 

 

3.2.2 Simulation Analysis at the Endemic Equilibrium Point(𝑬𝟏) 

While we set parameter value 𝛾1 = 0,3 then obtained the basic reproduction number R0 =
1,20438976. Because 𝑅0 > 1there will be endemic conditions. Obtained values 𝐸0 =
(𝑆∗∗, 𝐼1

∗∗, 𝑇1
∗∗, 𝐼2

∗∗, 𝑇2
∗∗, 𝑅∗∗) = (1.245444, 0.122633866, 0.02830012062, 0.01540700398, 0.05016006932, 

0.02867745556). The graph is shown in Figure 3 below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Endemic Equilibrium Point Simulation 

 

Based on Figure 3 above, it is found that healthy individuals who are susceptible to tuberculosis 

infection 𝑆(𝑡) have decreased in their initial conditions. Then the size of susceptible individuals increases to 

a certain 𝑡 and there is no change or constant at a point 1.245444 at a certain 𝑡.Individuals infected with 

tuberculosis 𝐼1(𝑡) experienced an increase in initial conditions. Then up to a certain point when the tindividual 

infected with tuberculosis decreased and there was no change or constant at the point 0.12263 at a certain 
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𝑡.Individuals infected with tuberculosis who underwent tuberculosis treatment 𝑇1(𝑡) experienced an increase 

in baseline conditions. Then up to a certain point when tindividuals infected with tuberculosis undergoing 

treatment experience a decrease and there is no change or constant at a the point 0.02830 at a certain 

𝑡.Individuals infected with asthma 𝐼2(𝑡) have an increase in initial conditions. Then up to a certain point when 

tan individual is infected with asthma there is a decrease and there is no change or constant at the point 

0.01541 at a certain 𝑡.Individuals infected with asthma undergoing asthma treatment 𝑇2(𝑡) experienced an 

increase in initial conditions. Then up to a certain point when tan individual is infected with tuberculosis, 

there is a decrease and there is no change or constant at the point of 0.05106 at a certain 𝑡.Individuals 

recovering from tuberculosis 𝑅(𝑡) experienced an increase in initial conditions. Then up to a certain point 

when the tindividual recovers from tuberculosis, there is a decrease and there is no change or constant at the 

point 0.02868 at a certain 𝑡. 
 

3.2.3 Changing on Parameter Value 𝜸𝟏 

To determine the effect of tuberculosis treatment rate, we varying the value of the parameters 

γ1presented in Table 3 below: 

Table 3. Variation of Parameters 𝛄𝟏 at The Equilibrium Point 

𝜸𝟏 𝑹𝟎 Equilibrium point(𝑺, 𝑰𝟏, 𝑻𝟏, 𝑰𝟐, 𝑻𝟐, 𝑹) 
0.1 1.774215678 (0.84544, 0.46453, 0.03573, 0.01945, 0.06333, 0.03621) 

0.3 1.204389760 (1.24544, 0.12263, 0.02830, 0.01541, 0.05016, 0.02868) 

0.5 0.9116080523 (1.5, 0, 0, 0, 0, 0) 

0.7 0.7333371141 (1.5, 0, 0, 0, 0, 0) 

0.9 0.6133855447 (1.5, 0, 0, 0, 0, 0) 

 

Obtained a graph as shown in Figure 4 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ1 = 0.1 

γ1 = 0.3 

γ1 = 0.5 

γ1 = 0.7 

γ1 = 0.9 

 

Figure 4. Simulation of the effect of tuberculosis treatment rate for each sub-population, (a) susceptible sub-

population, (b) tuberculosis patients sub-population, (c) tuberculosis patients undergoing treatment sub-

population. 

 

Based on Figure 4 (a), and Figure 4 (b) it can be seen that the lower the rate of tuberculosis treatment, 

the higher the number of individuals in the 𝑆(𝑡) and 𝐼1(𝑡). While in Figure 4 (c) it can be seen that the lower 

the rate of tuberculosis treatment, the lower the number of individuals in the sub-population 𝑇1(𝑡). The sub-

population 𝐼2(𝑡), 𝑇2(𝑡), and 𝑅(𝑡) has the same graph as in Figure 4 (c). It can be seen that the lower the rate 

of tuberculosis treatment results in the lower number of individuals infected with asthma, asthma-infected 

individuals undergoing asthma treatment, and individuals recovering from tuberculosis. The effect of 

tuberculosis treatment rate on individuals in each population is the higher the effect of tuberculosis treatment, 

the faster the development of individuals in each population will reach a stable point in time 𝑡 increased rate 

of tuberculosis treatment. 

  

(b) 𝐼1(𝑡) 

 

(c) 𝑇1(𝑡) 

 

 

(a) 𝑆(𝑡) 
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3.2.4 Changing on Parameter Value 𝒅𝟏 

To find out the effect of the death rate of an individual infected with tuberculosis, it will be done by 

varying the value of the parameter value 𝑑1 presented in Table 4 below: 

Table 4. Parameter Variations 𝒅𝟏 at The Equilibrium Point 

𝒅𝟏 𝑹𝟎 Equilibrium point(𝑺, 𝑰𝟏, 𝑻𝟏, 𝑰𝟐, 𝑻𝟐, 𝑹) 
0.02 1.209677419 (1.24000, 0.12581, 0.02903, 0.01581, 0.05146, 0.02942) 

0.1 1.071428571 (1.40000, 0.04286, 0.00989, 0.00538, 0.01753, 0.01002) 

0.2 0.937500000 (1.5, 0, 0, 0, 0, 0) 

0.3 0.833333333 (1.5, 0, 0, 0, 0, 0) 

0.4 0.750000000 (1.5, 0, 0, 0, 0, 0) 

 

Obtained a graph as shown in Figure 5 below 
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Figure 5. Simulation by Varying the Death Ratescaused of Tuberculosis on (a)susceptible sub-population, 

(b)tuberculosis patients sub-population, (c)tuberculosis patients undergoing treatment sub-population. 

 

Based on Figure 5 (a), Figure 5 (b), and Figure 5 (c) it can be seen that the lower the death rate of 

individuals infected with tuberculosis, the higher the number of individuals in each population. Population 

𝐼2(𝑡), 𝑇2(𝑡), and 𝑅(𝑡) have the same graph as in Figure 5 (c). It can be seen that the lower the death rate of 

individuals infected with tuberculosis, the higher the number of individuals infected with asthma, asthma-

infected individuals undergoing asthma treatment, and individuals recovering from tuberculosis. The effect 

of the death of an individual infected with tuberculosis on an individual in each population is the higher the 

effect of the death of an individual infected with tuberculosis, the faster the development of individuals in 

each population will reach a stable point in time 𝑡. So, to achieve a disease-free condition or a condition 

where tuberculosis disease with asthma as a secondary infection will disappear, it is necessary to increase the 

proportion of deaths of individuals infected with tuberculosis. 

4. CONCLUSIONS 

Through this research, it is found that the mathematical model of the spread of tuberculosis with asthma 

as a secondary infection has two equilibrium points, which are the disease-free equilibrium point (𝐸0) and 

the endemic equilibrium point (𝐸1). The spread of tuberculosis with asthma as a secondary infection is 

indicated by the basic reproduction number (𝑅0) that influenced by recruitment rate, infection rate, the natural 

death rate, tuberculosis treatment rate and the death rate of tuberculosis patient. The disease-free equilibrium 

point is (𝐸0) locally asymptotically stable if 𝑅0 < 1. Meanwhile, the endemic equilibrium point is 

(𝐸1) locally asymptotically stable if 𝑅0 > 1. Based on the numerical simulations performed, it was found 

that the change in the proportion value 𝛾1 had 𝑑1 a significant effect on the basic reproduction value (𝑅0) 

(c) 𝑇1(𝑡) 

 

 

(b) 𝐼1(𝑡) 

 

 

(a) 𝑆(𝑡) 
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and the equilibrium point obtained. By giving a value 𝛾1 and 𝑑1 the higher it will decrease the value 𝑅0 and 

the development of individuals in each population is getting faster towards a stable point. 
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