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 ABSTRACT 

Article History: 
Covid-19 is a dangerous disease that is easily transmitted, both through living media in the 

form of interactions with infected human, as well as through inanimate objects in the form of 

surfaces contaminated with the Coronavirus. Various preventive and repressive efforts have 

been made to prevent the spread of this disease, such as isolating and recovering the infected 

human. In this study, the authors construct and analyze a new mathematical model in the form 

of a three-dimensional differential equations system that represent the interactions between 

subpopulations of coronavirus living on inanimate objects, susceptible human, and infected 

human within a population. The purpose of this study is to investigate the criteria that must be 

met in order to create a population free from Covid-19 by considering inanimate objects as a 

medium for its spread besides living objects. The model solution that represents the number of 

each subpopulation is non-negative and bounded, so it is in accordance with the biological 

condition that the number of subpopulations cannot be negative and there is always a limit for 

its value. The eradication rate of Coronavirus living on inanimate objects, the recovery rate of 

infected human, and the interaction rate between susceptible human and infected human such 

that the population is free from Covid-19 for any initial conditions of each subpopulation were 

investigated in this study through global stability analysis of the disease-free equilibrium point 

of the model. 
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1. INTRODUCTION 

Covid-19 is a dangerous infectious disease that has been a pandemic since 2020 [1]. The disease was first 

discovered in Wuhan, China in late December 2019 [2] [3] and is caused by a virus infection called Severe 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) or Coronavirus [4]. As of February 19th, 2023, 

more than 757 million positive cases and more than 6.8 million deaths cases from this disease have been 

detected in the world [5]. 

The spread of Covid-19 can occur through interactions between animals and human or between human 

who carrying the Coronavirus [6] [7]. Furthermore, inanimate objects can also mediate the spread of 

Coronavirus [8]. Coronaviruses can live for several hours to days in inanimate objects, such as aerosols and 

surfaces of objects [9]. Coronavirus can live for three hours in aerosols, 4 hours in copper, 1 day in cardboard 

[9]. Moreover, Coronavirus can live more stably in plastic and steel than copper and cardboard for 72 hours 

[9]. Even Coronavirus can live on paper, glass, PVC, metal, ceramics, and teflon for up to 5 days [10]. It 

shows that the Coronavirus can survive on various surfaces of objects, making it possible for Coronavirus to 

infect human who touch it. Therefore, inanimate objects can mediate the spread of Covid-19 other than 

through direct interaction between human.  

Various studies have been carried out to form a model for the spread of Covid-19, such as the SIR model. 

However, the dissemination medium taken in the previous SIR model such as in [11], [12], [13], [14], [15], 

[16], [17], [18], [19], [20], [21], and [22] still focuses on human-to-human interactions and has not considered 

the possibility of Coronavirus infection through inanimate objects . Thus, in this study we construct a new 

mathematical model in the form of a three-dimensional differential equation system that considers those two 

facts, i.e. the Coronavirus-to-human besides human-to-human interactions and the existence of Coronavirus 

in inanimate objects which can infect humans. The model represents interaction between Coronavirus living 

on inanimate objects, susceptible human, and infected human subpopulation. We analyze the model to 

identify the criteria that must be met to make the population free from Covid-19, so that it can be used as a 

recommendation to prevent or overcome Covid-19 in the population. 

2. RESEARCH METHODS 

The type of this research is quantitative. This research is done by following the steps below. 

1. Conduct a literature study on the characteristics of Covid-19, especially the transmission media, so that 

the factors related to it can be identified. 

2. Determine some assumptions to make this research focus. The assumptions generated in this research 

are: 

a. Neglect the possibility that susceptible human subpopulation can carry Coronavirus besides 

infected subpopulation. 

b. Infection of Coronavirus living on inanimate objects is more massive than its eradication by 

susceptible human subpopulation. 

c. Consider that every baby born is not infected by Coronavirus. 

d. Only investigate the conditions for the population to be free from Covid-19. 

3. Define model variables dan parameters based on the literatures and assumptions that have been made in 

order to construct the mathematical model. 

4. Construct the mathematical model which represents the interactions between the variables with the 

parameters as the rate. The model is a differential equation system with three variable dimensions and 

eight parameters’ dimensions. 

5. Analyze the mathematical model by using mathematical theory. The analysis includes non-negativeness 

and boundedness of the model solution, disease-free equilibria, basic reproduction number, local and 

global stability of the disease-free equilibria. 

6. Simulate the solution of the model by setting the parameter values based on the literature and assumption 

such that they meet the global stability of disease-free equilibria requirements in order to confirm the 

correctness of the analysis results and illustrate the dynamics of Coronavirus, susceptible, and infected 

subpopulation related to the disease-free equilibria. 
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7. Interpret the mathematical results in medical or biological terms in order to obtain recommendations in 

solving the existing problems. 

3. RESULTS AND DISCUSSION 

In this section, we will discuss about the formation of mathematical models, the analysis of the non-

negativeness and boundedness of solutions, the investigation of disease-free equilibria, along with the 

analysis of its local and global stability. 

3.1 Mathematical Models 

Covid-19 infection can occur through interaction between human and inanimate objects as the medium. 

Therefore, in the population, three subpopulations are defined, that is the subpopulation of Coronavirus living 

on inanimate objects, susceptible human, and infected human.  

Some interactions occur between subpopulations. The subpopulation of Coronavirus living on 

inanimate objects increases due to the droplets from infected human subpopulations that attached to them. 

Coronaviruses that attached to inanimate objects decreases because the Coronavirus can only survive at a 

certain period of time in inanimate objects [9], [10]. Susceptible human subpopulations are prone to increase 

due to the natural birth and the presence of infected human who recover. This subpopulation also increases 

indirectly due to the efforts in eradicating Coronavirus living on inanimate objects by susceptible human. 

This subpopulation is reduced because it is being infected with Coronavirus living on inanimate objects and 

infected human. The subpopulation of infected human increases because there are susceptible humans who 

are infected by Coronavirus due to the infections that occur both through Coronavirus living on inanimate 

objects, as well as human who are infected. The subpopulation of infected human is reduced because this 

subpopulation may die naturally or recover. The subpopulation of infected human is also reduced because 

Coronavirus infection.  

Based on the subpopulations involved in the spread of Covid-19 that have been described, several 

variables and parameters are defined to construct the mathematical models. Some model variables 

representing subpopulations are written in Table 1. 

Table 1.  Model Variable 

Variable Interpretation Unit 

𝑉 Coronavirus living on inanimate objects subpopulation Virion 

𝑆 Susceptible human subpopulation Person 

𝐼 Infected human subpopulation Person 

𝑡 Time Day 

In accordance with the biological facts of Coronavirus living on inanimate objects, susceptible human, 

and infected human are always more than or equal to zero, so the value 𝑉, 𝑆, and 𝐼 are non-negative. Model 

parameters representing the level of interaction between subpopulations are written in Table 2. 

Table 2. Model parameter 

Parameter Interpretation Unit 

𝑎 Addition rate of Coronavirus living on inanimate objects due to droplets from 

infected human 

Virion per day 

𝑏 Natural mortality rate of Coronavirus living on inanimate objects Virion per day 

𝑐 Natural birth rate of susceptible human People per day 

𝑝 Infection rate of Coronavirus living on inanimate objects against susceptible 

human 

Virion per day 

𝑞 Eradication rate of Coronavirus living on inanimate objects by susceptible 

human 

Virion per day 

𝑒 Natural mortality rate of susceptible human Per day 

𝑓 Recovery rate of infected human Per day 

𝑔 Interaction rate between susceptible human and infected human People per day 

ℎ Mortality rate of infected human due to Coronavirus infection Per day 

All parameters are positive, since all parameters represent interactions that occur between 

subpopulations. Specifically, 0 ≤ 𝑏, 𝑒, ℎ ≤ 1, because they represent proportion and 𝑝 > 𝑞 based on the 

assumption. 
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The following compartment diagram represents the interaction between subpopulations with the level 

of interaction of each as defined. 

 

Figure 1. Compartment Diagram Of The Interaction Between Subpopulations 

Based on the compartment diagram, we constructed a new mathematical model in the form of a system 

of differential equations with three dimensions of variable as follows. 

𝑑𝑉

𝑑𝑡
= 𝑎𝐼 − 𝑏𝑉        (1) 

𝑑𝑆

𝑑𝑡
= 𝑐 − 𝑝𝑆𝑉 + 𝑞𝑆𝑉 − 𝑒𝑆 + 𝑓𝐼 − 𝑔𝑆𝐼                     (2) 

𝑑𝐼

𝑑𝑡
= 𝑝𝑆𝑉 − 𝑞𝑆𝑉 + 𝑔𝑆𝐼 − 𝑓𝐼 − ℎ𝐼     (3) 

Equation (1) represents the rate of change of Coronavirus living on inanimate objects subpopulations 

with respect to time. The first term denotes the addition of Coronavirus living on inanimate objects as a result 

of infected human droplets attached to inanimate objects with 𝑎 as the addition rate. The second term denotes 

the reduction of Coronavirus due to the natural death of Coronavirus with 𝑏 as the mortality rate. 

Equation (2) represents the rate of change of susceptible human subpopulations with respect to time. 

The first term denotes the addition of susceptible human due to the natural birth with 𝑐 as the birth rate. The 

second term denotes the reduction of susceptible human due to the Coronavirus infections living on inanimate 

objects with 𝑝 as the infection rate. The third term denotes the addition of susceptible human indirectly due 

to the eradication of Coronavirus living on inanimate objects by susceptible human with 𝑞 as the eradication 

rate. The fourth term denotes the reduction of susceptible human due to the natural death with 𝑒 as the 

mortality rate. The fifth term denotes the rate of addition of susceptible human due to the recovery of infected 

human with 𝑓 as the recovery rate. The sixth term denotes the reduction of susceptible human due to their 

interactions with infected human, in such that susceptible human are becoming infected with 𝑔 as the 

interaction rate. 

Equation (3) represents the rate of change of infected human subpopulations with respect to time. The 

first term denotes the addition of human infected due to the Coronavirus infections living on inanimate objects 

with 𝑝 as the infection rate. The second term denotes the reduction of infected human indirectly due to the 

eradication of Coronavirus living on inanimate objects by susceptible human with 𝑞 as the eradication rate. 

The third term denotes the addition of infected human due to their interactions with susceptible human, in 

such that susceptible human become infected with 𝑔 as the interaction rate. The fourth term denotes the rate 

of infected human reduction due to the recovery with 𝑓 as the recovery rate. The fifth term denotes the death 

rate of infected human due to the infection with ℎ as the mortality rate. 
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3.2 Non-negativeness and Boundedness of the Solution 

Non-negativeness of the model solution guarantees that for any time, the subpopulation of Coronavirus 

living on inanimate objects, susceptible human, and infected human have non-negative value which 

corresponds to the biological fact that subpopulations cannot be negative [23]. The non-negativeness of the 

model solution is expressed in the following theorem. 

Theorem 1. For each initial condition, 𝑉(0) ≥ 0, 𝑆(0) ≥ 0, and 𝐼(0) ≥ 0, then the model solution is always 

non-negative for each 𝑡 > 0. 

Proof. By subtracting the right field of Equation (1) by 𝑎𝐼, we obtain 

𝑑𝑉

𝑑𝑡
≥ −𝑏𝑉 ⟺ 𝑉(𝑡) ≥ 𝑉(0)𝑒−𝑏𝑡 ≥ 0      (4) 

Then, by subtracting the right field of Equation (2) by 𝑐 + 𝑞𝑆𝑉 + 𝑓𝐼, we obtain 

𝑑𝑆

𝑑𝑡
≥ −𝑝𝑆𝑉 − 𝑒𝑆 − 𝑔𝑆𝐼 ⟺ 𝑆(𝑡) ≥ 𝑆(0)𝑒− ∫ (𝑑𝑉(𝑡)+𝑔𝐼(𝑡))𝑑𝑡

𝑡

0
+𝑒𝑡 ≥ 0  (5) 

Moreover, by subtracting the right field of Equation (3) by 𝑝𝑆𝑉 − 𝑞𝑆𝑉, we obtain 

𝑑𝐼

𝑑𝑡
≥ 𝑔𝑆𝐼 − 𝑓𝐼 − ℎ𝐼 ≥ 𝐼(0)𝑒∫ (𝑔𝐼(𝑡))𝑑𝑡

𝑡

0
−(𝑓+ℎ)𝑡 ≥ 0    (6) 

Based on the inequality (4), (5), and (6), we obtain 𝑉(𝑡) ≥ 0, 𝑆(𝑡) ≥ 0, and 𝐼(𝑡) ≥ 0 which means that the 

model solution is always of non-negative value for each 𝑡 > 0. █ 

Boundedness of the model solution guarantees that for any time, the subpopulation of Coronavirus 

living on inanimate objects, susceptible human, and infected human is bounded which corresponds to the 

biological fact that there is a maximum or minimum limit of subpopulation [23]. Boundedness of the model 

solution is expressed in the following theorem. 

Theorem 2. The model solution is bounded for each 𝑡 > 0. 

Proof.  We will show that there is 𝑀 > 0 so that 𝑉(𝑡) ≤ 𝑀, 𝑆(𝑡) ≤ 𝑀 , and 𝐼(𝑡) ≤ 𝑀 for each 𝑡 > 0.  Based 

on Equations (2) and (3), we obtain 

   
𝑑(𝑆+𝐼)

𝑑𝑡
= 𝑐 − 𝑒𝑆 − ℎ𝐼 ≤ 𝑐 − 𝑘(𝑆 + 𝐼), 

with 𝑘 = min {𝑒, ℎ}. Furthermore, note that 

   lim
𝑡→∞

(𝑆(𝑡) + 𝐼(𝑡)) ≤
𝑐

𝑘
= 𝑀1. 

Consequently 𝑆(𝑡) + 𝐼(𝑡) bounded for each 𝑡 > 0. 𝑆(𝑡) and 𝐼(𝑡) is also bounded for each 𝑡 > 0, because 

𝑆(𝑡) + 𝐼(𝑡)  is bounded for each 𝑡 > 0. Then, based on Equation (1), we obtain  

   
𝑑𝑉

𝑑𝑡
= 𝑎𝐼 − 𝑏𝑉 ≤ 𝑎𝑀1 − 𝑏𝑉, 

so that  

   lim
𝑡→∞

𝑉 (𝑡) ≤
𝑎𝑀1

𝑏
= 𝑀2. 

Consequently 𝑉(𝑡) is bounded for each 𝑡 > 0. Then, we choose 𝑀 = 𝑚𝑎𝑘𝑠{𝑀1, 𝑀2}, so that we obtain 

𝑉(𝑡) ≤ 𝑀, 𝑆(𝑡) ≤ 𝑀 , and 𝐼(𝑡) ≤ 𝑀 for each 𝑡 > 0. █  

3.3 Disease-Free Equilibria 

The non-linearity of the model makes the model solution difficult to find exactly. Therefore, the 

dynamics of the model solution will be investigated related to the equilibria representing condition that have 

not changed for a very long time. We especially investigate the disease-free equilibria because it represents 

the condition of a population that is free from Covid-19. Based on this, investigation of the disease-free 

equilibria is written in the following theorem. 

Theorem 3. The disease-free equilibria in the model is 𝐸0 = (𝑉∗, 𝑆∗, 𝐼∗) = (0,
𝑐

𝑒
, 0) which exists for each 

condition. 
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Proof. The equilibria is obtained by solving 
𝑑𝑉

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
= 0 [24], [25],  [26],  [27]. Therefore, based on 

Equations (1), (2), and (3) we obtain 

𝑑𝑉

𝑑𝑡
= 𝑎𝐼 − 𝑏𝑉 = 0       (7) 

𝑑𝑆

𝑑𝑡
= 𝑐 − 𝑝𝑆𝑉 + 𝑞𝑆𝑉 − 𝑒𝑆 + 𝑓𝐼 − 𝑔𝑆𝐼 = 0    (8) 

𝑑𝐼

𝑑𝑡
= 𝑝𝑆𝑉 − 𝑞𝑆𝑉 + 𝑔𝑆𝐼 − 𝑓𝐼 − ℎ𝐼 = 0     (9) 

 

Based on Equation (1) we obtain 𝑉 =
𝑎

𝑏
𝐼. Furthermore, by eliminating Equations (8) and (9) we 

obtain 𝑐 − 𝑒𝑆 − ℎ𝐼 = 0 which is equivalent to 𝑆 =
−ℎ𝐼+𝑐

𝑒
. Then, by substituting 𝑉 =

𝑎

𝑏
𝐼 and 𝑆 =

−ℎ𝐼+𝑐

𝑒
 to 

Equations (9) we obtain 

𝐼(𝐴𝐼 − 𝐵) = 0                  (10) 

 

with 𝐴 =
(𝑝−𝑞)𝑎ℎ+𝑏𝑔ℎ

𝑏𝑒
 and 𝐵 =

𝑏𝑒𝑓+𝑏𝑒ℎ+(𝑝−𝑞)𝑎𝑐+𝑏𝑔𝑐

𝑏𝑒
. Based on Equation (10), we obtain 𝐼 = 0 or 𝐼 =

𝐵

𝐴
=

𝑏𝑒𝑓+𝑏𝑒ℎ+(𝑝−𝑞)𝑎𝑐+𝑏𝑔𝑐

(𝑝−𝑞)𝑎ℎ+𝑏𝑔ℎ
=

𝑏𝑒(𝑓+ℎ)+𝑐[(𝑝−𝑞)𝑎+𝑏𝑔]

ℎ[(𝑝−𝑞)𝑎+𝑏𝑔]
. We choose 𝐼 = 0, because this study only focused on the 

analysis of an equilibria with zero value of infected human subpopulations which represents the condition of 

a Covid-19-free population. If 𝐼 = 0, then 𝑉 =
𝑎

𝑏
(0) = 0 and 𝑆 =

−ℎ(0)+𝑐

𝑒
=

𝑐

𝑒
. Consequently, we found an 

equilibria 𝐸0 = (𝑉∗, 𝑆∗, 𝐼∗) = (0,
𝑐

𝑒
, 0) . 𝐸0 = (𝑉∗, 𝑆∗, 𝐼∗) = (0,

𝑐

𝑒
, 0) exists for each condition, because 𝑉∗ =

0, 𝑆∗ =
𝑐

𝑒
> 0, and 𝐼∗ = 0 , thus met the biological fact that each subpopulation has non-negative value. 𝐸0 

is called the disease-free equilibria, because the value of infected human subpopulation on 𝐸0, i. e. 𝐼∗ is zero 

which means that there is no human infected by Coronavirus in the population, so the population is free from 

Covid-19. Hence, the disease-free equilibria in the model is 𝐸0 = (𝑉∗, 𝑆∗, 𝐼∗) = (0,
𝑐

𝑒
, 0) which exists for 

each condition. █ 

3.4 Basic Reproduction Numbers (𝑹𝟎) 

The basic reproduction number is an indicator that determines condition of the population that is free 

from Covid-19 or the spread of Covid-19 [28]. The basic reproduction number of the model is expressed in 

the following theorem. 

Theorem 4.  The basic reproduction number of the model is 𝑅0 =
𝑔𝑐

𝑒(𝑓+ℎ)
. 

Proof. The basic reproduction number of the model is calculated using the Next Generation Matrix [29]. The 

matrix can be determined by an equation that represents the rate of change of the infected human 

subpopulation, namely Equation (9) which is equivalent to 

   
𝑑𝐼

𝑑𝑡
= 𝜎(𝑉, 𝑆, 𝐼) − 𝜇(𝑉, 𝑆, 𝐼), 

 

with 𝜎(𝑉, 𝑆, 𝐼) = 𝑝𝑆𝑉 + 𝑔𝑆𝐼 and 𝜇(𝑉, 𝑆, 𝐼) = 𝑞𝑆𝑉 + 𝑓𝐼 + ℎ𝐼. By linearizing 𝜎and 𝜇 with respect to 𝐼, we 

get 𝜔 = 𝑔𝑆 and 𝛿 = 𝑓 + ℎ . Next, we define the Next Generation Matrix of the model as 𝐻, so that  

𝐻 = 𝜔𝛿−1 = 𝑔𝑆(𝑓 + ℎ)−1                    (11) 

 

Then, by substituting 𝑆 = 𝑆∗ to Equation (11) is obtained 

𝐻 = 𝜔𝛿−1 =
𝑔𝑐

𝑒(𝑓+ℎ)
= 𝑅0. █ 
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3.5 Local Stability of Disease-Free Equilibria 

The dynamics of the model solution around the disease-free equilibria 𝐸0 were analyzed using the local 

stability of the equilibria. The local stability analysis of disease-free equilibria 𝐸0 shows the criteria that must 

be met in order to make the population free from Covid-19 for the initial conditions of each subpopulation 

around the equilibria as time goes by. The criterion is written in the following theorem. 

Theorem 5. 𝐸0 is locally asymtotically stable if 𝑅0 < 1. 

Proof.  Local stability 𝐸0 was analyzed by linearizing the model using Jacobian Matrix [24], [25], [26], [27].  

The Jacobian matrix of the model evaluated at 𝐸0 is 

   𝐽 (0,
𝑐

𝑒
, 0) = (

−𝑏 0 𝑎

−
(𝑝−𝑞)𝑐

𝑒
−𝑒 𝑓 −

𝑔𝑐

𝑒
(𝑝−𝑞)𝑐

𝑒
0

𝑔𝑐

𝑒
− 𝑓 − ℎ

). 

Consider 𝜆 is the eigen value of the Jacobian matrix. Hence, the characteristic equation of the Jacobian matrix 

is obtained as follows. 

   (𝜆 + 𝑒)[𝜆2 + 𝐴𝜆 + 𝐵] = 0 

where 𝐴 = 𝑏 + 𝑓 + ℎ −
𝑔𝑐

𝑒
 and 𝐵 = 𝑏(𝑓 + ℎ) −

𝑐[𝑎(𝑝−𝑞)+𝑏𝑔]

𝑒
. Therefore, we obtain 𝜆1 = −𝑒 < 0 and 𝜆2 +

𝐴𝜆 + 𝐵 = 0. The real part of the roots in equation 𝜆2 + 𝐴𝜆 + 𝐵 = 0 is negative if 𝐴 > 0 and 𝐵 > 0 which 

are equivalent to  

𝑏 + 𝑓 + ℎ >
𝑔𝑐

𝑒
             (12) 

and 

         𝑏(𝑓 + ℎ) >
𝑐[𝑎(𝑝−𝑞)+𝑏𝑔]

𝑒
 (13) 

respectively. Based on Inequation (13) and assumption that 𝑝 > 𝑞, we obtain 𝑒𝑏(𝑓 + ℎ) > 𝑐𝑏𝑔 which is 

equivalent to 𝑅0 =
𝑔𝑐

𝑒(𝑓+ℎ)
< 1. If 𝑅0 =

𝑔𝑐

𝑒(𝑓+ℎ)
< 1, we obtain 𝑓 + ℎ >

𝑔𝑐

𝑒
, so that 𝑏 + 𝑓 + ℎ >

𝑔𝑐

𝑒
 which 

equivalent to Inequation (12). Hence, 𝐸0 is locally asymtotically stable if 𝑅0 < 1. █ 

3.6 Global Stability of the Disease-Free Equilibria 

The dynamics of the model solution under any initial subpopulation conditions were analyzed using 

the global stability of the equilibria. The global stability of disease-free equilibria 𝐸0 indicates the criteria 

that must be met in order to make the population free from Covid-19 for any initial condition of each 

subpopulation as time goes by. The criterion is written in the following theorem. 

Theorem 6. 𝐸0 is globally asymptotically stable if these two conditions are fulfilled, i.e.  

1)  𝑞 > 𝑝 −
𝑏𝑒

𝑐
 

2) At least one of these three conditions is fulfilled, i.e.  

i. 𝑎 < 𝑓 + ℎ −
𝑔𝑐

𝑒
 

ii. 𝑓 > 𝑎 +
𝑔𝑐

𝑒
− ℎ  

iii. 𝑔 <
(𝑓+ℎ−𝑎)𝑒

𝑐
   

Proof.  The criteria for global stability of disease-free equilibria 𝐸0 were investigated using the LaSalle-

Lyapunov Theorem [30].  We define Lyapunov function 

   𝐿 = 𝑉 + 𝐼, 

so that, 

   
𝑑𝐿

𝑑𝑡
= 𝑎𝐼 − 𝑏𝑉 + 𝑝𝑆𝑉 − 𝑞𝑆𝑉 + 𝑔𝑆𝐼 − 𝑓𝐼 − ℎ𝐼 

   ≤  𝑎𝐼 +
𝑔𝑐

𝑒
𝐼 − 𝑓𝐼 − ℎ𝐼 − 𝑏𝑉 +

𝑝𝑐

𝑒
𝑉 −

𝑞𝑐

𝑒
𝑉 
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  = − (−𝑎 −
𝑔𝑐

𝑒
+ 𝑓 + ℎ) 𝐼 − (𝑏 −

𝑝𝑐

𝑒
+

𝑞𝑐

𝑒
) 𝑉 

< 0 

 

if 𝑏 −
𝑝𝑐

𝑒
+

𝑞𝑐

𝑒
> 0 which is equivalent to 𝑞 > 𝑝 −

𝑏𝑒

𝑐
 and −𝑎 −

𝑔𝑐

𝑒
+ 𝑓 + ℎ > 0 which is equivalent to 𝑎 <

𝑓 + ℎ −
𝑔𝑐

𝑒
 or 𝑓 > 𝑎 +

𝑔𝑐

𝑒
− ℎ or 𝑔 <

(𝑓+ℎ−𝑎)𝑒

𝑐
. Moreover, 

𝑑𝐿

𝑑𝑡
= 0 if and only if 𝐼 = 0 and 𝑉 = 0. Therefore, 

the maximum invariant compact set is the field 𝐼 = 0 and 𝑉 = 0. Hence, the solutions which are initiated in 

the field will converge to 𝐸0. Therefore, 𝐸0 is globally asymptotically stable if 𝑞 > 𝑝 −
𝑏𝑒

𝑐
 and at least one of 

these three conditions is satisfied, i.e. 𝑎 < 𝑓 + ℎ −
𝑔𝑐

𝑒
 or 𝑓 > 𝑎 +

𝑔𝑐

𝑒
− ℎ or 𝑔 <

(𝑓+ℎ−𝑎)𝑒

𝑐
. █ 

Based on the conditions that must be met in order to make the disease-free equilibria 𝐸0 become 

globally asymptotically stable have been investigated in Theorem 6, we found that the population will be 

free from Covid-19 for any initial condition of each subpopulation as time goes by if these following two 

conditions are fulfilled: 

1) The eradication rate of Coronavirus living on inanimate objects (𝑞) is greater than 𝑝 −
𝑏𝑒

𝑐
. 

2) At least one of these three conditions is satisfied, i.e.  

i. the addition rate of Coronavirus living on inanimate objects due to the droplets from infected 

human (𝑎) is smaller than 𝑓 + ℎ −
𝑔𝑐

𝑒
,  

ii. the recovery rate of infected human (𝑓) is greater than 𝑎 +
𝑔𝑐

𝑒
− ℎ, 

iii. the interaction rate between susceptible human and infected human (𝑔) is smaller than 
(𝑓+ℎ−𝑎)𝑒

𝑐
.  

3.7 Numerical Simulation 

Dynamics of the population which is free from Covid-19 for any initial condition are described by the 

fluctuation of Coronavirus living on inanimate objects, susceptible human, and infected human 

subpopulations when they meet the criteria for global stability of disease-free equilibria (𝐸0). Those 

phenomena are illustrated by numerical simulation. 

The numerical simulation scheme is written as follows. The criteria of disease-free equilibria (𝐸0) 

global stability which have been carried out in Theorem 6 should be fulfilled, i.e. 𝑞 > 𝑝 −
𝑏𝑒

𝑐
 and at least 

one of these three conditions is satisfied, i.e. 𝑎 < 𝑓 + ℎ −
𝑔𝑐

𝑒
 or 𝑓 > 𝑎 +

𝑔𝑐

𝑒
− ℎ or 𝑔 <

(𝑓+ℎ−𝑎)𝑒

𝑐
 in order to 

create the population condition which is free from Covid-19. We assign the values of the model parameters, 

namely 𝑎 = 0.1, 𝑏 = 0.05, 𝑐 = 5, 𝑝 = 0.1, 𝑞 = 0.095, 𝑒 = 0.62, 𝑓 = 1 [31], 𝑔 = 0.0707 [32], dan ℎ = 0.02 

[11] such that the global stability of disease-free equilibria 𝐸0 criteria are fulfilled, because we want to 

illustrate the dynamics of the population which is free from Covid-19.. Based on the selected parameters 

value, a disease-free equilibria is found, i.e. 𝐸0 = (0,8.065,0).  Next, we set some arbitrary initial conditions 

of each subpopulation, both around, and quite far from 𝐸0 = (0,8.065,0), i.e. 𝐴 = (20,10,20), 𝐵 =
(10,20,5), 𝐶 = (30,40,20), and 𝐷 = (40,10,50), because we want to illustrate that the Coronavirus living 

on inanimate objects and infected human subpopulation will go to 0, while the susceptible human 

subpopulation will go to 8.065, i.e. the population is free from Covid-19 for every initial condition of the 

subpopulations, both around 𝐸0 and far from 𝐸0. Then, we plot the solution of the model in two perspective 

ways. The first perspective is the plot of each subpopulation with respect to time which shows the 

convergence of each subpopulation as time goes by. The second perspective is the plot of each subpopulation 

with respect to the other subpopulations which shows the impact of one subpopulation fluctuation to the other 

subpopulations. 

The dynamics of Coronavirus living on inanimate objects, susceptible human, and infected human 

subpopulations with respect to time with the initial conditions of subpopulations and model parameter values 

that have been set in such a way to fulfill the criteria for global stability of disease-free equilibria 𝐸0 are 

illustrated in Figure 2 below.    
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Figure 2. The dynamics of Coronavirus living on inanimate objects, susceptible human, and infected human 

subpopulations with respect to time when the criteria for global stability of disease-free equilibria 𝑬𝟎 are met. 

(a) The dynamics of Coronavirus living on inanimate objects subpopulation with respect to time.  (b) The 

dynamics of susceptible human subpopulation with respect to time.  (c) The dynamics of infected human 

subpopulation with respect to time 

 

Based on Figure 2 (a), when the initial conditions of each subpopulation were taken at random 

condition and the global stability criteria for global stability of the disease-free equilibria 𝐸0 are met, 

Coronavirus living on inanimate objects subpopulation is convergent to 0 and remains at that condition as 

time goes by. It represents that Coronavirus living on inanimate objects subpopulation will become extinct 

or there is no Coronavirus living on inanimate objects in the population. 

Based on Figure 2 (b), when the initial conditions of each subpopulation were taken at random 

condition and the global stability criteria for global stability of the disease-free equilibria 𝐸0 are met, 

susceptible human subpopulation progresses towards 8.065 and remains at that condition as time goes by. It 

means that the susceptible human subpopulation will go to a value and remains at that value, so that the 

susceptible human subpopulation still exists in the population. 

Based on Figure 2 (c), when the initial conditions of each subpopulation were taken at random 

condition and the global stability criteria for global stability of the disease-free equilibria 𝐸0 are met, infected 

human subpopulation progressively goes towards 0 and remains at that condition as time goes by. It represents 

that there is no human that infected by Coronavirus in the population.  

The dynamics of interaction between Coronavirus living on inanimate objects, susceptible human, and 

infected human subpopulations with those initial conditions of subpopulations and model parameter values 

that have been selected in such a way to fulfill the criteria for global stability of disease-free equilibria 𝐸0 are 

presented in Figure 3 below. 
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Figure 3. The dynamics of interaction between Coronavirus living on inanimate objects, susceptible human, 

and infected human subpopulations when the criteria for global stability of disease-free equilibria 𝑬𝟎 are met. 

(a) The dynamics of interaction between Coronavirus living on inanimate objects with susceptible human 

subpopulations. (b) The dynamics of interaction between Coronavirus living on inanimate objects with infected 

human subpopulations. (c) The dynamics of interaction between susceptible human with infected human 

subpopulations. (d) The dynamics of interaction between Coronavirus living on inanimate objects, susceptible 

human, and infected human subpopulations. 

Based on Figure 3 (a), when the initial conditions of each subpopulation were taken at random 

condition and the criteria for global stability of disease-free equilibria 𝐸0 are met, Coronavirus living on 

inanimate objects subpopulation will decrease towards 0, while susceptible human subpopulation will go to 

8.065 and remains at that condition as time goes by.  It means that Coronavirus living on inanimate objects 

subpopulation will become extinct, while the susceptible human subpopulation still exists at a value in the 

population. 

Based on Figure 3 (b), when the initial conditions of each subpopulation were taken at random 

condition and the criteria for global stability of the disease-free equilibria 𝐸0 are met, Coronavirus living on 

inanimate objects and infected human subpopulations will decrease towards 0, and remains at that condition 

as time goes by. It represents that there are no Coronavirus living on inanimate objects and infected human 

in the population. 

Based on Figure 3 (c), when the initial conditions of each subpopulation were taken at random 

condition and the criteria for global stability of disease-free equilibria 𝐸0 are met, infected human 

subpopulation will decrease towards 0, while susceptible human subpopulation will go to 8.065 and remains 

at that condition as time goes by. It means that there is no human that infected by Coronavirus, while the 

susceptible human still exists at a value in the population.  
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Based on Figure 3 (d), when the initial conditions of each subpopulation were taken at random 

condition and the criteria for global stability of the disease-free equilibria 𝐸0 are met, Coronavirus living on 

inanimate objects and infected human subpopulations will go to 0, while the susceptible human subpopulation 

will go to 8.065 and remains at that condition as time goes by. It represents that each subpopulation will go 

towards the value of disease-free equilibria 𝐸0 = (0,8.065,0).  This phenomenon illustrates that when the 

initial conditions of each subpopulation were taken at random condition, there is only a subpopulation that 

exists in the population as time goes by, i.e. susceptible human. Beside that, there is no Coronavirus living 

on inanimate objects or Coronavirus living on inanimate objects subpopulation will become extinct and there 

is no human that infected by Coronavirus in the population. In other words, the population is free from Covid-

19. 

4. CONCLUSIONS 

A population is free from Covid-19 for any initial condition of Coronavirus living on inanimate objects, 

susceptible human, and infected human subpopulations as time goes by if these following two conditions are 

fulfilled: 

1) The eradication rate of Coronavirus living on inanimate objects (𝑞) is greater than 𝑝 −
𝑏𝑒

𝑐
. 

2) At least one of these three conditions is satisfied, i.e.  

i. the addition rate of Coronavirus living on inanimate objects due to the droplets from infected 

human (𝑎) is smaller than 𝑓 + ℎ −
𝑔𝑐

𝑒
,  

ii. the recovery rate of infected human (𝑓) is greater than 𝑎 +
𝑔𝑐

𝑒
− ℎ, 

iii. the interaction rate between susceptible human and infected human (𝑔) is smaller than 
(𝑓+ℎ−𝑎)𝑒

𝑐
.  
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