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 ABSTRACT 

Article History: 
The Weibull-Poisson distribution represents a continuous distribution type applicable to 
various forms of hazard, including monotone up, monotone down, and upside-down bathtub 

shapes that ascend. The distribution characterizes lifetimes and can effectively model failures 

within a series of systems, which evolves from the Exponential-Poisson distribution. This 

distribution emerges through the compounding of the Weibull Distribution and Zero Truncated 
Poisson Distribution. The compounding itself integrates several mathematical properties, such 

as statistical order and Taylor’s number expansion, to reach its final form. Alongside the 

formulation of the Weibull-Poisson distribution, this paper includes the probability density 

function, distribution function, r-th moment, r-th central moment, mean, and variance. For 
illustration, the Weibull-Poisson distribution is applied to guinea pig survival data after being 

infected with Turblece virus Bacilli. 
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1. INTRODUCTION 

Lifetime data is data consisting of the time until an event or event occurs against an object/individual 

in the population, for example, the recovery time for COVID-19 patients in an age group or the time until a 

machine fails to operate. Lifetime data analysis has an important role in the world of science, especially in 

engineering and medical fields. 

Analysis of reliability is an analysis of the possibility of failure of a system. There are three types of 

resistance systems, namely series systems, parallel systems, and series-parallel systems. In a series system, if 

one component fails, it will cause failure of the entire system. In a parallel system, the system can fail if and 

only if all components fail, while a series-parallel system is a combination of both parallel and series systems. 

Compounding distributions can be built to make either parallel or series systems.   

The lifetime data of a series system can be modeled by modifying the existing lifetime distribution. 

There are various ways to form a new distribution based on pre-existing distributions, one of which is the 

compound method. A compound distribution in statistics refers to a probability distribution that arises from 

the combination of two or more probability distributions. It represents a situation where the random variable 

of interest is affected by multiple underlying processes or sources of variability. First, there was an 

introduction of geometric exponential 1distributions [1] by compounding exponential distributions and 

geometric distributions. The geometric exponential distribution has a decreasing failure rate. Following the 

idea, the Exponential-Poisson distribution [2] was introduced by performing a compounding technique 

between the Exponential distribution and the ZT-Poisson distribution. Then, the Exponential-Logarithmic 

distribution was introduced by compounding the exponential distribution and the logarithmic distribution [3]. 

All the compounding distributions that have been mentioned are based on the Exponential distribution, and 

they have a monotonous failure rate. 

The Weibull distribution is a generalized form of the Exponential distribution. This distribution is 

considered superior to the exponential because of the hazard shape by the limited Exponential distribution. 

Based on this, many previous researchers replaced the Exponential distribution in the compounding method 

with the Weibull distribution. This was done by researcher Baretto Souza who introduced the Weibull-

Geometric distribution [4] as a generalized form of the Exponential-Poisson distribution by Adamidis. Then, 

Ciumara and Preda introduced the Weibull-Logarithmic distribution [5] as a more flexible form of the 

Exponential-Logarithmic distribution. Furthermore, Wanbo Lu and Daimin Shi introduced the Weibull-

Poisson distribution [6] as a form that is more flexible than the Exponential-Poisson distribution. 

From the research mentioned above, the compound method of a certain distribution with the Weibull 

distribution produces a more flexible form compared to the compound method with an exponential 

distribution. This can be seen from the results of the model fit with lifetime data and variations in the shape 

of the hazard function from both distributions. 

The Weibull-Poisson distribution introduced by Lu and Shi  [6] has a flexible form of the hazard 

function, namely increasing monotone, decreasing monotone and unimodal form. An example of an 

application of the Weibull-Poisson distribution is analyzing data on the time to failure of an aircraft engine 

after it has been repaired. 

In this paper, we will discuss the Weibull and ZT-Poisson distributions. We will construct the Weibull-

Poisson distribution using the compounding method introduced by Baretto-Souza. Next, we will discuss the 

characteristics of the Weibull-Poisson distribution, which include the probability density function, cumulative 

distribution function, survival function, hazard function, r-th moment, mean, and variance. In addition, we 

will discuss the estimation of the parameters of the Weibull-Poisson distribution using the maximum 

likelihood method. Finally, the Weibull-Poisson distribution will be illustrated using real data.  

 

2. RESEARCH METHODS 

2.1 Weibull Distribution 

The Weibull distribution is a continuous distribution with two scale parameters, namely α and β. The 

random variable 𝑋, denoted as 𝑋 ~ Weibull (𝛼, 𝛽), has the probability density function as: 

𝑓(𝑥) =  𝛼𝛽𝑥𝛼−1 eexp (−𝛽𝑥𝛼)   (1) 
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The Weibull distribution has various forms of hazard functions, namely monotonically increasing, 

monotonically decreasing, and constant. 

2.2 ZT-Poisson Distribution 

The Zero-Truncated Poisson distribution (ZT-Poisson) is a Poisson distribution that models the number 

of occurrences of an event in a certain time interval or space with the assumption that the event has occurred 

at least once so that a zero value is impossible and only considers positive values. The random variable 

𝒈(𝒙; 𝝁) has a ZT-Poisson(𝝁) distribution if it has the probability density function as: 

𝑔(𝑥; 𝜇) =
𝜇𝑥𝑒𝑥𝑝 (−𝜇)

𝑥!(1−𝑒𝑥𝑝 (−𝜇)
, where 𝑥 = 1,2,3, … (2) 

Probability density function stated at Equation (2) can be written in Gamma function as:  

𝑔(𝑥; 𝜇) =
𝜇𝑥𝑒−𝜇

𝛤(𝑥+1)(1−𝑒−𝜇)
,  where 𝑥 = 1,2, … (3) 

2.3 Cumulative Distribution Function and Probability Density Function of Order Statistics  

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be identical and independent continuous random variables with the probability 

density function 𝑓𝑋(𝑥) and the cumulative distribution function 𝐹𝑋(𝑥). Suppose 𝑌1 is the smallest random 

variable of all 𝑋𝑖, 𝑌2 is the 2nd smallest random variable of all 𝑋𝑖, and 𝑌𝑛 is the largest random variable of all 

𝑋𝑖. Thus, 𝑌1  <  𝑌2  < . . . <  𝑌𝑛 denotes the random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 which are ordered from the 

smallest to largest. In another form 𝑌1 can be written as 𝑌1 = 𝑀𝑖𝑛(𝑋1, 𝑋2, … , 𝑋𝑛 ).  

Where the cumulative distribution function of the random variable 𝑌1 , as theory from [9] can be written 

as follows: 

𝐹𝑌1
(𝑦) = 1 − [1 − 𝐹𝑌(𝑦)]𝑛 (4) 

For example, 𝑓𝑌1
(𝑦) are probability density function for 𝑌1, hence it can be derived from differentiation 

of Equation (4) can be written as follow: 

𝑔𝑌1
(𝑦) = 𝑛[1 − 𝐹𝑌(𝑦)]𝑛−1𝑓𝑌(𝑦) (5) 

2.4 Taylor Binomial  

Taylor Binomial will be used in constructing the Weibull-Poisson Distribution. The Taylor series is an 

infinite series for representing a mathematical function into an infinite number of countable terms. The Taylor 

series has the general form as: 

𝑓(𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0) +
𝑓′′(𝑥0)

2!
(𝑥 − 𝑥0)2

+
𝑓′′′(𝑥0)

3!
(𝑥 − 𝑥0)3 + ⋯ 

(6) 

For example, 𝑓(𝑥) = 𝑒𝑥 , with the Taylor series define in Equation (6) we can derive 𝑓(𝑥) as:  

 𝑒𝑥 ≈ 1 + 𝑥 +
𝑥2

2
+

𝑥3

3
+ ⋯ +

𝑥𝑛

𝑛!
= ∑

𝑥𝑛

𝑛!
∞
𝑛=0 = ∑

𝑥𝑛−1

Γ(𝑛)
 ∞

𝑛=0  (7) 

2.5 Newton-Raphson’s Numerical Method  

In completing this paper, the equations generated by the maximum likelihood method cannot be 

analyzed analytically because they have a complex and nonlinear shape. Therefore, we use New Raphson’s 

method, a derivative of Taylor's Theorem and has the form of the recursive formula below to find a solution 

𝑓(𝑥) = 0 [10]. 
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𝑥𝑛 = 𝑥𝑛 − 1 −
𝑓(𝑥𝑛 − 1)

𝑓′(𝑥𝑛 − 1)
, 𝑛 > 1 (8) 

2.6 Data Sources, Collection and Data Test Method 

Data Sources and Collection 

The data is retrieved from the journal by Bjerkedal [6]. In these data, we obtained the life span in days 

of 72 guinea pigs after being infected by a virus.  

Data Test Method: Kolmogorov-Smirnov Method  

The Kolmogorov-Smirnov model fit test is a test to match the data to an alleged distribution. [11] This 

test uses the distance between the empirical cumulative distribution function and the cumulative distribution 

function of the alleged distribution. 

For example, 𝑋1, 𝑋2, … , 𝑋𝑛 is a random variable that has a population size of n which has a distribution 

function 𝐹(𝑥). This distribution function will be estimated by an empirical distribution 𝐹𝑛 which is defined 

as: 

𝐹𝑛 ≤
amount of 𝑥𝑖 ≤ 𝑥

𝑛
 

(9) 

It will be tested whether the data with the empirical distribution function 𝐹𝑛 comes from the cumulative 

distribution function 𝐹(𝑥) or not. This is stated by the following hypothesis: 

𝐻0 : data comes from a population that has a cumulative distribution function 𝐹(𝑥) 

𝐻1 : data does not come from a population that has a cumulative distribution function 𝐹(𝑥) 

The above hypothesis is tested using the following test statistics: 

𝑇 = 𝑠𝑢𝑝
𝑥

|𝐹𝑛(𝑥) − 𝐹∗(𝑥)| (10) 

where 𝐹 ∗ (𝑥) is the cumulative distribution function obtained by parameter estimation. 𝐻0 will be rejected 

if the T-value is greater than the critical value. 

 

3. RESULTS AND DISCUSSION 

3.1 Writing Mathematical Equations 

In a series component system, the system will work if and only if all the components work. Therefore, 

the time to failure of a series system is the same as the time to failure of the first component, provided that 

the component that fails the first time occurs randomly.  

3.2 Deriving Probability Density Function Compounding Method with ZT-Poisson  

The compounding method was first introduced by Adamidis and Loukas [1] to form the Exponential-

Geometric distribution. This method was introduced to model the lifetime of a system with 𝑍 components 

where 𝑍 is a discrete random variable and 𝑌𝑖 for 𝑖 = 1,2, . . , 𝑍 is a continuous random variable of the lifetime 

of each component. Thus, the time to failure of a series system can be defined in terms of the random variable 

𝑋 as follows: 

𝑋 = min(𝑌1, 𝑌2, … , 𝑌𝑍) (11) 

Probability density function 𝑓𝑌(𝑥; 𝜽) and cumulative distribution function notated by 𝐹𝑌(𝑥; 𝜃) used 

the order statistics concept and the compounding method derived by Lu and Shi (2022). The cdf of 𝑋|𝑍 or 

random variable 𝑋 conditional 𝑍 component can be defined with:  
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𝐹(𝑥|𝑧; 𝜽)     = 𝑃(𝑋 ≤ 𝑥|𝑍 = 𝑧) 

= 1 − 𝑃(𝑋 > 𝑥|𝑍 = 𝑧) 

= 1 − 𝑃(𝑌1 > 𝑥)𝑃(𝑌2 > 𝑥) … 𝑃(𝑌𝑧 > 𝑥) 

= 1 − [𝑆𝑌(𝑥; 𝜽)]𝑧 

𝐹(𝑥|𝑧; 𝜽)    = 1 − [1 − 𝐹𝑌(𝑥; 𝜽)]𝑧 (12) 

 From Equation (12) we can derive the probability density function by doing differentiation of 𝑋|𝑍 

toward 𝑥. 

𝑓(𝑥|𝑧; 𝜽)    =
𝑑

𝑑𝑥
𝐹𝑋|𝑍(𝑥; 𝜽) =

𝑑

𝑑𝑥
[1 − (1 − 𝐹𝑌(𝑥; 𝜽)]𝑧−1 (13) 

Random variable Z are ZT-Poisson, hence we can find the joint pdf of 𝑋 and 𝑍 as follows:  

 = 𝑓𝑍(𝑧; 𝜆)𝑓𝑋|𝑍(𝑥|𝑧; 𝜽) 

=
𝑒−𝜆𝜆𝑧

𝛤(𝑧 + 1)(1 − 𝑒−𝜆)
𝑧𝑓𝑌(𝑥; 𝜽)[1 − 𝐹𝑌(𝑥; 𝜽)]𝑧−1 

=
𝑒−𝜆𝜆𝑧−1 ∙ 𝜆

𝑧𝛤(𝑧)(1 − 𝑒−𝜆)
𝑧𝑓𝑌(𝑥; 𝜽)[1 − 𝐹𝑌(𝑥; 𝜽)]𝑧−1 

=
𝜆 ∙ 𝑒−𝜆

(1 − 𝑒−𝜆)
𝑓𝑌(𝑥; 𝜽)

𝜆𝑧−1[1 − 𝐹𝑌(𝑥; 𝜽)]𝑧−1

  

Next, we can find the marginal probability for 𝑋 as follow:  

𝑓𝑋(𝑥; 𝜆, 𝜽)   =
𝜆𝑒−𝜆

(1 − 𝑒−𝜆)
𝑓𝑌(𝑥; 𝜽) ∑

𝜆𝑧−1[1 − 𝐹𝑌(𝑥; 𝜽)]𝑧−1

 

∞

𝑧=0

 

Note that the summation in the equation above is the Taylor series form for 𝑒𝜆(1−𝐹𝑌(𝑥;𝜃))  , so the 

equation can be rewritten as: 

𝑓(𝑥, 𝜆, 𝜃)    =
𝜆

(1 − 𝑒−𝜆)
𝑓

𝑌
(𝑥; 𝜽)𝑒−𝜆(𝐹𝑌(𝑥;𝜽)) (14) 

3.3 Deriving Cumulative Distribution Function Compounding Method with ZT-Poisson 

By doing integral of Equation (14) we can find the cumulative distribution function 

𝐹𝑋(𝑥; 𝜆, 𝜽) = Pr(𝑋 ≤ 𝑥) = ∫
𝜆

(1 − 𝑒−𝜆)
𝑓𝑌(𝑥; 𝜽)𝑒−𝜆(𝐹𝑌(𝑥;𝜽))

𝑥

0

=
1 − 𝑒−𝜆𝐹𝑌(𝑥;𝜽)

1 − 𝑒−𝜆
 (15) 

3.4 Probability density function of Weibull-Poisson Distribution 

In 2012, Wanbo Lu and Daimin Shi introduced the Weibull-Poisson distribution. This distribution is 

obtained through the ZT-Poisson compounding method, as described in the previous section by using the 

Weibull distribution as a random variable. The Weibull distribution is a generalized form of the Exponential 

distribution, so it is reasonable to replace the compound distribution in the Exponential-Poisson distribution 

by Kus from the Exponential distribution with the Weibull distribution. 

Suppose there is a random variable that has the following conditions: 
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𝑋 = min(𝑌1, 𝑌2, … , 𝑌𝑍) 

Where Z is a ZT-Poisson distributed random variable with parameters 𝜆 and {𝑌𝑖}𝑖=1
𝑍  is an identical and 

independent Weibull distributed random variable with parameters α and β. From Equation (9), the pdf 

random variable X is as follows: 

𝑓(𝑥; 𝛼, 𝛽, 𝜆) =
𝛼𝛽𝜆𝑥𝛼−1

1 − 𝑒−𝜆
𝑒−𝜆−𝛽𝑥𝛼+𝜆 exp(−𝛽𝑥𝛼) with 𝛼, 𝛽, 𝑥 > 0 and 𝜆 = 1,2, … (16) 

Some of the characteristics of the Weibull-Poisson distribution pdf are: 

1. The Weibull-Poisson distribution will become an Exponential-Weibull distribution when 𝛼 = 1. 

2. When λ approaches the value 0 or λ→0, the Weibull-Poisson distribution becomes the Weibull 

distribution with two parameters. 

3. For values 0 < 𝑎 ≤ 1, 𝑓(𝑥) will be monotonically descending from the initial value x onwards. 

This can be seen from the blue, red and yellow lines (in Figure 1) that never cross the x-axis. 

4. For values 𝛼 >  1, 𝑓(𝑥) will be monotonically increasing at the beginning of the x value to a 

certain point and then monotonically decreasing for the larger x value. In other words, f(x) is 

unimodal and has only one maximum value at (0, ∞). 

 

Figure 1. Pdf of Weibull-Poisson Distribution with several values of 𝜶 and 𝜷 

3.5 Cumulative Distribution Function of Weibull-Poisson 

From doing integration of Equation (16) we can get the cdf of Weibull-Poisson.  

𝐹𝑋(𝑥) =
1

1 − 𝑒𝜆
(𝑒𝜆 exp(−𝛽𝑥𝛼) − 𝑒𝜆)   (17) 
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3.6 Survival Function of Weibull-Poisson Distribution 

The survival function of the Weibull-Poisson distribution is obtained by 𝑆𝑋(𝑥) = 1 − 𝐹𝑋 (𝑥) [12] [13] 

𝑆𝑋(𝑥) =  
1 − 𝑒𝜆exp (−𝛽𝑥𝛼)

1 − 𝑒𝜆
  (18) 

3.7 Hazard Function of Weibull-Poisson Distribution 

Hazard function of the Weibull-Poisson distribution with the probability density function and the 

survival function of the Weibull-Poisson distribution in Equation (16) and Equation (18). 

ℎ𝑋(𝑥) =
𝑓𝑋(𝑥)

𝑆(𝑥)
=

𝛼𝛽𝜆𝑥𝛼−1

1 − 𝑒−𝜆 𝑒−𝜆−𝛽𝑥𝛼+𝜆 exp(−𝛽𝑥𝛼)

1 − 𝑒𝜆 exp(−𝛽𝑥𝛼)

1 − 𝑒𝜆

 

=
𝛼𝛽𝜆𝑥𝛼−1 ∙ 𝑒−𝜆−𝛽𝑥𝛼+𝜆 𝑒𝑥𝑝(−𝛽𝑥𝛼) ∙ (1 − 𝑒−𝜆)

(1 − 𝑒−𝜆)(1 − 𝑒𝜆 𝑒𝑥𝑝(−𝛽𝑥𝛼))
 

=
𝛼𝛽𝜆𝑥𝛼−1(1 − 𝑒−𝜆) ∙ 𝑒−𝜆−𝛽𝑥𝛼+𝜆 𝑒𝑥𝑝(−𝛽𝑥𝛼)

(1 − 𝑒−𝜆)(1 − 𝑒𝜆 𝑒𝑥𝑝(−𝛽𝑥𝛼))
 

=
𝛼𝛽𝜆𝑥𝛼−1 ∙ 𝑒−𝜆−𝛽𝑥𝛼+𝜆 𝑒𝑥𝑝(−𝛽𝑥𝛼)

−1 ∙ (1 − 𝑒𝜆 𝑒𝑥𝑝(−𝛽𝑥𝛼))
 

=
𝛼𝛽𝜆𝑥𝛼−1 ∙ 𝑒−𝜆−𝛽𝑥𝛼+𝜆 𝑒𝑥𝑝(−𝛽𝑥𝛼)

−1 ∙ (1 − 𝑒𝜆 𝑒𝑥𝑝(−𝛽𝑥𝛼))
 

=
𝛼𝛽𝜆𝑥𝛼−1 ∙ 𝑒−𝛽𝑥𝛼+𝜆 𝑒𝑥𝑝(−𝛽𝑥𝛼)

𝑒𝜆 𝑒𝑥𝑝(−𝛽𝑥𝛼) − 1
 

 

So, the hazard function of Weibull-Poisson distribution is:  

ℎ𝑋(𝑥) =
𝛼𝛽𝜆𝑥𝛼−1𝑒−𝛽𝑥𝛼+𝜆 exp(−𝛽𝑥𝛼)

𝑒𝜆 exp(−𝛽𝑥𝛼) − 1
 (19) 

 

Graph analysis of the hazard function of the Weibull-Poisson distribution with parameters α, β, and λ 

divided into several possible values of α, β, and λ. Proof to the hazard function can be found in [14] [15]. 
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Figure 2. Hazard function of Weibull-Poisson distribution with 𝜷 = 𝟐 and 𝝀 = 𝟏 

 
Figure 3. Hazard function of Weibull-Poisson distribution with 𝜶 = 𝟐 and 𝜷 = 𝟐 

 

Figure 4. Hazard function of Weibull-Poisson distribution with 𝜷 = 𝟐 and 𝝀 = 𝟐 
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3.8 R-th Moment of Weibull-Poisson Distribution 

Let X~Weibull Poisson (x; α, β, λ). The form of the rth moment of the Weibull-Poisson distribution is 

defined as follows: 

𝜇𝑟
′ = 𝐸(𝑋𝑟) =  ∫ 𝑥𝑟 ∙ 𝑓𝑋(𝑥)𝑑𝑥

∞

0

= ∫ 𝑥𝑟 ∙
𝛼𝛽𝜆𝑥𝛼−1

1 − 𝑒−𝜆
𝑒−𝜆−𝛽𝑥𝛼+𝜆 𝑒𝑥𝑝(−𝛽𝑥𝛼)𝑑𝑥

∞

0

  

μr
′ =

1

1 − 𝑒−𝜆
∫ 𝑥𝑟 ∙ 𝛼𝛽𝜆𝑥𝛼−1𝑒−𝜆−𝛽𝑥𝛼+𝜆 𝑒𝑥𝑝(−𝛽𝑥𝛼)𝑑𝑥

∞

0

  

Let’s say 𝑦 = 𝜆𝑒−𝛽𝑥𝛼
. In such way, we get:   

𝑦 = 𝜆𝑒−𝛽𝑥𝛼
 ↔

𝑦

𝜆
= 𝑒−𝛽𝑥𝛼

↔ 𝑙𝑜𝑔 (
𝑦

𝜆
) = 𝑙𝑜𝑔(𝑒−𝛽𝑥𝛼

) = −𝛽𝑥𝛼 ↔
𝑙𝑜𝑔(𝑦) − 𝑙𝑜𝑔(𝜆)

−𝛽
= 𝑥𝛼  

↔ −𝛽−1(𝑙𝑜𝑔(𝑦) − 𝑙𝑜𝑔(𝜆)) = 𝑥𝛼 ↔ 𝑥𝛼 = [−𝛽−1(𝑙𝑜𝑔(𝑦) − 𝑙𝑜𝑔(𝜆))]1/𝛼  

With chain rule we get 𝑑𝑦 =  −𝜆𝛼𝛽𝑥𝛼−1𝑒−𝛽𝑥𝛼
𝑑𝑥 ↔ 𝑑𝑥 =  −

𝑑𝑦

𝜆𝛼𝛽𝑥𝛼−1𝑒−𝛽𝑥𝛼 

Integration limit when 𝑥 →  0, then 𝑦 = 𝜆 and when 𝑥 → ∞, then 𝑦 = 0  

𝐸(𝑋𝑟) =
e−λ

1 − e−λ  
∫ 𝑥𝑟 ∙ 𝛼𝛽𝜆𝑥𝛼−1𝑒−𝜆−𝛽𝑥𝛼+𝜆 exp(−𝛽𝑥𝛼)

𝑑𝑦

−𝜆𝛼𝛽𝑥𝛼−1𝑒−𝛽𝑥𝛼

0

𝜆

 

We substitute the value of 𝑥 with its value in the previous equation  

=
1

𝑒−𝜆 − 1
∫ 𝑒𝑦 ∙ [𝛽−1(𝑙𝑜𝑔(𝑦) − 𝑙𝑜𝑔(𝜆))]𝑟/𝛼 

∙ 𝑑𝑦
𝜆

0

 

Then the rth moment of the random variable X is:  

𝐸(𝑋𝑟) =
1

𝑒−𝜆 − 1
∫ 𝑒𝑦 ∙ [𝛽−1(𝑙𝑜𝑔(𝑦) − 𝑙𝑜𝑔(𝜆))]𝑟/𝛼 

∙ 𝑑𝑦
𝜆

0

 

After knowing the shape of the r-th moment of the Weibull-Poisson distribution, we can then determine 

the first moment or mean (μ), the second moment, the third moment, and the fourth moment of the Weibull-

Poisson distribution. 

𝐸(𝑋) =
1

𝑒−𝜆 − 1
∫ 𝑒𝑦 ∙ [𝛽−1(𝑙𝑜𝑔(𝑦) − 𝑙𝑜𝑔(𝜆))]1/𝛼 

∙ 𝑑𝑦
𝜆

0

 

𝐸(𝑋2) =
1

𝑒−𝜆 − 1
∫ 𝑒𝑦 ∙ [𝛽−1(𝑙𝑜𝑔(𝑦) − 𝑙𝑜𝑔(𝜆))]

2
𝛼

 

∙ 𝑑𝑦
𝜆

0

 

𝐸(𝑋3) =
1

𝑒−𝜆 − 1
∫ 𝑒𝑦 ∙ [𝛽−1(𝑙𝑜𝑔(𝑦) − 𝑙𝑜𝑔(𝜆))]3/𝛼 

∙ 𝑑𝑦
𝜆

0

 

3.9 Parameter Estimation of the Weibull-Poisson Distribution 

The likelihood function of the Weibull-Poisson random variable is 

𝐿(𝛼, 𝛽, 𝜆|𝑥) = 𝑓𝑥(𝑥1; 𝛼, 𝛽, 𝜆) ∙ 𝑓𝑥(𝑥2; 𝛼, 𝛽, 𝜆) … 𝑓𝑥(𝑥𝑛; 𝛼, 𝛽, 𝜆) 

=
𝛼𝛽𝜆𝑥1

𝛼−1

1 − 𝑒−𝜆
𝑒−𝜆−𝛽𝑥1

𝛼+𝜆 𝑒𝑥𝑝(−𝛽𝑥1
𝛼) … 

𝛼𝛽𝜆𝑥𝑛
𝛼−1

1 − 𝑒−𝜆
𝑒−𝜆−𝛽𝑥𝑛

𝛼+𝜆 𝑒𝑥𝑝(−𝛽𝑥𝑛
𝛼) 

=
(𝛼𝛽𝜆)𝑛

(1 − 𝑒−𝜆)𝑛
∙ ∏(𝑥𝑖)𝛼−1 ∙ 𝑒−𝜆∙𝑛 ∙ 𝑒−𝛽𝛴𝑖=1

𝑛 𝑥𝑖 ∙ 𝑒𝜆𝛴𝑖=1
𝑛 𝑒𝑥𝑝(−𝛽𝑥𝑖

𝛼)

𝑛

𝑖=1

 

= (
1

𝑒𝜆 − 1
)

𝑛

∙ ∏(𝛼𝛽𝜆)𝑛(𝑥𝑖)𝛼−1 ∙ 𝑒−𝜆∙𝑛 ∙ 𝑒−𝛽𝛴𝑖=1
𝑛 𝑥𝑖 ∙ 𝑒𝜆𝛴𝑖=1

𝑛 𝑒𝑥𝑝(−𝛽𝑥𝑖
𝛼)

𝑛

𝑖=1
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To do the estimation, we need to derive the likelihood function, but this equation is a multiplication of 

several terms, so direct derivation would be difficult to do. So, it takes a logarithmic function so that the 

results become simpler. The logarithmic function of L(α, β, θ) is denoted as l(α, β, θ) and can be found as 

follows: 

𝑙(𝛼, 𝛽, 𝜆|𝑥) = ln 𝐿(𝛼, 𝛽, 𝜆|𝑥) 

= 𝑙𝑛 [(
1

𝑒𝜆 − 1
)

𝑛

∙  ∏(𝑥𝑖)𝛼−1 ∙ (𝛼𝛽𝜆)𝑛 ∙ 𝑒−𝛽 ∑ 𝑥𝑖
𝛼𝑛

𝑖=1 ∙ 𝑒𝜆 ∑ 𝑒𝑥𝑝 (−𝛽𝑥𝑖
𝛼)𝑛

𝑖=1

𝑛

𝑖=1

 ]

 

 

= ln [(
1

𝑒𝜆 − 1
)

𝑛

] + ln [∏(𝑥𝑖)𝛼−1

𝑛

𝑖=1

] + ln[(𝛼𝛽𝜆)𝑛] + ln[𝑒−𝛽 ∑ 𝑥𝑖
𝛼𝑛

𝑖=1 ] + ln[𝑒𝜆 ∑ 𝑒𝑥𝑝 (−𝛽𝑥𝑖
𝛼)𝑛

𝑖=1 ] 

= −𝑛 ∙ ln(𝑒𝜆 − 1) + (𝛼 − 1) ∑ ln(𝑥𝑖)

𝑛

𝑖=1

+ 𝑛 ∙ ln(𝛼𝛽𝜆) − 𝛽 ∑ 𝑥𝑖
𝛼

𝑛

𝑖=1

+ 𝜆 ∑ 𝑒−𝛽𝑥𝑖
𝛼

𝑛

𝑖=1
 

 

Let’s say  𝛼(𝑥) = 𝜆Σ𝑖=1
𝑛 𝑒−𝛽𝑥𝑖

𝛼
dan 𝑏(𝑥) =  −𝛽Σ𝑖=1

𝑛 𝑥𝑖
𝛼 so the equation can be written as: 

𝑙(𝛼, 𝛽, 𝜆|𝑥) = 𝑛 ∙ ln(𝛼𝛽𝜆) + (𝛼 − 1) ∑ ln(𝑥𝑖)

𝑛

𝑖=1

+ b(x) + 𝑎(𝑥) − 𝑛 ∙ ln(𝑒𝜆 − 1) 

We can use this equation to obtain the values of the parameters α, β," and" λ in the Weibull-Poisson 

distribution by deriving the equation and equating the value of the derivative with 0. To make it easier, we 

will first derive the equations a(x) and b (x) to α. 

𝛿

𝛿𝛼
𝑎(𝑥) =

𝛿

𝛿𝛼
[𝜆 ∑ 𝑒−𝛽𝑥𝑖

𝛼

𝑛

𝑖=1

] = 𝜆 ∙
𝛿

𝛿𝛼
[𝑒−𝛽𝑥1

𝛼
+ 𝑒−𝛽𝑥2

𝛼
+ ⋯ + 𝑒−𝛽𝑥𝑛

𝛼
] 

= 𝜆[𝑒−𝛽𝑥1
𝛼

∙ (−𝛽) ∙ 𝑙𝑛(𝑥1) ∙ (𝑥1
𝛼) + ⋯ + 𝑒−𝛽𝑥𝑛

𝛼
∙ (−𝛽) ∙ 𝑙𝑛(𝑥𝑛) ∙ (𝑥𝑛

𝛼)] 

= ∑ ln(𝑥1) ∙ (𝜆𝑒−𝛽𝑥1
𝛼

)(−𝛽𝑥𝑖
𝛼)

𝑛

𝑖=1

 

𝛿

𝛿𝛼
𝑏(𝑥) =

𝛿

𝛿𝛼
[−𝛽𝛴𝑖=1

𝑛 𝑥𝑖
𝛼] = −𝛽 ∙

𝛿

𝛿𝛼
[𝑥1

𝛼 + ⋯ + 𝑥𝑛
𝛼] 

= 𝛽 ∙ [ln 𝑥1 ∙ 𝑥1
𝛼 + ⋯ + ln 𝑥𝑛 ∙ 𝑥𝑛

𝛼] 

= ∑ ln(𝑥1)(−𝛽)(𝑥1
𝛼)

𝑛

𝑖=1

 

Entering the derivative results in the initial equation, we get: 

𝛿

𝛿𝛼
𝑙(𝛼, 𝛽, 𝜆|𝑥) =

𝛿

𝛿𝛼
[𝑛 ∙ ln(𝛼𝛽𝜆) + (𝛼 − 1)Σ𝑖=1

𝑛 ln(𝑥𝑖) + 𝑎(𝑥) + 𝑏(𝑥) − 𝑛 ∙ ln(𝑒𝜆 − 1)] 

=
𝛿

𝛿𝛼
[𝑛 ∙ 𝑙𝑛(𝛼𝛽𝜆)] +

𝛿

𝛿𝛼
[(𝛼 − 1) ∑ 𝑙𝑛(𝑥𝑖)

𝑛

𝑖=1

] +
𝛿

𝛿𝛼
[𝑎(𝑥)] +

𝛿

𝛿𝛼
[𝑏(𝑥)] −

𝛿

𝛿𝛼
[𝑛 ∙ 𝑙𝑛(𝑒𝜆 − 1)] 

=
𝑛

𝛼
+ ∑ ln(𝑥𝑖)

𝑛

𝑥=0

+ ∑ ln(𝑥𝑖)

𝑛

𝑥=0

(𝜆𝑒−𝛽𝑥𝑖
𝛼

)(−𝛽𝑥𝑖
𝛼) + ∑ ln(𝑥𝑖) (−𝛽𝑥𝑖

𝛼)
𝑛

𝑖=1
+

𝛿

𝛿𝛼
[𝑏(𝑥)] −

𝛿

𝛿𝛼
[𝑛 ln(𝑒𝜆 − 1)] 

=
𝑛

𝛼
+ ∑ ln(𝑥𝑖) [1 − 𝛽𝑥𝑖

𝛼(1 − 𝜆𝑒−𝛽𝑥𝑖
𝛼

)]
𝑛

𝑥=0
= 0 

So we can estimate the parameter 𝛼 for Weibull-Poisson  
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𝛿

𝛿𝛼
𝑙(𝛼, 𝛽, 𝜆|𝑥) =

𝑛

𝛼
+ ∑ ln(𝑥𝑖) [1 − 𝛽𝑥𝑖

𝛼(1 − 𝜆𝑒𝛽𝑥𝑖
𝛼

)]𝑛
𝑥=0 = 0  

Now we do partial derivation for the equation β like the previous methods, hence the equation for β is 

searched and the estimate is obtained:    

𝛿

𝛿𝛽
𝑙(𝛼, 𝛽, 𝜆|𝑥) =

𝑛

𝛽
− 𝛴𝑖=1

𝑛 𝑥1
𝛼(1 + 𝜆𝑒−𝛽𝑥1

𝛼
) = 0 

Now we do partial derivation for the equation λ like the previous methods, hence the equation for λ is 

searched and the estimate is obtained: 

𝛿

𝛿𝜆
𝑙(𝛼, 𝛽, 𝜆|𝑥) =

𝑛

𝜆
− 𝛴𝑖=1

𝑛 𝑒−𝛽𝑥1
𝛼

 

𝛼 
− 𝑛

𝑒𝜆

𝑒𝜆 − 1
 = 0 

3.10 Data Analysis 

In this section, the Weibull Poisson distribution will be applied to data. The data used is the survival 

of a group of guinea pigs that have been infected with the virus Tubercle Bacilli [7], which visualizes 

systematic parallel risk in this paper. These data on the life span days of 72 guinea pigs after infection. 

It is suspected that this data has a unimodal (upside-down bathtub) hazard function monotone rise. This 

estimate is based on the average lifetime (in days) of guinea pigs after being infected the same, so there will 

be a point where the function hazard will be higher than other points. In addition, the increased hazard 

function is also predictable due to the limited life span of guinea pigs. Besides that, because this data is 

lifetime data, it can be expected to be modeled in the Weibull-Poisson distribution. The exploratory data 

analysis is as follows:  

Table 1. Descriptive Statistics of Guinea Pig Survival Data 

Criteria Value 

Mean 142 

Sample Variance 11,931.11 

Std. Deviation 109.229 

Minimum 43 

Maximum 598 

Range 555 

Sum of all Life Span Days 10,299 

Number of Sample 72 

 

This paper has discussed another lifetime distribution, namely the Weibull distribution. Because of this, 

apart from being modeled with the Weibull-Poisson distribution, data guinea pig survival will also be 

modeled into the Weibull distribution. The first step is to estimate the parameters of each distribution for the 

data, and then the distribution compatibility test will be carried out using the Kolmogorov-Smirnov test. 

Finally, we will look at the shape of the hazard function for the Weibull-Poisson distribution, which has 

parameters in accordance with guinea pig survival data. Parameter estimation of the Weibull-Poisson 

distribution with the maximum likelihood method are: 

�̂� = 1.3125 �̂� = 0.000291 �̂� = 4.3443 

Parameter estimation of the Weibull distribution with the maximum method likelihoods are: 

�̂� = 1.4581 �̂� = 0.000423  
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Figure 5. Histogram and pdf plot of Weibull and Weibull-Poisson Distribution 

Figure 5 shows that the Weibull-Poisson distribution is more similar the form of the data in with a 

higher maximum peak value when compared to the probability density function of the Weibull distribution.  

A summary of the results of the MLE assessment and the Kolmogorov-Smirnov test is shown in Table 

2 below: 

 Table 2. Estimated Parameter and Kolmogorov-Smirnov Test 

Distribution 
Level 

Kolmogorov 

Smirnov �̂� �̂� �̂� 

Weibull-Poisson 1.3215 0.00029 -53.4933 0.169405 

Weibull 1.45815 0.000423 -- 0.277337 

 

After conducting a model fit test using the Kolmogorov-Smirnov on guinea pig survival data on the 

Weibull distribution and Weibull-Poisson distribution, it was concluded that the Weibull distribution was not 

suitable for modeling survival data on guinea pigs, but the Weibull-Poisson distribution is suitable for 

modeling survival data guinea pigs from the estimated parameters of each distribution to the data. 

4. CONCLUSIONS 

The Weibull-Poisson distribution is obtained by compounding the Weibull distribution and the Zero-

Truncated Poisson distribution. This compounding method models the lifetime of a series system with Z 

components where Z is a Poisson random variable and Yi is a Weibull random variable, which describes the 

lifetime of each component. This distribution has three parameters, namely α, β and λ. In addition, the Weibull 

Poisson distribution can describe failures in series systems caused by Z possible components, and Yi is the 

failure time of each component. Where the hazard function can be in the form of monotone down, monotone 

up, and upside-down bathtub. 

The shape of the probability density function of the Weibull-Poisson distribution is determined by the 

value of the parameter α as follows:  

• The density function is unimodal for α > 1 

• The density function is monotonically decreasing for 0 < α ≤ 1 

The form of the hazard function is determined by the alpha and lambda parameters as follows: 

• The monotonic hazard function decreases for α < 1 

• The hazard function is monotonically increasing for α > 1 and λ ≤ α – 1 

• The hazard functions are monotonically rising and upside-down bathtubs for α > 1 and λ>α/(α-1) 
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In the data presented, the results of the Kolmogorov-Smirnov test prove that the Weibull-Poisson 

distribution can model data with a unimodal hazard form (upside-down bathtub) that monotonically increases. 

Parameter estimation using the maximum likelihood method cannot provide an analytical solution so 

that the help of the Newton-Rapson numerical method is needed to obtain a solution from the estimated 

parameter values of the Weibull-Poisson distribution. The Newton-Rapson numerical method is carried out 

with the help of nlminb, optim, and maxLik functions in R version 4.0.0 software. 

 

ACKNOWLEDGMENT  

This study was funded by the Directorate of Research and Development, University of Indonesia 

(DRPM UI) as an additional output of the International Indexed Publication Grant (PUTI) Q2 2022—2023 

No.: NKB-668/UN2.RST/HKP.05.00/2022. 

 

REFERENCES  

 

[1]  S. L. K. Adamidis, "A lifetime distribution with decreasing failure rate," Statistics & Probability Letters, pp. 35-42, 1998.  

[2]  F. C.-N. Wagner Barreto-Souza, "A generalization of the exponential-Poisson distribution," Statistics & Probability Letters, 
pp. 2493-2500, 2009.  

[3]  S. R. Rasool Tahmasbi, "A two-parameter lifetime distribution with decreasing failure rate," Computational Statistics & Data 

Analysis, pp. 3889-3901, 2008.  

[4]  W. Barreto-Souza, A. L. d. Morais and G. M. Cordeiro, "The Weibull-geometric distribution," Journal of Statistical 
Computation and Simulation, pp. 645-657, 2011.  

[5]  V. P. Roxana Ciumara, "The Weibull-Logarithmic Distribution in Lifetime Analysis and It's Properties," ASMDA. 

Proceedings of the International Conference Applied Stochastic Models and Data Analysis, p. 395, 2009.  

[6]  D. S. Wanbo Lu, "A new compounding life distribution: the Weibull–Poisson distribution," Journal of Applied Statistics, pp. 
21-38, 2012.  

[7]  T. Bjerkedal, "Acquisition of Resistance in Guinea Pies infected with Different Doses of Virulent Tubercle Bacilli," 

American Journal of Hygiene, pp. 130-148, 1960.  

[8]  V. P. K. A. Sotirios Loukas, "A Generalization of the Exponential-Logarithmic Distribution," Journal of Statistical Theory 
and Practice, p. 395, 2009.  

[9]  J. W. M. A. T. C. Robert V. Hogg, Introduction to Mathematical Statistics, 2019.  

[10]  R. L. Burden, J. D. Faires, and A. M. Burden, Numerical Analysis, 10th ed. Singapore: Cengage Learning Asia Pte Ltd, 2015. 

[11]  W. J. Conover, Practical Nonparametric Statistics. New York City, New York: Wiley, 1999.  

[12]  D C M Dickson, M. Hardy, and H. R. Waters, Actuarial mathematics for life contingent risks. New York: Cambridge 

University Press, 2013.  

[13]  R. E. Glaser, "Bathtub and Related Failure Rate Characterizations," Journal of the American Statistical Association, pp. 667-

672, 1980.  

[14]  M. K. David G. Kleinbaum, Survival Analysis: A Self-Learning Text. United State: Springer, 2005.  

[15]  H. H. P. G. E. W. Stuart A. Klugman, Loss models: from data to decisions. United State: John Wiley & Sons, 2012.  

 
 

  



42 Widyaningsih, et. al.     WEIBULL-POISSON DISTRIBUTION AND THEIR APPLICATION…  

 


