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 ABSTRACT 

Article History: 
The commutation matrix is a matrix that transforms any vec matrix 𝐴,𝑚 ×  𝑛, to vec transpose 

𝐴. In this article, three definitions of the commutation matrix are presented in different ways. It 

is shown that these three definitions are equivalent.  Proof of the equivalent uses the properties 

in the Kronecker product on the matrix.  We also gave the example of the commutation matrix 

using three ways as Moreover, in this study, we investigate the properties of the commutation 

matrix related to its transpose and the relation between the vec matrix and the vec transpose 

matrix using the commutation matrix. We have that the transpose and the inverse of the 

commutation matrix is its transpose.  
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1. INTRODUCTION 

The 𝑣𝑒𝑐 matrix is a unique operation that can change a matrix into a column vector [1].  It can also be 

said to change the matrix into a vector by stacking the column vertically [2]. Note that 𝑣𝑒𝑐(𝐴) and 𝑣𝑒𝑐(𝐴𝑇) 

have duplicate entries, but the composition of the elements is different.  If the matrix 𝐴, 𝑚 × 𝑛, and its 

transpose is matrix 𝐴𝑇, then the vectors 𝑣𝑒𝑐(𝐴) and 𝑣𝑒𝑐(𝐴𝑇)  are 𝑚𝑛 × 1. The 𝑣𝑒𝑐 operator then inspires the 

creation of new operators with similar transformations, making the matrix a column vector.  Operators who 

were later born were 𝑣𝑒𝑐ℎ, 𝑣𝑒𝑐𝑑, 𝑣𝑒𝑐𝑝, and 𝑣𝑒𝑐𝑏 operators (see [3], [4], [5], [6], and [7]). With the new 

operators after the 𝑣𝑒𝑐 operator, the relation between each operator is also created. 

A unique matrix that transforms 𝑣𝑒𝑐(𝐴) to 𝑣𝑒𝑐(𝐴𝑇) for any matrix 𝑚 × 𝑛 [2] is called by commutation 

matrix. This matrix is defined as a square matrix containing only zeroes and ones.  In the previous study, the 

commutation matrix can be connected to the statistics, i.e., the matrix is applied to some problems related to 

normal distributions [8]. Furthermore, commutation matrix establishes the relation between the Kronecker 

product and the vec-permutation matrix [9].  Then,  [10] extends the concept of the commutation matrix to 

the commutation tensor and uses the commutation tensor to achieve the unification of the two formulas of 

linear preserver of the matrix rank.  

In [11], it is stated that there are matrices that are like a commutation matrix, i.e.,  the matrix transform 

the 𝑣𝑒𝑐 matrix 𝐴 to the 𝑣𝑒𝑐 transpose matrix 𝐴 (𝐴 ∈ ℂ𝑚×𝑛) for the matrices in the Kronecker quaternion 

group found in [12]. Similar properties are duplicate entries on matrix 𝐴 in the Kronecker quaternion group 

with the same position. 

 The previous study obtained the commutation matrix result using properties of vec some matrices 

(two or more).  In this paper, we present the proof of some properties of the commutation matrix differently.  

The organization of this paper is as follows. In the Research Methods, some basic concepts and 

notations of  𝑣𝑒𝑐, permutation matrix, Kronecker product, and commutation matrix will be used in the section 

Result and Discussion, are presented. In the section Result and Discussion, the definitions of commutation 

matrix are discussed.  Next, it presents the properties of the commutation matrix. 

2. RESEARCH METHODS 

The research methods are based on the literature study related to the commutation matrix. The first 

step of this research is to show the equivalence of the three definitions and then some theorems related to the 

commutation matrix. 

First, this section presents some definitions, properties and theorems related to commutation matrix, 

i.e., vec, permutation matrix, and Kronecker product. 

Definition 1 [13] Let 𝐴 = [𝑎𝑖𝑗] be an 𝑚 × 𝑛 matrix, and 𝐴𝑗 is the column of 𝐴.  The 𝑣𝑒𝑐(𝐴) is the 𝑛-column 

vector, i.e., 

𝑣𝑒𝑐(𝐴) = [

𝐴1

𝐴2

⋮
𝐴𝑛

]. 

 

Example 1.  Let 𝐴 = [
1
8
1
   
3
0
4
   
1
3
9
   
3
1
0
].  Then 𝑣𝑒𝑐(𝐴) = [

𝐴1

𝐴2

𝐴3

𝐴4

], where 𝐴1 = [
1
8
1
], 𝐴2 = [

3
0
4
], 𝐴3 = [

1
3
9
],  𝐴3 = [

3
1
0
]. 

Or it can also be written with  𝑣𝑒𝑐(𝐴) = [1  8  1  3  0  4  1  3  9  3  1  0]𝑇. 

Let 𝑆𝑛 denote the set of all permutations of the 𝑛 element set [𝑛] ≔ {1,2,… , 𝑛}.  A permutation is a 

one-to-one function from [𝑛] onto [𝑛].  The permutation of finite sets is usually given by listing each element 

of the domain and its corresponding functional value.  

Example 2.  Define a permutation 𝜎 of the set [𝑛] ≔ {1,2,3,4,5,6,7,8} by specifying 𝜎(1) = 7, 𝜎(2) = 1, 

𝜎(3) = 3, 𝜎(4) = 6, 𝜎(5) = 2, 𝜎(6) = 4, 𝜎(7) = 5, 𝜎(8) = 8. A more convenient way to express this 

correspondence is to write 𝜎 in array form as 
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     𝜎 = [
1
7
  
2
1
  
3
3
  
4
6
  
5
2
  
6
4
  
7
5
  
8
8
]                            (1) 

There is another notation commonly used to specify permutation.  It is called cycle notation. Cycle 

notation has theoretical advantages in that specific essential properties of the permutation can be readily 

determined when cycle notation is used.  For example, permutation in Equation (1) can be written as  𝜎 =
(1  7  5  2)(4  6).  For detail, see [14]. 

If 𝜎 is a permutation, we have 𝜎 change the identity matrix as follows: 

Definition 2. [15] Let 𝜎 be a permutation in 𝑆𝑛.  Define the permutation matrix  𝑃(𝜎) = [𝛿𝑖,𝜎(𝑗)] , 𝛿𝑖,𝜎(𝑗) =

𝑒𝑛𝑡𝑖,𝑗(𝑃(𝜎)), where 

𝛿𝑖,𝜎(𝑗) = {
1  if  𝑖 = 𝜎(𝑗)

0  if  𝑖 ≠ 𝜎(𝑗)
 . 

Theorem 1. [14]  Let 𝜋 and 𝜎 be two permutations in 𝑆𝑛, then 𝑃(𝜋)𝑃(𝜎) = 𝑃(𝜋𝜎).   

Definition 3. [1] Let 𝐴 ∈ ℝ𝑚×𝑛 and 𝐵 ∈ ℝ𝑝×𝑞. The Kronecker product of 𝐴 and 𝐵, is denoted by 𝐴⨂𝐵 ∈
ℝ𝑚𝑝×𝑛𝑞 and is defined to be the matrix 

𝐴⨂𝐵 = [

𝑎11𝐵
𝑎21𝐵

⋮
𝑎𝑚1𝐵

   

𝑎12𝐵
𝑎22𝐵

⋮
𝑎𝑚2𝐵

   

⋯
⋯
⋱
⋯

     

𝑎1𝑛𝐵
𝑎2𝑛𝐵

⋮
𝑎𝑚𝑛𝐵

]. 

Theorem 2. [1] Let 𝐴 ∈ ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑝×𝑞, 𝐶 ∈ ℝ𝑛×𝑡, and 𝐷 ∈ ℝ𝑞×𝑠. Then 

(𝐴⨂𝐵)(𝐶⨂𝐷) = (𝐴𝐶)⨂(𝐵𝐷). 

Theorem 3. [1] Let 𝐴 ∈ ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑝×𝑞, 𝐶 ∈ ℝ𝑛×𝑡, and 𝐷 ∈ ℝ𝑞×𝑠. Then 
(𝐴⨂𝐵)(𝐶⨂𝐷) = (𝐴𝐶)⨂(𝐵𝐷). 

Theorem 4. [13]  Let 𝐴, 𝐵 ∈ ℝ𝑚×𝑛.  Then (𝐴⨂𝐵)𝑇 = 𝐴𝑇⨂𝐵𝑇. 

Theorem 5. [13]  Let 𝒂 ∈ ℝ𝑚×1 and 𝒃 ∈ ℝ𝑛×1.  Then 𝒂⨂𝒃𝑇 = 𝒃𝑇⨂𝒂. 

Theorem 6. [16]  Let 𝐴 ∈ ℝ𝑚×𝑛, 𝐵 ∈ ℝ𝑛×𝑝, 𝐶 ∈ ℝ𝑝×𝑞.  Then  

𝑣𝑒𝑐(𝐴𝐵𝐶) = (𝐶𝑇⨂𝐴) 𝑣𝑒𝑐(𝐵) . 

Let 𝐴 be a arbitrary 𝑚 × 𝑛 matrix, the commutation matrix of 𝐴 is a matrix that transform 𝑣𝑒𝑐 matrix 

𝐴 to the 𝑣𝑒𝑐 transpose matrix.  There are several ways to define this matrix, and in this paper is given three 

different ways to determine this commutation matrix. 

Definition 4.   

a. [13]  Let 𝐻𝑖𝑗 be an 𝑚 × 𝑛 matrix with 1 in its (𝑖, 𝑗)th position and zero elsewhere.  Then the 𝑚𝑛 × 𝑚𝑛 

commutation matrix, denoted by 𝐾𝑚𝑛, is given by: 

𝐾𝑚,𝑛 = ∑∑(𝐻𝑖𝑗⨂𝐻𝑖𝑗
𝑇)

𝑛

𝑗=1

𝑚

𝑖=1

 

Remark. The matrix 𝐻𝑖𝑗 can be conveniently expressed using the column from the identity matrices 𝐼𝑚 

and 𝐼𝑛.  If 𝒆𝑖,𝑚 is the ith column of 𝐼𝑚, and 𝒆𝑗,𝑛 is the jth column of 𝐼𝑛, then 𝐻𝑖𝑗 = 𝒆𝑖,𝑚𝒆𝑗,𝑛
𝑇. 

b. [9]  Let 𝐼𝑛 be the identity matrix, and  𝒆𝑖𝑚 is an 𝑚 −dimensional column vector that has 1 in the 𝑖th 

position and 0’s elsewhere; that is:  

𝒆𝑖,𝑚 = [0, 0, … ,0, 1, 0, … , 0]𝑇 and 𝐼𝑛 ⊗ 𝒆𝑖,𝑚
𝑇 = 𝑎𝑖𝑗𝒆𝑖,𝑚

𝑇, 𝑎𝑖𝑗 ∈ 𝐼𝑛. 

The commutation matrix, denoted by 𝐾𝑚,𝑛 is given by: 

𝐾𝑚,𝑛 = (

𝐼𝑛 ⊗ 𝒆1𝑚
𝑇

𝐼𝑛 ⊗ 𝒆2𝑚
𝑇

⋮
𝐼𝑛 ⊗ 𝒆𝑚𝑚

𝑇

). 

c. [10]  A permutation matrix 𝑃 is called a commutation matrix of a matrix,  𝑚 × 𝑛, if it satisfies the 

following conditions: 

i. 𝑃 = [𝐴𝑖𝑗] is an 𝑚 × 𝑛 block matrix, with each block 𝐴𝑖𝑗 being an 𝑛 × 𝑚 matrix. 



2000 Yanita, et. al.        ON THE COMMUTATION MATRIX…  

ii. For each 𝑖 ∈ {1,2,… ,𝑚}, 𝑗 ∈ {1,2,… , 𝑛}, 𝐴𝑖𝑗 = (𝑎𝑠𝑡
(𝑖,𝑗)) is a (0,1) matrix with a unique 1 which 

lies at the position (𝑗, 𝑖). 

We denote this commutation matrix by 𝐾𝑚,𝑛, thus a commutation matrix is of size 𝑚𝑛 × 𝑚𝑛. 

Example 3.  Using Definition 4 (a – c), we demonstrate how to create the commutation matrix. 

Let 𝐴 be a matrix with size 2 × 4, then the commutation matrix for 𝐴 is defined as a matrix 8 × 8, symbolized 

by 𝐾2,4 and using Definition 4 (a), and Theorem 5 we have 𝐾2,4 is: 

𝐾2,4 = ∑∑(𝐻𝑖𝑗 ⊗ 𝐻𝑖𝑗
𝑇)

4

𝑗=1

2

𝑖=1

 

= ∑∑((𝒆𝑖,2𝒆𝑗,4
𝑇)⨂(𝒆𝑗,4𝒆𝑖,2

𝑇))

4

𝑗=1

2

𝑖=1

  

= ∑∑((𝒆𝑖,2⨂𝒆𝑗,4)(𝒆𝑗,4⨂𝒆𝑖,2)
𝑇
)

4

𝑗=1

2

𝑖=1

 

= ∑∑((𝒆𝑖,2⨂𝒆𝑗,4)⨂(𝒆𝑗,4⨂𝒆𝑖,2)
𝑇
)

4

𝑗=1

2

𝑖=1

 

= ∑(𝑒𝑖,2⨂∑(𝒆𝑗,4⨂𝒆𝑗,4
𝑇)

4

𝑗=1

⨂𝒆𝑖,2
𝑇)

2

𝑖=1

 

= ∑(𝑒𝑖,2⨂𝐼4⨂𝒆𝑖,2
𝑇)

2

𝑖=1

 

= (𝑒1,2⨂𝐼4⨂𝒆1,2
𝑇) + (𝑒2,2⨂𝐼4⨂𝒆2,2

𝑇)  

= ([
1
0
]⨂ [

1
0
0
0

   

0
1
0
0

   

0
0
1
0

   

0
0
0
1

]⨂[1 0]) + ([
0
1
]⨂ [

1
0
0
0

   

0
1
0
0

   

0
0
1
0

   

0
0
0
1

]⨂[0 1])  

=

(

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
1 [

1[1 0]

0[1 0]

0[1 0]

0[1 0]

   

0[1 0]

1[1 0]

0[1 0]

0[1 0]

   

0[1 0]

0[1 0]

1[1 0]

0[1 0]

   

0[1 0]

0[1 0]

0[1 0]

1[1 0]

]

0 [

1[1 0]

0[1 0]

0[1 0]

0[1 0]

   

0[1 0]

1[1 0]

0[1 0]

0[1 0]

   

0[1 0]

0[1 0]

1[1 0]

0[1 0]

   

0[1 0]

0[1 0]

0[1 0]

1[1 0]

]

]
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 

+

(

 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
0 [

1[0 1]

0[0 1]

0[0 1]

0[0 1]

   

0[0 1]

1[0 1]

0[0 1]

0[0 1]

   

0[0 1]

0[0 1]

1[0 1]

0[0 1]

   

0[0 1]

0[0 1]

0[0 1]

1[0 1]

]

1 [

1[0 1]

0[0 1]

0[0 1]

0[0 1]

   

0[0 1]

1[0 1]

0[0 1]

0[0 1]

   

0[0 1]

0[0 1]

1[0 1]

0[0 1]

   

0[0 1]

0[0 1]

0[0 1]

1[0 1]

]

]
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 

 

=

[
 
 
 
 
 
 
 
1
0
0
0
0
0
0
0

   

0
0
0
0
0
0
0
0

   

0
1
0
0
0
0
0
0

   

0
0
0
0
0
0
0
0

   

0
0
1
0
0
0
0
0

   

0
0
0
0
0
0
0
0

   

0
0
0
1
0
0
0
0

   

0
0
0
0
0
0
0
0]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
0
0
0
0
0
0
0
0

   

0
0
0
0
1
0
0
0

   

0
0
0
0
0
0
0
0

   

0
0
0
0
0
1
0
0

   

0
0
0
0
0
0
0
0

   

0
0
0
0
0
0
1
0

   

0
0
0
0
0
0
0
0

  

0
0
0
0
0
0
0
1]
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=

[
 
 
 
 
 
 
1
0
0
0
0
0
0
0

   

0
0
0
0
1
0
0
0

   

0
1
0
0
0
0
0
0

   

0
0
0
0
0
1
0
0

   

0
0
1
0
0
0
0
0

   

0
0
0
0
0
0
1
0

   

0
0
0
1
0
0
0
0

   

0
0
0
0
0
0
0
1]
 
 
 
 
 
 

 . 

Using Definition 4 (b), matrix 𝐾2,4 is a 8 × 8 permutation matrix partitioned by a 2 × 4 block matrix, i.e: 

𝐾2,4 = [
𝐴11

𝐴21
   
𝐴12

𝐴22
   
𝐴13

𝐴23
   
𝐴14

𝐴24
], 

where 𝐴𝑖𝑗 = (𝑎𝑠𝑡
(𝑖,𝑗)) is a 4 × 2 matrix whose unique non-zero entry is 𝑎𝑗𝑖

(𝑖,𝑗) = 1.  Specifically 

𝐾2,4 =

[
 
 
 
 
 
 
1

0

0
0
0
0
0
0

   

0

0

0
0
1
0
0
0

   

0

1

0
0
0
0
0
0

   

0

0

0
0
0
1
0
0

   

0

0

1
0
0
0
0
0

   

0

0

0
0
0
0
1
0

   

0

0

0
1
0
0
0
0

   

0

0

0
0
0
0
0
1]
 
 
 
 
 
 

. 

Using Definition 4 (c), matrix  𝐾2,4 is defined as: 

𝐾2,4 = [
𝐼4 ⊗ 𝒆12

𝑇

𝐼4 ⊗ 𝒆22
𝑇] =

[
 
 
 
 
 
 
 
[

1
0
0
0

   

0
1
0
0

   

0
0
1
0

   

0
0
0
1

] ⊗ [1 0]

[

1
0
0
0

   

0
1
0
0

   

0
0
1
0

   

0
0
0
1

] ⊗ [0 1]

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
[

1[1 0]

0[1 0]

0[1 0]

0[1 0]

   

0[1 0]

1[1 0]

0[1 0]

0[1 0]

   

0[1 0]

0[1 0]

1[1 0]

0[1 0]

   

0[1 0]

0[1 0]

0[1 0]

1[1 0]

]

[

1[0 1]

0[0 1]

0[0 1]

0[0 1]

   

0[0 1]

1[0 1]

0[0 1]

0[0 1]

   

0[0 1]

0[0 1]

1[0 1]

0[0 1]

   

0[0 1]

0[0 1]

0[0 1]

1[0 1]

]

]
 
 
 
 
 
 
 
 

  

𝐾2,4 =

[
 
 
 
 
 
 
1
0
0
0
0
0
0
0

   

0
0
0
0
1
0
0
0

   

0
1
0
0
0
0
0
0

   

0
0
0
0
0
1
0
0

   

0
0
1
0
0
0
0
0

   

0
0
0
0
0
0
1
0

   

0
0
0
1
0
0
0
0

   

0
0
0
0
0
0
0
1]
 
 
 
 
 
 

 . 

3. RESULTS AND DISCUSSION 

In this section, we present the properties of the commutation matrix.  Since, there are three ways to 

determine the commutation matrix, so in Theorem 7 is given that the three definitions are equivalent.  

Furthermore, in Theorem 8, is proven that the commutation matrix is the same as its transpose. And last, in 

Theorem 9 it is proven that relation between 𝑣𝑒𝑐 matrix and 𝑣𝑒𝑐 transpose matrix.   

Theorem 7. Let 𝐾𝑚,𝑛 be a commutation matrix. Then the following statements are equivalent: 

1. Definition 4 (a), 

2. Definition 4 (b), 

3. Definition 4 (c). 

Proof. (1 ⇒ 2)  Using Theorem 2, Theorem 3, Theorem 4 and Theorem 5., we have: 

𝐾𝑚𝑛  = ∑∑(𝐻𝑖𝑗⨂𝐻𝑖𝑗
𝑇)

𝑛

𝑗=1

𝑚

𝑖=1

, 
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= ∑∑((𝒆𝑖,𝑚𝒆𝑗,𝑛
𝑇)⨂(𝒆𝑗,𝑛𝒆𝑖,𝑚

𝑇))

𝑛

𝑗=1

𝑚

𝑖=1

, 

= ∑∑((𝒆𝑖,𝑚⨂𝒆𝑗,𝑛)(𝒆𝑗,𝑛⨂𝒆𝑖,𝑚)
𝑇
)

𝑛

𝑗=1

𝑚

𝑖=1

, 

= ∑∑((𝒆𝑖,𝑚⨂𝒆𝑗,𝑛)⨂(𝒆𝑗,𝑛⨂𝒆𝑖,𝑚)
𝑇
)

𝑛

𝑗=1

𝑚

𝑖=1

, 

= ∑(𝑒𝑖,𝑚⨂∑(𝒆𝑗,𝑛⨂𝒆𝑗,𝑛
𝑇)

𝑛

𝑗=1

⨂𝒆𝑖,𝑚
𝑇)

𝑚

𝑖=1

, 

= ∑(𝑒𝑖,𝑚⨂𝐼𝑛⨂𝒆𝑖,𝑚
𝑇)

𝑚

𝑖=1

, 

= (𝑒1,𝑚⨂𝐼𝑛⨂𝒆1,𝑚
𝑇) + (𝑒2,𝑚⨂𝐼𝑛⨂𝒆2,𝑚

𝑇) + ⋯+ (𝑒𝑚,𝑚⨂𝐼𝑛⨂𝒆𝑚,𝑚
𝑇), 

=

(

 (

1
0
⋮
0

)⨂(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)⨂(1   0 ⋯   0)

)

  

+

(

 (

0
1
⋮
0

)⨂(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)⨂(0   1 ⋯   0)

)

  

+⋯+

(

 (

0
0
⋮
1

)⨂(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)⨂(0   0 ⋯   1)

)

 , 

=

(

 
 
 
 
 
 
 
 
 
 1(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)

0(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)

⋮
⋮

0(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)

)

 
 
 
 
 
 
 
 
 
 

⨂(1   0 ⋯   0) +

(

 
 
 
 
 
 
 
 
 
 0(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)

1(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)

⋮
⋮

0(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)

)

 
 
 
 
 
 
 
 
 
 

⨂(0   1 ⋯   0) 

+⋯+

(

 
 
 
 
 
 
 
 
 
 0(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)

0(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)

⋮
⋮

1(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)

)

 
 
 
 
 
 
 
 
 
 

⨂(0   0 ⋯   1),  
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=

(

 
 
 
 
 
 
 
 
 
 (

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)

(

0
0
⋮
0

    

0
0
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
0

)

⋮
⋮

(

0
0
⋮
0

    

0
0
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
0

)

)

 
 
 
 
 
 
 
 
 
 

⨂(1   0 ⋯   0) +

(

 
 
 
 
 
 
 
 
 
 (

0
0
⋮
0

    

0
0
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
0

)

(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)

⋮
⋮

(

0
0
⋮
0

    

0
0
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
0

)

)

 
 
 
 
 
 
 
 
 
 

⨂(0   1 ⋯   0) 

+⋯+

(

 
 
 
 
 
 
 
 
 
 (

0
0
⋮
0

    

0
0
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
0

)

(

0
0
⋮
0

    

0
0
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
0

)

⋮
⋮

(

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

)

)

 
 
 
 
 
 
 
 
 
 

⨂(0   0 ⋯   1), 

=

(

 
 
 
 
 
 
 
 
 
 

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

0
0
⋮
0

    

0
0
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
0

⋮
⋮

0
0
⋮
0

    

0
0
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
0)

 
 
 
 
 
 
 
 
 
 

⨂(1   0 ⋯   0) +

(

 
 
 
 
 
 
 
 
 
 

0
0
⋮
0

    

0
0
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
0

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1

⋮
⋮

0
0
⋮
0

    

0
0
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
0)

 
 
 
 
 
 
 
 
 
 

⨂(0   1 ⋯   0) 

+⋯+

(

 
 
 
 
 
 
 
 
 
 

0
0
⋮
0

    

0
0
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
0

0
0
⋮
0

    

0
0
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
0

⋮
⋮

1
0
⋮
0

    

0
1
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮
1)

 
 
 
 
 
 
 
 
 
 

⨂(0   0 ⋯   1), 
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=

(

 
 
 
 
 
 
 
 
 
 
 

1(1   0 ⋯   0)

0(1   0 ⋯   0)
⋮

0(1   0 ⋯   0)

    

0(1   0 ⋯   0)

1(1   0 ⋯   0)
⋮

0(1   0 ⋯   0)

    

⋯
⋯
⋱
⋯

    

0(1   0 ⋯   0)

0(1   0 ⋯   0)
⋮

1(1   0 ⋯   0)

0(1   0 ⋯   0)

0(1   0 ⋯   0)
⋮

0(1   0 ⋯   0)

    

0(1   0 ⋯   0)

0(1   0 ⋯   0)
⋮

0(1   0 ⋯   0)

    

⋯
⋯
⋱
⋯

    

0(1   0 ⋯   0)

0(1   0 ⋯   0)
⋮

0(1   0 ⋯   0)
⋮
⋮

0(1   0 ⋯   0)

0(1   0 ⋯   0)
⋮

0(1   0 ⋯   0)

    

0(1   0 ⋯   0)

0(1   0 ⋯   0)
⋮

0(1   0 ⋯   0)

    

⋯
⋯
⋱
⋯

    

0(1   0 ⋯   0)

0(1   0 ⋯   0)
⋮

0(1   0 ⋯   0))

 
 
 
 
 
 
 
 
 
 
 

 

+

(

 
 
 
 
 
 
 
 
 
 
 

0(0   1 ⋯   0)

0(0   1 ⋯   0)
⋮

0(0   1 ⋯   0)

    

0(0   1 ⋯   0)

0(0   1 ⋯   0)
⋮

0(0   1 ⋯   0)

    

⋯
⋯
⋱
⋯

    

0(0   1 ⋯   0)

0(0   1 ⋯   0)
⋮

0(0   1 ⋯   0)

1(0   1 ⋯   0)

0(0   1 ⋯   0)
⋮

0(0   1 ⋯   0)

    

0(0   1 ⋯   0)

1(0   1 ⋯   0)
⋮

0(0   1 ⋯   0)

    

⋯
⋯
⋱
⋯

    

0(0   1 ⋯   0)

0(0   1 ⋯   0)
⋮

1(0   1 ⋯   0)
⋮
⋮

0(0   1 ⋯   0)

0(0   1 ⋯   0)
⋮

0(0   1 ⋯   0)

    

0(0   1 ⋯   0)

0(0   1 ⋯   0)
⋮

0(0   1 ⋯   0)

    

⋯
⋯
⋱
⋯

    

0(0   1 ⋯   0)

0(0   1 ⋯   0)
⋮

0(0   1 ⋯   0))

 
 
 
 
 
 
 
 
 
 
 

+ ⋯

+

(

 
 
 
 
 
 
 
 
 
 
 

0(0   0 ⋯   1)

0(0   0 ⋯   1)
⋮

0(0   0 ⋯   1)

    

0(0   0 ⋯   1)

0(0   0 ⋯   1)
⋮

0(0   0 ⋯   1)

    

⋯
⋯
⋱
⋯

    

0(0   0 ⋯   1)

0(0   0 ⋯   1)
⋮

0(0   0 ⋯   1)

0(0   0 ⋯   1)

0(0   0 ⋯   1)
⋮

0(0   0 ⋯   1)

    

0(0   0 ⋯   1)

0(0   0 ⋯   1)
⋮

0(0   0 ⋯   1)

    

⋯
⋯
⋱
⋯

    

0(0   0 ⋯   1)

0(0   0 ⋯   1)
⋮

0(0   0 ⋯   1)
⋮
⋮

1(0   0 ⋯   1)

0(0   0 ⋯   1)
⋮

0(0   0 ⋯   1)

    

0(0   0 ⋯   1)

1(0   0 ⋯   1)
⋮

0(0   0 ⋯   1)

    

⋯
⋯
⋱
⋯

    

0(0   0 ⋯   1)

0(0   0 ⋯   1)
⋮

1(0   0 ⋯   1))

 
 
 
 
 
 
 
 
 
 
 

 

= (

𝐼𝑛 ⊗ 𝒆1𝑚
𝑇

𝐼𝑛 ⊗ 𝒆2𝑚
𝑇

⋮
𝐼𝑛 ⊗ 𝒆𝑚𝑚

𝑇

).  

 
(2 ⇒ 3) Consider that 

𝐾𝑚,𝑛 = (

𝐼𝑛 ⊗ 𝒆1𝑚
𝑇

𝐼𝑛 ⊗ 𝒆2𝑚
𝑇

⋮
𝐼𝑛 ⊗ 𝒆𝑚𝑚

𝑇

),  
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=

(

 
 
 
 
 
 
 
 
 (

1
0
⋮
0

    

0
1
⋮
0

    

0
0
⋱
0

    

0
0
⋮
1

)⨂(1   0 ⋯   0)

(

1
0
⋮
0

    

0
1
⋮
0

    

0
0
⋱
0

    

0
0
⋮
1

)⨂(0   1 ⋯   0)

⋮

(

1
0
⋮
0

    

0
1
⋮
0

    

0
0
⋱
0

    

0
0
⋮
1

)⨂(0   0 ⋯   1)

)

 
 
 
 
 
 
 
 
 

,  

=

(

 
 
 
 
 
 
 
 
 
 
 (

1(1   0 ⋯   0)

0(1   0 ⋯   0)
⋮

0(1   0 ⋯   0)

      

0(1   0 ⋯   0)

1(1   0 ⋯   0)
⋮

0(1   0 ⋯   0)

      

⋯
⋯
⋱
⋯

      

0(1   0 ⋯   0)

0(1   0 ⋯   0)
⋮

1(1   0 ⋯   0)

)

(

1(0   1 ⋯   0)

0(0   1 ⋯   0)
⋮

0(0   1 ⋯   0)

      

0(0   1 ⋯   0)

1(0   1 ⋯   0)
⋮

0(0   1 ⋯   0)

      

⋯
⋯
⋱
⋯

        

0(0   1 ⋯   0)

0(0   1 ⋯   0)
⋮

1(0   1 ⋯   0)

)

⋮
⋮

(

1(0   0 ⋯   1)

0(0   0 ⋯   1)
⋮

0(0   0 ⋯   1)

     

0(0   0 ⋯   1)

1(0   0 ⋯   1)
⋮

0(0   0 ⋯   1)

      

⋯
⋯
⋱
⋯

      

0(0   0 ⋯   1)

0(0   0 ⋯   1)
⋮

1(0   0 ⋯   1)

)

)

 
 
 
 
 
 
 
 
 
 
 

,  

=

(

 
 
 
 
 
 
 
 
 
 
 

1(1   0 ⋯   0)

0(1   0 ⋯   0)
⋮

0(1   0 ⋯   0)

1(0   1 ⋯   0)

0(0   1 ⋯   0)
⋮

0(0   1 ⋯   0)
⋮
⋮

1(0   0 ⋯   1)

0(0   0 ⋯   1)
⋮

0(0   0 ⋯   1)

        

0(1   0 ⋯   0)

1(1   0 ⋯   0)
⋮

0(1   0 ⋯   0)

0(0   1 ⋯   0)

1(0   1 ⋯   0)
⋮

0(0   1 ⋯   0)
⋮
⋮

0(0   0 ⋯   1)

1(0   0 ⋯   1)
⋮

0(0   0 ⋯   1)

        ⋯        

0(1   0 ⋯   0)

0(1   0 ⋯   0)
⋮

1(1   0 ⋯   0)

0(0   1 ⋯   0)

0(0   1 ⋯   0)
⋮

1(0   1 ⋯   0)
⋮
⋮

0(0   0 ⋯   1)

0(0   0 ⋯   1)
⋮

1(0   0 ⋯   1)

  

)

 
 
 
 
 
 
 
 
 
 
 

,  

=

(

 
 
 
 
 
 
 
 
 
 

1   0 ⋯   0
0   0 ⋯   0

⋮
0   0 ⋯   0
0   1 ⋯   0
0   0 ⋯   0

⋮
0   0 ⋯   0

⋮
⋮

0   0 ⋯   1
0   0 ⋯   0

⋮
0   0 ⋯   0

        

0   0 ⋯   0
1   0 ⋯   0

⋮
0   0 ⋯   0
0   0 ⋯   0
0   1 ⋯   0

⋮
0   0 ⋯   0

⋮
⋮

0   0 ⋯   0
0   0 ⋯   1

⋮
0   0 ⋯   0

        ⋯            

0   0 ⋯   0
0   0 ⋯   0

⋮
1   0 ⋯   0
0   0 ⋯   0
0   0 ⋯   0

⋮
0   1 ⋯   0

⋮
⋮

0   0 ⋯   0
0   0 ⋯   0

⋮
0   0 ⋯   1

  

)

 
 
 
 
 
 
 
 
 
 

, 

= (

𝐴11

𝐴21

⋮
𝐴𝑚1

   

𝐴12

𝐴22

⋮
𝐴𝑚2

   

⋯
⋯
⋱
⋯

   

𝐴1𝑛

𝐴2𝑛

⋮
𝐴𝑚𝑛

). 
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We have that 𝐾𝑚,𝑛 is a matrix 𝑚𝑛 × 𝑚𝑛 with 

i. 𝑃 = [𝐴𝑖𝑗] is a 𝑚 × 𝑛 block matrix with each block 𝐴𝑖𝑗 being a 𝑛 × 𝑚 matrix. 

ii. For each 𝑖 ∈ {1,2,… ,𝑚}, 𝑗 ∈ {1,2,… , 𝑛}, 𝐴𝑖𝑗 = (𝑎𝑠𝑡
(𝑖,𝑗)) is a (0,1) matrix with a unique 1 which 

lies at the position (𝑗, 𝑖). 

(3 ⇒ 1)  Consider that  

𝐾𝑚,𝑛 = (

𝐴11

𝐴21

⋮
𝐴𝑚1

   

𝐴12

𝐴22

⋮
𝐴𝑚2

   

⋯
⋯
⋱
⋯

   

𝐴1𝑛

𝐴2𝑛

⋮
𝐴𝑚𝑛

), 

where  𝐴𝑖𝑗 be an 𝑛 × 𝑚 matrix and for each 𝑖 ∈ {1,2,… ,𝑚}, 𝑗 ∈ {1,2,… , 𝑛}, 𝐴𝑖𝑗 = (𝑎𝑠,𝑡
(𝑖,𝑗)) is a (0,1) matrix 

with a unique 1 which lies at the position (𝑗, 𝑖). Therefore, we have: 

𝐾𝑚,𝑛 =

(

 
 
 
 
 
 
 
 
 
 

1   0 ⋯   0
0   0 ⋯   0

⋮
0   0 ⋯   0
0   1 ⋯   0
0   0 ⋯   0

⋮
0   0 ⋯   0

⋮
⋮

0   0 ⋯   1
0   0 ⋯   0

⋮
0   0 ⋯   0

        

0   0 ⋯   0
1   0 ⋯   0

⋮
0   0 ⋯   0
0   0 ⋯   0
0   1 ⋯   0

⋮
0   0 ⋯   0

⋮
⋮

0   0 ⋯   0
0   0 ⋯   1

⋮
0   0 ⋯   0

        ⋯            

0   0 ⋯   0
0   0 ⋯   0

⋮
1   0 ⋯   0
0   0 ⋯   0
0   0 ⋯   0

⋮
0   1 ⋯   0

⋮
⋮

0   0 ⋯   0
0   0 ⋯   0

⋮
0   0 ⋯   1

  

)

 
 
 
 
 
 
 
 
 
 

 

=

(

 

1𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

     

0𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

      

⋯
⋯
⋱
⋯

     

0𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

 

)

 + ⋯+

(

 

0𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

     

0𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

      

⋯
⋯
⋱
⋯

     

1𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

 

)

  

+

(

 

0𝐻11
𝑇

1𝐻11
𝑇

⋮
0𝐻11

𝑇

     

0𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

      

⋯
⋯
⋱
⋯

     

0𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

 

)

 + ⋯+

(

 

0𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

     

0𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

      

⋯
⋯
⋱
⋯

     

0𝐻11
𝑇

1𝐻11
𝑇

⋮
0𝐻11

𝑇

 

)

  

+⋯+

(

 

0𝐻11
𝑇

0𝐻11
𝑇

⋮
1𝐻11

𝑇

     

0𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

      

⋯
⋯
⋱
⋯

     

0𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

 

)

 + ⋯+

(

 
 

0𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

     

0𝐻11
𝑇

0𝐻11
𝑇

⋮
0𝐻11

𝑇

      

⋯
⋯
⋱
⋯

     

0𝐻11
𝑇

0𝐻11
𝑇

⋮
1𝐻11

𝑇

 

)

 
 

 

= 𝐻11⨂𝐻11
𝑇 + ⋯+ 𝐻1𝑛⨂𝐻1𝑛

𝑇 + 𝐻21⨂𝐻21
𝑇 + ⋯+ 𝐻2𝑛⨂𝐻2𝑛

𝑇 + 𝐻𝑚1⨂𝐻𝑚1
𝑇 

+⋯+ 𝐻𝑚𝑛⨂𝐻𝑚𝑛
𝑇 

= ∑∑(𝐻𝑖𝑗⨂𝐻𝑖𝑗
𝑇)

𝑛

𝑗=1

𝑚

𝑖=1

. 

Thus, we have 

𝐾𝑚,𝑛 = ∑ ∑ (𝐻𝑖𝑗 ⊗ 𝐻𝑖𝑗
𝑇)𝑛

𝑗=1
𝑚
𝑖=1  .        ∎ 

Theorem 8.  Let  𝐾𝑚,𝑛 matrix as in Definition 4, then 𝐾𝑚,𝑛 = 𝐾𝑛,𝑚
𝑇 and 𝐾𝑚,𝑛𝐾𝑚,𝑛

𝑇 = 𝐾𝑚,𝑛
𝑇𝐾𝑚,𝑛 = 𝐼𝑚𝑛. 

Proof.  Without loss of generality, we use the definition of 𝐾𝑚,𝑛  as in Definition 4 (a).  

𝐾𝑚,𝑛
𝑇 = (∑∑(𝐻𝑖𝑗⨂𝐻𝑖𝑗

𝑇)

𝑛

𝑗=1

𝑚

𝑖=1

)

𝑇
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= (∑∑((𝒆𝑖,𝑚𝒆𝑗,𝑛
𝑇)⨂(𝒆𝑗,𝑛𝒆𝑖,𝑚

𝑇))

𝑛

𝑗=1

𝑚

𝑖=1

)

𝑇

 

= (∑∑((𝒆𝑖,𝑚⨂𝒆𝑗,𝑛)(𝒆𝑗,𝑛⨂𝒆𝑖,𝑚)
𝑇
)

𝑛

𝑗=1

𝑚

𝑖=1

)

𝑇

 

= (∑∑((𝒆𝑖,𝑚⨂𝒆𝑗,𝑛)⨂(𝒆𝑗,𝑛⨂𝒆𝑖,𝑚)
𝑇
)

𝑛

𝑗=1

𝑚

𝑖=1

)

𝑇

 

= (∑(𝑒𝑖,𝑚⨂∑(𝒆𝑗,𝑛⨂𝒆𝑗,𝑛
𝑇)

𝑛

𝑗=1

⨂𝒆𝑖,𝑚
𝑇)

𝑚

𝑖=1

)

𝑇

 

= (∑(𝑒𝑖,𝑚⨂𝐼𝑛⨂𝒆𝑖,𝑚
𝑇)

𝑚

𝑖=1

)

𝑇

 

= ((𝑒1,𝑚⨂𝐼𝑛⨂𝒆1,𝑚
𝑇) + (𝑒2,𝑚⨂𝐼𝑛⨂𝒆2,𝑚

𝑇) + ⋯+ (𝑒𝑚,𝑚⨂𝐼𝑛⨂𝒆𝑚,𝑚
𝑇))

𝑇
 

= (𝑒1,𝑚⨂𝐼𝑛⨂𝒆1,𝑚
𝑇) + (𝑒2,𝑚⨂𝐼𝑛⨂𝒆2,𝑚

𝑇) + ⋯+ (𝑒𝑚,𝑚⨂𝐼𝑛⨂𝒆𝑚,𝑚
𝑇) 

= 𝐾𝑛,𝑚. 

Next, we have that 

𝐾𝑚,𝑛𝐾𝑚,𝑛
𝑇 = 𝐾𝑚,𝑛𝐾𝑛,𝑚 

= (∑∑(𝐻𝑖𝑗⨂𝐻𝑖𝑗
𝑇)

𝑛

𝑗=1

𝑚

𝑖=1

)(∑∑(𝐻𝑗𝑖⨂𝐻𝑗𝑖
𝑇)

𝑚

𝑖=1

𝑛

𝑗=1

) 

= ((𝑒1,𝑚⨂𝐼𝑛⨂𝒆1,𝑚
𝑇) + (𝑒2,𝑚⨂𝐼𝑛⨂𝒆2,𝑚

𝑇) + ⋯+ (𝑒𝑚,𝑚⨂𝐼𝑛⨂𝒆𝑚,𝑚
𝑇)) ((𝑒1,𝑛⨂𝐼𝑚⨂𝒆1,𝑛

𝑇)

+ (𝑒2,𝑛⨂𝐼𝑚⨂𝒆2,𝑛
𝑇) + ⋯+ (𝑒𝑚,𝑚⨂𝐼𝑛⨂𝒆𝑚,𝑚

𝑇)) 

= ((𝑒1,𝑚⨂𝐼𝑛⨂𝒆1,𝑚
𝑇) + (𝑒2,𝑚⨂𝐼𝑛⨂𝒆2,𝑚

𝑇) + ⋯+ (𝑒𝑚,𝑚⨂𝐼𝑛⨂𝒆𝑚,𝑚
𝑇)) ((𝑒1,𝑚⨂𝐼𝑛⨂𝒆1,𝑚

𝑇)

+ (𝑒2,𝑚⨂𝐼𝑛⨂𝒆2,𝑚
𝑇) + ⋯+ (𝑒𝑚,𝑚⨂𝐼𝑛⨂𝒆𝑚,𝑚

𝑇)) 

=

(

 
 

𝐼𝑚
𝟎
𝟎
⋮
𝟎

   

𝟎
𝐼𝑚
𝟎
⋮
𝟎

   

𝟎
𝟎
𝐼𝑚
⋮
𝟎

   

⋯
⋯
⋯
⋱
𝟎

    

𝟎
𝟎
𝟎
⋮

𝐼𝑚

      

)

 
 

 

= 𝐼𝑚𝑛,   

and 

𝐾𝑚,𝑛
𝑇𝐾𝑚,𝑛 = 𝐾𝑛,𝑚𝐾𝑚,𝑛 

 

= (∑∑(𝐻𝑗𝑖⨂𝐻𝑗𝑖
𝑇)

𝑚

𝑖=1

𝑛

𝑗=1

)(∑∑(𝐻𝑖𝑗⨂𝐻𝑖𝑗
𝑇)

𝑛

𝑗=1

𝑚

𝑖=1

) 
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= ((𝑒1,𝑛⨂𝐼𝑚⨂𝒆1,𝑛
𝑇) + (𝑒2,𝑛⨂𝐼𝑚⨂𝒆2,𝑛

𝑇) + ⋯+ (𝑒𝑚,𝑚⨂𝐼𝑛⨂𝒆𝑚,𝑚
𝑇)) ((𝑒1,𝑚⨂𝐼𝑛⨂𝒆1,𝑚

𝑇)

+ (𝑒2,𝑚⨂𝐼𝑛⨂𝒆2,𝑚
𝑇) + ⋯+ (𝑒𝑚,𝑚⨂𝐼𝑛⨂𝒆𝑚,𝑚

𝑇)) 

= ((𝑒1,𝑛⨂𝐼𝑚⨂𝒆1,𝑛
𝑇) + (𝑒2,𝑛⨂𝐼𝑚⨂𝒆2,𝑛

𝑇) + ⋯+ (𝑒𝑚,𝑚⨂𝐼𝑛⨂𝒆𝑚,𝑚
𝑇)) ((𝑒1,𝑚⨂𝐼𝑛⨂𝒆1,𝑚

𝑇)

+ (𝑒2,𝑚⨂𝐼𝑛⨂𝒆2,𝑚
𝑇) + ⋯+ (𝑒𝑚,𝑚⨂𝐼𝑛⨂𝒆𝑚,𝑚

𝑇)) 

=

(

 
 

𝐼𝑚
𝟎
𝟎
⋮
𝟎

   

𝟎
𝐼𝑚
𝟎
⋮
𝟎

   

𝟎
𝟎
𝐼𝑚
⋮
𝟎

   

⋯
⋯
⋯
⋱
𝟎

    

𝟎
𝟎
𝟎
⋮

𝐼𝑚

      

)

 
 

   

= 𝐼𝑚𝑛.          ∎ 

Theorem 9.  Let 𝐴 be an 𝑛 × 𝑛 matrix.  Then 𝑣𝑒𝑐(𝐴) = 𝐾𝑛,𝑛𝑣𝑒𝑐(𝐴𝑇). 

Proof. Consider that 

𝐴𝑇 = (

𝑎11

𝑎12

⋮
𝑎1𝑛

   

𝑎21

𝑎22

⋮
𝑎2𝑛

   

⋯
⋯
⋱
⋯

   

𝑎𝑛1

𝑎𝑛2

⋮
𝑎𝑛𝑛

)

𝑛×𝑛

  

= 𝑎11 (

1
0
⋮
0

)

𝑛×1

(1  0  ⋯    0)1×𝑚 + 𝑎12 (

0
1
⋮
0

) (1  0  ⋯    0) + ⋯+ 𝑎1𝑛 (

0
0
⋮
1

) (1  0  ⋯    0)

+ 𝑎21 (

1
0
⋮
0

) (0  1  ⋯    0) + 𝑎22 (

0
1
⋮
0

) (0  1  ⋯    0) + ⋯+ 𝑎2𝑛 (

0
0
⋮
1

) (0  1  ⋯    0) + ⋯

+ 𝑎𝑛1 (

1
0
⋮
0

) (0  0  ⋯    1) + 𝑎𝑛2 (

0
1
⋮
0

) (0  0  ⋯    1) + ⋯+ 𝑎𝑛𝑛 (

0
0
⋮
1

) (0  0  ⋯    1) 

= 𝑎11𝒆1,𝑛𝒆1,𝑛
𝑇 + 𝑎12𝒆2,𝑛𝒆1,𝑛

𝑇 + ⋯+ 𝑎1𝑛𝒆𝑛,𝑛𝒆1,𝑛
𝑇 + 𝑎21𝒆1,𝑛𝒆2,𝑛

𝑇 + 𝑎22𝒆2,𝑛𝒆2,𝑛
𝑇 + ⋯

+ 𝑎2𝑛𝒆𝑛,𝑛𝒆2,𝑛
𝑇 + 𝑎𝑛1𝒆1,𝑛𝒆𝑛,𝑛

𝑇 + 𝑎𝑛2𝒆2,𝑛𝒆𝑛,𝑛
𝑇 + ⋯+ 𝑎𝑛𝑛𝒆𝑛,𝑛𝒆𝑛,𝑛

𝑇 

= 𝑎11𝒆1,𝑛𝒆1,𝑛
𝑇 + 𝑎12𝒆2,𝑛𝒆1,𝑛

𝑇 + ⋯+ 𝑎1𝑛𝒆𝑛,𝑛𝒆1,𝑚
𝑇 + 𝑎21𝒆1,𝑛𝒆2,𝑚

𝑇 + 𝑎22𝒆2,𝑛𝒆2,𝑚
𝑇 + ⋯

+ 𝑎2𝑛𝒆𝑛,𝑛𝒆2,𝑛
𝑇 + ⋯+ 𝑎𝑛1𝒆1,𝑛𝒆𝑛,𝑛

𝑇 + 𝑎𝑛2𝒆2,𝑛𝒆𝑛,𝑛
𝑇 + ⋯+ 𝑎𝑛𝑛𝒆𝑛,𝑛𝒆𝑛,𝑛

𝑇 

= 𝑎11𝐻11
𝑇 + 𝑎12𝐻21

𝑇 + ⋯+ 𝑎1𝑛𝐻𝑛1
𝑇 + 𝑎12𝐻12

𝑇 + 𝑎22𝐻22
𝑇 + ⋯+ 𝑎2𝑛𝐻𝑛2

𝑇 + ⋯+ 𝑎𝑛1𝐻1𝑛
𝑇 +

𝑎𝑛2𝐻2𝑛
𝑇 + ⋯+ 𝑎𝑛𝑛𝐻𝑛𝑛

𝑇  

= ∑∑𝑎𝑖𝑗𝐻𝑖𝑗
𝑇

𝑛

𝑗=1

𝑛

𝑖=1

 

 

Thus, 

𝑣𝑒𝑐(𝐴𝑇) = 𝑣𝑒𝑐 (∑∑𝑎𝑖𝑗𝐻𝑖𝑗
𝑇

𝑛

𝑗=1

𝑛

𝑖=1

) 

= 𝑣𝑒𝑐 (∑∑(𝑎𝑖𝑗𝒆𝑗,𝑛𝒆𝑖,𝑛
𝑇)

𝑛

𝑗=1

𝑚

𝑖=1

) 

= ∑∑𝑣𝑒𝑐(𝑎𝑖𝑗𝒆𝑗,𝑛𝑎𝑖𝑗𝒆𝑖,𝑛
𝑇)

𝑛

𝑗=1

𝑛

𝑖=1

 

= ∑∑𝑣𝑒𝑐(𝒆𝑗,𝑛𝒆𝑖,𝑛
𝑇𝐴𝒆𝑗,𝑛𝒆𝑖,𝑛

𝑇)

𝑛

𝑗=1

𝑛

𝑖=1
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= ∑∑𝑣𝑒𝑐(𝐻𝑖𝑗
𝑇𝐴𝐻𝑖𝑗

𝑇)

𝑛

𝑗=1

𝑛

𝑖=1

 

= ∑∑𝑣𝑒𝑐(𝐻𝑖𝑗
𝑇𝐴𝐻𝑖𝑗

𝑇)

𝑛

𝑗=1

𝑛

𝑖=1

 

= ∑∑(𝐻𝑖𝑗 ⊗ 𝐻𝑖𝑗
𝑇)𝑣𝑒𝑐(𝐴)

𝑛

𝑗=1

𝑛

𝑖=1

 

= 𝐾𝑛,𝑛𝑣𝑒𝑐(𝐴) 

Using Theorem 8, we conclude that 𝐾𝑛,𝑛𝑣𝑒𝑐(𝐴𝑇) = 𝑣𝑒𝑐(𝐴).     ∎ 

4. CONCLUSIONS 

This paper establishes some conclusions on the commutation matrix. The results of the properties of 

the commutation matrix using one of the definitions, the commutation matrix. A different way to prove the 

properties of the commutation matrix is given. All these obtained conclusions make the theory of 

commutation matrix more complete.   
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