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 ABSTRACT 

Article History: 
Tuberculosis is a disease that is very contagious among humans. To prevent this from 
happening, the Semarang city government has enacted vaccination for exposed individuals and 

treatment for the infected individuals. Vaccination and treatment are forms of control that will 

be applied to dynamic model systems of Tuberculosis. The present paper will describe an 

epidemic model of Tuberculosis with control using the Pontryagin Minimum Principle to find 
the optimal solution of the control with a fixed time and free endpoint. The optimal control will 

aim to reduce or minimize the number of infected populations. Numerical calculation is carried 

out with MATLAB software programming to illustrate and compare the graph of the dynamic 

model with and without optimal control. The results of dynamic modeling of Tuberculosis with 
control state that vaccination and treatment have succeeded in reducing the population of 

infected individuals. 
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1. INTRODUCTION 

Tuberculosis (TB) is a human disease caused by Mycobacterium tuberculosis, which mainly affects 

the human respiratory system, which is the lungs. This disease is contagious among humans and has the 

potential to cause an outbreak. To prevent this outbreak becoming an epidemic, mathematical scientists use 

dynamic systems modeling to predict changes in the number of healthy and infected individuals in a certain 

population in certain time [1].  

Dynamic system modeling not only predicts the dynamics of changes in the number of infected 

individuals but can also include a control role to overcome the outbreak; the theory of the use of control is 

called the Pontryagin Minimum Principle [2] [3]. Tuberculosis is one of disease which is a very contagious 

disease that causes death globally and the leading cause of death from a single infectious pathogen [4], 

Tuberculosis is considered one of the 10 deadliest diseases in the world and ranked second after HIV [5]. 

More than 95% of deaths caused by Tuberculosis occur in developing countries; it is estimated 10 million 

people were suffering from Tuberculosis, and 1.5 million people died from this disease in 2018 [6].  

Nowadays, Indonesia is one of the countries with the third-largest number of Tuberculosis sufferers in 

the world after India and China. The high rate of Tuberculosis sufferers is influenced by social and economic 

conditions in various groups of society. Moreover, the rate of Tuberculosis transmission in Indonesia is also 

high. Tuberculosis sufferers also experience other negative social impacts, such as stigma and being 

ostracized by the community [6]. Tuberculosis can be cured and treated. Various efforts to cure be carried 

out by giving the patient drugs such as isoniazid (INH), rifampin (RIF), ethambutol (EMB), pyrazinamide 

(PZA) [7] and another effort made to prevent Tuberculosis is by giving vaccines such as BCG which is first 

used on humans in 1921 [8]. In this paper, we developed the dynamic model of tuberculosis transmission 

using vaccine and treatment as optimal control to minimize the infected population in Semarang City, 

Indonesia. It is important to note that the mathematical model of Tuberculosis was first introduced by Waaler 

et al. in 1962 as a differential equation system [9].  

 

2. RESEARCH METHODS 

We construct a Tuberculosis spread model by taking four population classes; these populations are assumed 

to have a natural death rate in each class; their class is Susceptible class (S), Exposed class (E), Infectious 

class (I), and Recovered class (R). Then, the dynamic model of Tuberculosis without optimal control can be 

described as differential equation system: 
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With initial condition 0)0( S , 0)0( E , 0)0( I , 0)0( R . 

System (1) can be describe using flow diagram as: 

 

Figure 1. Flow Diagram of Dynamic System (1) 
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And then we define the dynamic model of Tuberculosis using optimal control as: 
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With initial condition 0)0( S , 0)0( E , 0)0( I , 0)0( R . 

In the system (1) and (2) b represent parameter of birth rate,  and p represent transmission coefficient, 

 represent parameter rate from exposed to infectious,  represent parameter of natural recovery rate of 

infectious,   represent parameter of death rate due to infection, and  represent parameter of natural death 

rate. 

System (2) can be describe using flow diagram as: 

 

Figure 2. Flow diagram of dynamic system (2) 

We present the optimal control mechanism to reduce the spread of the Tuberculosis disease using the 

following control variables: 

i.  )(1 tu is control function representing vaccination effectiveness for exposed people. 

ii. )(2 tu is control function represent treatment effectiveness for infected people. 

The purpose of the optimal control is to reduce the number of infected population and control measures. 

Then the objective functional correspond with control variables and dynamic model (2):  
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subject to (2). 

The weight of the infected and the costs function of  21,uu represent as 1K , 2K , 3K  respectively. The 

goal of objective functional is to minimize the number of infected individuals and the cost of the control 

measures. Then define control functions  ( )*
2

*
1 ,uu  such that:  

                                         ( )*
2

*
1 ,uuJ = minimize ( ) Uuuuu 2121 ,;,  subject to (1)                  (4) 

and control set by:                                     

                                 ( ) iuuuU 21,= are Lebesque measurable on 2,1,10],,0[ = iuT i        (5) 

Theorem 1. There exists control ( ) Uuuu = *
2

*
1

* ,  such that: 

i.    The variables of state and variables of control are positive. 

ii.    Control set (4) is closed and convex.  

iii. The right-hand side of the state system (2) is continuous, is bounded above by a linear combination 

of the control and state, and can be written as a linear function of u with coefficients depending by 

the time and the state. 

iv.  The integrand of the objective functional (2) is convex on u. 

v. There exists constant 0, 21 CC and 1  such that the integrand of the objective functional 

satisfies: 
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To find the optimal solution, we begin by defining the Lagrangian and the Hamiltonian associated with 

the optimal control problem [15].   

The Lagrangian is given by: 
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and the Hamiltonian:                                                
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Here 1 , 2 , 3  and 4  are adjoin variables that satisfies: 
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with terminal (transversality) condition 0)()()()( 4321 ==== TTTT  . These adjoin variables will 

minimize the state variable with respect to the state function. Then the optimal variables of control: 
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with 
*
22 uu =  

Since 10 1  u  and 10 2  u , we can rewrite for 
*
1u : 
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3. RESULTS AND DISCUSSION 

The numerical result of the optimal control problem in the system (2) will be in the form of a graph 

and calculated using MATLAB programming [15]. In this chapter, we will compare the graph of the dynamic 

system without optimal control (1) and with optimal control (2). The type of optimal control in this case is 

fixed time (T = 10 years) and free end point ( )0(x determined, but )(Tx are free) [16], where x is the variable 

of state ( )RIESx ,,,= . 

Table 1. Parameter Data of Dynamic System Model (1) and (2) 

Parameter Description Values Reference 
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b  Birth rate 0.0121 [11] 

  Transmission coefficient  0.00002 [10] 

p Transmission coefficient 0.128 [10] 

  Rate from exposed to infectious  0.05 [10] 

  Rate from infectious to recovery 0.25 [10] 

  Death rate due to infection   0.2 [13] 

  Natural Death rate   0.0101 [11] 

)0(S  Initial value (point) of Susceptible 1.668 106 [11] 

)0(E  Initial value (point) of Exposed 10000 Fitted 

)0(I  Initial value (point) of Infectious 2292 [12] 

)0(R  Initial value (point) of Recovered 1000 Fitted 

 

Table 1 shows parameter data of system (2); these data are needed to run the program using MATLAB 

software [14] to generate graph functions of susceptible, exposed, infectious, and recovered.  

The simulation graph function of susceptible, exposed, infectious, and recovered is shown in the figure 

below: 

 

 
Figure 3. Dynamics of Susceptible Population vs Time 

Figure 3 describes a comparison chart of the dynamics of a susceptible population with control (blue 

curve) and without control (red curve). We can see that by applying optimal control, the population of 

susceptible increased (blue curve). Susceptible population graphs with control converged to the value of 

35070, while susceptible population graphs without control converged to the value of 0.005. 
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Figure 4. Dynamics of Exposed Population vs Time 

In Figure 4 describe comparison chart of dynamics of exposed population with control (blue curve) 

and without control (red curve). We can see that by applying optimal control, population of exposed decreased 

significantly (blue curve). For exposed population graphs with control converging to value of 430, while 

exposed population graphs without control converging to value of 848500.  

 

 

 

In Figure 5 describe comparison chart of dynamics of infected population with control (blue curve) 

and without control (red curve). We can see that by applying optimal control, population of infected decreased 

significantly (blue curve). For infected population graphs with control converging to value of 46, while 

infected population graphs without control converging to value of 242700.  

 

 

Figure 5. Dynamics of Recovered Population vs Time 
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Figure 6. Dynamics of Susceptible Population vs Time 

Figure 6 describes a comparison chart of the dynamics of the recovered population with control (blue 

curve) and without control (red curve). By applying optimal control, we can see that the recovered population 

increased significantly (blue curve). Recovered population graphs with control converged to the value of 

1449000, while recovered population graphs without control converged to the value of 314100. 

 

 

Figure 7. Control 𝒖𝟏 vs Time 

Figure 7 depicts the control graph 𝑢1. As we can see the 𝑥 axis is time and 𝑦 axis is the value of the 

control effectiveness. Control 𝑢1 is the effectiveness of vaccination.  
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Figure 8. Control 𝒖𝟐 vs Time 

Figure 8 depicts the control graph 𝑢2. As we can see, the 𝑥 axis is time and 𝑦 axis is the value of the 

control effectiveness. Control 𝑢2 is the effectiveness of treatment.  

The terms )(1 tEu− and )(2 tIu− , in the dynamic system (2) means that there is a reduction in the rate 

of change of the exposed and infected population by )(1 tEu and )(2 tIu respectively. A detail description will 

be given in the following example:  

By numerical calculation (iteration) using MATLAB software it is known that 386,566)2()2(1 =Eu , 

680,80)2()2(2 =Iu , with  t = 2 years, means on the second year we should aim to vaccinate 566,386 exposed 

individuals and giving treatment to 80,680 infected individuals simultaneously, 1u and 2u  play role as 

effectiveness of the vaccine and treatment since 10 1  u  and 10 2  u . When this is done, the infected 

population will decrease rather than not being vaccinated and treated, and then the number of recovered 

populations will increase because people who have been vaccinated and treated are cured (considered cured). 

 

4. CONCLUSIONS 

The main result of this paper is to find the value of optimal control ( 1u and 2u ) using the Pontryagin 

Minimum Principle method, which is applied to the dynamic modeling of Tuberculosis spread. The value of 

optimal control here is 566,386 exposed individuals should be vaccinated ( ))()(1 tEtu , and 80,680 infected 

individuals should be treated ( ))()(2 tItu  simultaneously correspond with time t. This control is intended to 

reduce the spread of the Tuberculosis disease in Semarang city.  In the end, the use of the control function in 

the dynamic model is to provide advice to the health authorities on how to handle and control the tuberculosis 

outbreak. 
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