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 ABSTRACT 

Article History: 
Research on innovations in the statistics and statistical computing program systems 

implemented in the health sector. The development of a mixed estimator model is an 

innovation of nonparametric regression analysis by combining two approaches in 

nonparametric regression, namely the truncated spline estimator and the Epanechnikov 

kernel. The urgency of this study is that there are often cases where there are different data 

patterns from each predictor variable. In addition, by using only one form of the estimator in 

estimating a multivariable regression curve, the result is that the estimator obtained will not 

match the data pattern. The research objective was to find a mixed estimator between the 

truncated spline and the Epanechnikov kernel and the estimator results were applied to 

Dengue Hemorrhagic Fever case data. The unit of observation is a province in Indonesia and 

This study relied on secondary data received from the Central Statistical Agency (BPS) and 

the Health Office. Based on the analysis results, it was found that the best model of 

nonparametric regression with a mixed estimator of the truncated spline and Epanechnikov 

Kernel is a model with 3 knots with a combination of variables. The coefficient of 

determination (R2) is 98.11%. We can conclude that the mixed estimator tends to follow actual 

data and represents a nonparametric regression model with a mixed estimator that can 

predict the number of Dengue Hemorrhagic Fever Cases in Indonesia 
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1. INTRODUCTION 

The The development of methods in the field of nonparametric regression has evolved. One of the 

statistical methods is nonparametric regression, which seeks to establish the pattern of association between 

the predictor variable and the responder variable when the form of the function is unknown [1]. The 

fundamental idea is that the data seeks its own estimation of the regression curve, independent of the 

researcher's subjectivity [2]. This means that the nonparametric regression approach is very flexible and 

objective [3], [4]. There are many estimators in the nonparametric regression approach that researchers 

have developed, including splines [5]–[8], kernels [9]–[11], Fourier series [12]–[15], wavelets [16], [17], 

and local polynomials [18]–[20]. 

According to Budiantara et al. [21], the nonparametric regression models developed by researchers 

so far, if explored further, basically have significant and fundamental assumptions in the models. Each 

predictor variable in multi-predictor nonparametric regression modeling is considered to have the same 

pattern, so the researchers forced the use of only one form of the model estimator for all predictor variables 

[22]. Therefore, using only one form of the estimator in various states of different data relationship patterns 

will undoubtedly result in the resulting estimator not matching the data pattern. As a result, the estimation 

of the regression model is not good and produces significant errors. Therefore, to overcome this problem, 

several researchers have developed a nonparametric mixed regression curve estimator in which the 

appropriate curve estimator approximates each data pattern in the nonparametric regression model. 

Several studies have examined and developed nonparametric mixed regression models, spline-kernel 

[23]–[25], spline-Fourier series [26]–[28], and kernel-Fourier series [10], [22], [29]. This nonparametric 

mixed regression curve estimator is expected to be an appropriate estimator that can estimate data patterns 

reasonably. This research is a continuation of previous research on nonparametric regression of the 

truncated spline. The next innovation in this study is nonparametric regression using mixed estimators, 

including truncated spline and Epanechnikov kernel with application based on computational programs 

using Dengue Hemorrhagic Fever data in Indonesia. 

2. RESEARCH METHODS 

2.1 Basic Theory of Mixed Estimators 

Suppose there are paired data (𝑡𝑖, 𝑤𝑖, 𝑦𝑖)where the pattern between the predictor variables (𝑡𝑖, 𝑤𝑖)  

and response variable (𝑦𝑖) following the nonparametric regression model in Equation (1). 

            𝑦𝑖 = 𝜂(𝑡𝑖, 𝑤𝑖) + 𝜀𝑖                                    (1) 

It is assumed that the shape of the regression curve is unknown and that it need only be continuous 

and differentiable. Random error  𝜀𝑖  is normally distributed with a mean of zero and 𝐸(𝜀𝑖
2) = 𝜎2. Then the 

regression curve 𝜂(𝑡𝑖, 𝑤𝑖) is assumed to be additive. 

𝜂(𝑡𝑖, 𝑤𝑖) = 𝑓(𝑡𝑖) + 𝑔(𝑤𝑖)            (2) 

𝑓(𝑡𝑖) and 𝑔(𝑤𝑖)being functions that are assumed to be smooth. The main problem that must be 

solved in modeling the nonparametric regression curve mixed estimator is to obtain the estimation form of 

the regression curve 𝜂(𝑡𝑖, 𝑤𝑖). In this study, the combination estimator that will be used is truncated spline 

to estimate the regression curve 𝑓(𝑡𝑖), and Epanechnikov Kernel estimates the regression curve 𝑔(𝑤𝑖). 

i. Regression Curve Estimator for the Truncated Spline 

Suppose there are paired data (𝑡1𝑖, 𝑡2𝑖, … , 𝑡𝑞𝑖 , 𝑦𝑖), which assumes the pattern between predictor and 

response variables follows the nonparametric regression model. 

               𝑦𝑖 = 𝑓(𝑡1𝑖, 𝑡2𝑖, … , 𝑡𝑞𝑖) + 𝜀𝑖 (3) 

The regression curve of 𝑓(𝑡1𝑖, 𝑡2𝑖, … , 𝑡𝑞𝑖) is unknown, and it is only assumed that the curve is smooth 

because it is continuous and differentiable. The random error 𝜀𝑖 is normally distributed with zero means and 

𝐸(𝜀𝑖
2) = 𝜎2. Furthermore, the regression curve 𝑓(𝑡1𝑖, 𝑡2𝑖, … , 𝑡𝑞𝑖)  is assumed to be additive. 

𝑓(𝑡1𝑖, 𝑡2𝑖, … , 𝑡𝑞𝑖) = 𝑓1(𝑡1𝑖) + 𝑓2(𝑡2𝑖) + ⋯+ 𝑓𝑞(𝑡𝑞𝑖) (4) 
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= ∑ 𝑓𝑝(𝑡𝑝𝑖)

𝑞

𝑝=1

      

Then the form of the response relationship pattern (𝑦𝑖) with each predictor variable (𝑡𝑖) is assumed 

to vary at certain sub-intervals. In theory, 𝑓𝑝(𝑡𝑝𝑖) is a predictor variable component that is approximated by 

the truncated spline regression curve of degree 1 (linear) with a total of q predictor variables. The 

regression curve 𝑓𝑝(𝑡𝑝𝑖) is assumed to be contained in a degree m spline space with 𝜉 being knot points 

𝐾1, 𝐾2, … , 𝐾𝑟. The components of the degree 1 (linear) regression curve of multivariable truncated spline 

are written in Equation (5). 

𝑓𝑝(𝑡𝑝𝑖) = 𝛿0𝑝 + ∑ ∑ 𝛿𝑗𝑝𝑡𝑝
𝑗

𝑞

𝑝=1

+ ∑ ∑ 𝜉(𝑚+𝑘)(𝑡𝑝 − 𝐾𝑘𝑝)
+

𝑚
 

𝑞

𝑝=1

𝑟

𝑘=1

𝑚

𝑗=1

 (5) 

The multivariable regression of the truncated spline model can be presented in matrix form. 

[
 
 
 
𝑓𝑝1

𝑓𝑝2

⋮
𝑓𝑝𝑛]

 
 
 
= [

1 𝑡11 𝑡21

1 𝑡12 𝑡22

⋮ ⋮ ⋮
1 𝑡1𝑛 𝑡2𝑛

 

… 𝑡𝑞1

… 𝑡𝑞2

⋱ …
… 𝑡𝑞𝑛

] [

𝛿0

𝛿11

⋮
𝛿1𝑞

] + [

(𝑡11 − 𝐾11) … (𝑡11 − 𝐾𝑟1)

(𝑡12 − 𝐾11) … (𝑡12 − 𝐾𝑟1)
⋮ ⋱ ⋮

(𝑡1𝑛 − 𝐾11) … (𝑡1𝑛 − 𝐾𝑟1)

] [

𝜉21

𝜉31

⋮
𝛿1𝑞

] + ⋯ 

+

[
 
 
 
 
(𝑡𝑞1 − 𝐾1𝑞) … (𝑡𝑞1 − 𝐾𝑟𝑞)

(𝑡𝑞2 − 𝐾1𝑞) … (𝑡𝑞2 − 𝐾𝑟𝑞)

⋮ ⋱ ⋮
(𝑡𝑞𝑛 − 𝐾1𝑞) … (𝑡𝑞𝑛 − 𝐾𝑟𝑞)]

 
 
 
 

[
 
 
 
𝜉2𝑞

𝜉3𝑞

⋮
𝛿𝑟𝑞]

 
 
 

 

(6) 

The matrix form in Equation (6) can be presented in the state in Equation (7). 

𝒇𝒑(𝒕𝒑𝒊) = [𝑻𝟎 𝑻𝟏(𝑲𝟏) … 𝑻𝒒(𝑲𝒒)] [

𝜹
𝝃𝟏

⋮
𝝃𝒒

] (7) 

Therefore, we can summarize Equation (7) in Equation (8). 

𝒇𝒑(𝒕𝒑𝒊) = 𝑻(𝜉)𝜷 (8) 

ii. Regression Curve Estimator for the Epanechnikov Kernel 

For example, there are paired data 𝑤𝑖 dan 𝑦𝑖, that follow a nonparametric regression model, where 𝑦𝑖 

is the response variable, 𝑤𝑖 is the predictor variable. The relationship 𝑤𝑖  and 𝑦𝑖 can be modeled 

functionally according to Equation (9). 

𝑦𝑖 = 𝑔(𝑤𝑖) + 𝜀𝑖 (9) 

The regression curve of 𝑔(𝑤𝑖) is unknown and will be approximated by the estimated regression 

curve of Equation (10). 

𝑔𝜏(𝑤) = 𝑛−1 ∑[
𝑃𝜏(𝑤 − 𝑤𝑖)

𝑛−1 ∑ 𝑃𝜏(𝑤 − 𝑤𝑖)
𝑛

𝑖=1

] 𝑦𝑖

𝑛

𝑖=1

= 𝑛−1 [∑𝐺𝜏𝑖(𝑤)

𝑛

𝑖=1

] 𝑦𝑖 (10) 

Where: 

𝑃𝜏(𝑤 − 𝑤𝑖) =
1

𝜏
𝑃 (

𝑤−𝑤𝑖

𝜏
). 

The Kernel function used is the Epanechnikov Kernel in Equation (11). 

𝑃(𝑧) =
3

4
(1 − 𝑧2); 𝐼[−1,1](𝑧) (11) 
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Kernel Estimator is highly dependent on Kernel functionality and bandwidth. It can be written in 

matrix form Equation (12). 

[

𝑔𝜏(𝑤1)
𝑔𝜏(𝑤2)

⋮
𝑔𝜏(𝑤𝑛)

] =

[
 
 
 
 
 
 
 
 
 𝑛−1 ∑𝐺𝜏𝑖(𝑤1)

𝑛

𝑖=1

𝑦𝑖

𝑛−1 ∑𝐺𝜏𝑖(𝑤2)

𝑛

𝑖=1

𝑦𝑖

⋮

𝑛−1 ∑𝐺𝜏𝑖(𝑤𝑛)

𝑛

𝑖=1

𝑦𝑖
]
 
 
 
 
 
 
 
 
 

 (12) 

The Epanechnikov Kernel Estimator can be written according to Equation (13). 

𝒈𝜏(𝑤) = 𝑮(𝜏)𝒚 (13) 

Vector 𝒈𝜏(𝑤) has size (𝑛 × 1), vector 𝒚 has size (𝑛 × 1), and matrix 𝑮(𝜏) has size (𝑛 × 𝑛). 

2.2 Mixed Estimators of Truncated Spline and Epanechnikov Kernel 

Based on Equation (8) and Equation (13) and the shape of each component, the estimator 

combination that will be used is a truncated spline to estimate the regression curve 𝑓(𝑡𝑖) and Epanechnikov 

Kernel to estimate the regression curve 𝑔(𝑤𝑖), presented in matrix form in Equation (14). 

𝒚 = 𝑻(𝜉)𝜷 + 𝑮(𝜏)𝒚 + 𝜺 (14) 

Parameter estimation of 𝜷 can be obtained using the Least Squares method. The error can be written in 

Equation (15). 

 𝜺 = 𝒚 − [𝑻(𝜉)𝜷 + 𝑮(𝜏)𝒚] 

𝜺 = [𝑰 − 𝑮(𝜏)]𝒚 − 𝑻(𝜉)𝜷 
(15) 

The sum of squared errors in Equation (16). 

𝑄(𝜷|𝜉, 𝜏) = ‖[𝑰 − 𝑮(𝜏)]𝒚‖2 − 2𝜷𝑇𝑻(𝜉)𝑇[𝑰 − 𝑮(𝜏)]𝒚 + 𝜷𝑇𝑻(𝜉)𝑇𝑻(𝜉)𝜷 (16) 

To obtain an estimate of 𝜷, partial derivatives are used. 

𝜕𝑄(𝜷|𝜉, 𝜏)

𝜕𝜷
= −2𝑻(𝜉)𝑇[𝑰 − 𝑮(𝜏)]𝒚 + 𝟐𝑻(𝜉)𝑇𝑻(𝜉)𝜷 (17) 

The estimator for �̂�: 

�̂� = [𝑻(𝜉)𝑇𝑻(𝜉)]−1𝑻(𝜉)𝑇[𝑰 − 𝑮(𝜏)]𝒚 (18) 

We can summarize Equation (18) in Equation (19). 

�̂� = 𝑹(𝜉, 𝜏)𝒚 (19) 

In Equation (8), we derive the estimation of the truncated spline regression curve: 

�̂�𝒑(𝒕𝒑𝒊) = 𝑻(𝜉)�̂� (20) 

Hence: 

�̂�𝒑(𝒕𝒑𝒊) = 𝑻(𝜉)([𝑻(𝜉)𝑇𝑻(𝜉)]−1𝑻(𝜉)𝑇[𝑰 − 𝑮(𝜏)]𝒚) (21) 

�̂�𝒑(𝒕𝒑𝒊) = 𝑨(𝜉, 𝜏) 𝒚 (22) 
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With 𝑨(𝜉, 𝜏) =  𝑻(𝜉)([𝑻(𝜉)𝑇𝑻(𝜉)]−1𝑻(𝜉)𝑇[𝑰 − 𝑮(𝜏)]). 

Based on Equation (21) and (22), the mixed estimator forms of the truncated spline and 

Epanechnikov Kernel are as follows: 

�̂�(𝑡𝑖, 𝑤𝑖) = 𝑓(𝑡𝑖) + 𝑔(𝑤𝑖) 

�̂�(𝑡𝑖, 𝑤𝑖) = 𝑨(𝜉, 𝜏)𝒚 + 𝑮(𝜏)𝒚 

�̂�(𝑡𝑖, 𝑤𝑖) = 𝑺(𝜉, 𝜏)𝒚 

(23) 

Matrix 𝑺(𝝃, 𝝉) is strongly dependent on 𝑨(𝝃, 𝝉) which is part of the truncated spline estimator with 

the knot point 𝝃 = (𝑲𝟏, 𝑲𝟐, … ,𝑲𝒓)
𝑻. 𝑮(𝝉) is a component of the Epanechnikov Kernel estimator and has 

bandwidth (τ) as a smoothing parameter. 

2.3  Smoothing Parameters Selection 

 The Generalized Cross-Validation (GCV) method developed by Wahba  was used for the process of 

selecting the smoothing parameters. The modified GCV method formula for the mixed estimator form is 

shown in Equation (24). 

𝐺𝐶𝑉(𝜉𝑜𝑝𝑡 , 𝜏𝑜𝑝𝑡) = (
𝑛−1 ∑ (𝑦𝑖 − �̂�𝑖)

𝑛
𝑖=1

(𝑛−1𝑡𝑟𝑎𝑐𝑒(𝑰 − [𝑨(𝜉, 𝜏)𝒚 + 𝑮(𝜏)]))
2) (24) 

The GCV method in Equation (24) gives equal weight to each observation. The minimum 

GCV value provides optimal knot points and bandwidth in the mixed estimator modeling process. 

2.4  Methodology 

 This study relied on secondary data received from the Central Statistical Agency (BPS) and the 

Health Office. In this study, the unit of observation is Indonesia's 34 provinces. Nonparametric Regression 

with Mixed Estimators of the Truncated Spline and the Epanechnikov Kernel was utilized in this study. The 

research variables are as follows: 

Table 1. Research Variable 

Variable Notation Details 

Response 𝑌 Number of cases of dengue hemorrhagic fever 

 

Predictor 

𝑋1 Percentage of health services 

𝑋2 Percentage of public places that meet health requirements 

𝑋3 Percentage of the poor population 

𝑋4 Percentage of use of proper sanitation in households 

3. RESULTS AND DISCUSSION 

This part will go over data exploration with descriptive statistics and spatial mapping. Using a mixed 

estimator truncated spline and an Epanechnikov Kernel to model DHF cases in Indonesia. 

a. Descriptive Statistics 

 Table 2 shows that each province in Indonesia has different characteristics for all variables. 

Table 2. Descriptive Statistics 

Variable Minimum Maximum Mean Median 

𝑌 77 22613 3185.38 1760.5 

𝑋1 2.61 8.54 5.16 4.95 

𝑋2 0 94.6 49.98 53.95 



2028 Sifriyani, et. al.     MIXED ESTIMATORS OF TRUNCATED SPLINE-EPANECHNIKOV KERNEL ON…  

Variable Minimum Maximum Mean Median 

𝑋3 40.31 96.96 79.81 79.89 

𝑋4 62.47 99.84 85.40 87.95 

 

A complete visualization is shown in spatial mapping for the response variable. 

 

Figure 1. Spatial mapping of the number of cases of DHF in Indonesia 

Based on Figure 1 shows that on Java Island, the incidence of DHF is very high. This is because 

some areas are dark brown, with DHF incidents ranging from 2910 to 22613 cases. Spatial mapping then 

shows the other variables. 

b. DHF Case Modeling with Mixed Estimators 

 Modeling begins with a scatter plot, which shows the relationship pattern between the response 

variable and each predictor variable. Figure 2 depicts the scatter plot's results. 

 

Figure 2. Scatterplot of predictor and response variables 

 Each predictor of the response variable tends to have a random pattern. Therefore, each predictor 

with the response variable is modeled with every possible estimator based on a combination of estimators. 

Table 3. Predictor Combinations Based on the Estimators 

Truncated Spline Kernel 

𝑋1 𝑋2, 𝑋3,  𝑋4 

𝑋2 𝑋1, 𝑋3, 𝑋4 

𝑋3 𝑋1, 𝑋2, 𝑋4 

𝑋4 𝑋1, 𝑋2, 𝑋3 
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Truncated Spline Kernel 

𝑋1, 𝑋2 𝑋3,  𝑋4 

𝑋1, 𝑋3 𝑋2,  𝑋4 

𝑋1, 𝑋4 𝑋2,  𝑋3 

𝑋2,  𝑋3 𝑋1,  𝑋4 

𝑋2, 𝑋4 𝑋1,  𝑋3 

𝑋3, 𝑋4 𝑋1,  𝑋2 

𝑋1, 𝑋2,  𝑋3 𝑋4 

𝑋1, 𝑋2,  𝑋4 𝑋3 

𝑋1, 𝑋3,  𝑋4 𝑋2 

𝑋2, 𝑋3,  𝑋4 𝑋1 

 Based on the results of the analysis, the best combination of estimators is the variables 𝑋1, 𝑋3,  𝑋4 

modeled with the truncated spline and variable 𝑋2 with Epanechnikov Kernel.  

Table 4. Optimal Knot Points and Bandwidth 

Knot 
Spline Kernel 

GCV 
𝑿𝟏 𝑿𝟑 𝑿𝟒 𝑿𝟐 

1 7.92 90.99 95.90 0.55 649433.4 

2 
4.17 

7.60 

55.22 

88.02 

72.30 

93.94 
0.55 392289.8 

3 

6.67 

7.29 

7.60 

79.07 

85.03 

88.02 

88.04 

91.97 

93.94 

0.55 299738.2 

 

 Based on Table 4 shows the minimum GCV value of 299738.2 with an optimal bandwidth of 0.55. 

The visualization of the estimated regression curve is based on the knot points in Figure 3. 
 

 

Figure 3. Illustration Of The Estimated Regression Curve Based On The Knot Point 

The best nonparametric regression model with a mixed estimator is a model with 3 knots with a 

combination of variables. Variables 𝑋1, 𝑋3, 𝑋4 modeled with the truncated spline and variable 𝑋2 with 

Epanechnikov Kernel. 

Table 5. Parameter Estimation Results 

Variable Parameter Estimation 

Constant �̂�0 = 350.24 

𝑋1 

�̂�11 = 85.04 

𝜉21 = 5801.51 

𝜉22 = −19573.93 

𝜉23 = 14928.24 

𝑋3 

�̂�12 = −23.54 

𝜉31 = 115.14 

𝜉32 = 96.28 

𝜉33 = −273.47 
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Variable Parameter Estimation 

𝑋4 

�̂�13 = 10.42 

𝜉41 = −354.42 

𝜉42 = 882.77 

𝜉43 = −582.81 

𝑋2 𝜏 = 0.55 

The coefficient of determination (R2) of the model formed is 98.11%. Visualization of the 𝑦 and �̂� 

from best model is shown in Figure 4. 

 

Figure 4. Graph of comparison of actual data with prediction data 

The predictions follow actual data and represent that a nonparametric regression model with a mixed 

estimator of truncated spline and Epanechnikov kernel can be used to predict the number of Dengue 

Hemorrhagic Fever Cases in Indonesia. Based on the results of the study, it was found that the Percentage 

of health services, Percentage of public places that meet health requirements, Percentage of the poor 

population, and Percentage of use of proper sanitation in households affect the Number of cases of dengue 

hemorrhagic fever. 

4. CONCLUSIONS 

Based on the results of the analysis, it was found that the best model of nonparametric regression 

with a mixed estimator of the truncated spline and Epanechnikov Kernel is a model with 3 knots with a 

combination of variables, that is, variable 𝑋1 (Percentage of Health Services), 𝑋3 (Percentage of Poor 

Population), 𝑋4 (Percentage of Use of Proper Sanitation in Households) modeled using the truncated spline 

and variable 𝑋2 (Percentage of public places that meet health requirements) modeled using the 

Epanechnikov Kernel. The coefficient of determination (R2) is 98,11%; hence we concluded that the mixed 

estimator tends to follow actual data and represents a nonparametric regression model with a mixed 

estimator of the truncated spline and Epanechnikov kernel can be used to predict the number of Dengue 

Hemorrhagic Fever Cases in Indonesia.  
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