
          https://doi.org/10.30598/barekengvol17iss4pp2033-2046 

 

December 2023     Volume 17 Issue 4 Page 2033–2046 

P-ISSN: 1978-7227   E-ISSN: 2615-3017 

 

BAREKENG: Journal of Mathematics and Its Applications 

   

2033 
      

 

AN INTEGRATED APPROACH OF GRA COUPLED WITH PRINCIPAL 

COMPONENT ANALYSIS FOR FRICTION STIR WELDED AM20 

MAGNESIUM ALLOY 

 Ichwanul Kahfi Prasetya1, Kevin Agung Fernanda Rifki2, Muhammad Ahsan3*  

 
1,2,3Department of Statistics, Sepuluh Nopember Technology Institute  

St. Raya ITS, Sukolilo, Surabaya, 60111, Indonesia 

Corresponding author’s e-mail: * muh.ahsan@its.ac.id 

 

 
 ABSTRACT 

Article History: 
Magnesium alloys possess highly desirable properties and become increasingly popular in 

various practical applications due to their lightweight nature as a replacement for aluminum 

alloys. The purpose of this study is to optimize the process parameter to get the better 

mechanical properties of friction stir welded AM20 magnesium alloy using Taguchi Grey 

relational analysis (GRA) Coupled with Principal Component Analysis (PCA). The considered 

process parameters are plunging depth (PD), tool rotation speed (RPM), welding speed (WS), 

shoulder diameter (SD), and. The experiments were carried out by using Taguchi's L18 factorial 

design of experiment. The processes parameters were optimized and ranked the parameters 

based on the W-GRG. The responses are ultimate tensile strength (UTS), yield strength (YS), 

percentage of elongation (% E), compressive stress (CS), bending angle, average hardness at 

the nugget zone (NZ), thermo mechanical affected zone (TMAZ) and heat affected zone (HAZ). 

Case-1 is preferable when high values of quality parameters are desired, while Case-2 is more 

suitable when some parameters need to be low values. The optimal combination of parameters 

in case-1 is PD1, RPM3, WS3, and SD1, while the optimal combination of parameters in case-

2 is PD1, RPM1, WS2, SD1. In both cases, the most influence response in is UTS, while the 

maximum influence of factor is SD. We suggest further research to be able to use confirmatory 

experiments so that we can find out how well the new setup is suggested. 
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1. INTRODUCTION 

 Magnesium alloys possess highly desirable properties that make them an appealing option to replace 

aluminum and steel in mechanical and structural applications. These properties include exceptional stiffness-

to-weight ratio, high damping capacity, the lowest density of all engineering metallic materials, and the ease 

of recycling [1]. As a result, magnesium alloys have become increasingly popular in various practical 

applications due to their lightweight nature as a replacement for aluminum alloys [2]. 

 In conventional welding processes, magnesium alloy components suffer from several issues, 

including low strength, hot cracking, alloy segregation, partial melting zones, and porosity in the welded 

joint. As a result, the mechanical properties and corrosion resistance of the welded joints tend to decrease [3]-

[5]. To address the aforementioned limitations, the friction stir welding (FSW) process can be employed as a 

viable option to weld magnesium alloys. 

 Friction stir welding (FSW) is a solid-state joining process that has become increasingly important 

in welding technology. Initially developed for welding aluminum alloys, FSW has been extended to a variety 

of materials such as magnesium, copper, steel, and composites. During FSW, the material being welded is 

heated and softened by the frictional heat generated between the surface of the plates or components being 

welded and the contact surface of a specialized rotating tool [6].  

 This research presents firstly the material and process parameters selection followed by the Taguchi 

GRA coupled with PCA. Then, we discuss and analyze the ANOVA and find which parameters contribute 

the most. At the final, we will suggest the optimum settings for better output. 

2. RESEARCH METHODS 

2.1 Taguchi Methods 

 The Taguchi method, also known as the Taguchi design of experiments, is a statistical technique 

developed by Genichi Taguchi in the 1950s. The method aims to optimize product and process design by 

identifying the optimal combination of design parameters that minimize the effects of variations in 

manufacturing and usage conditions [7]. 

 According to Taguchi, quality is defined as minimum loss to society and can be measured by the 

consistency of performance. This consistency is achieved when the performance is close to the target with 

minimum variation. To enhance quality, Taguchi introduced a two-step optimization approach: first, identify 

the factor-level combination that reduces performance variability, and second, adjust the factor levels to bring 

the performance closer to the target. Taguchi's techniques for quality improvement include the use of 

orthogonal arrays to design experiments, the calculation of signal-to-noise ratios, and the use of parameter 

design and tolerance design to optimize product and process design [8]. The Taguchi method has been widely 

applied in various fields, including manufacturing, engineering, and management. Its key concepts and 

techniques have been shown to be effective in improving product quality, reducing costs, and enhancing 

customer satisfaction. Some examples of its applications include process optimization in manufacturing 

systems, machining operations, and drilling of composites [9] [10]. 

2.2 GRA with PCA 

Grey relational analysis (GRA) is used for solving interrelationships among the multiple responses. In 

this approach, a grey relational grade is obtained for analyzing the relational degree of the multiple responses. 

Grey relational based approach has been used to solve multi-response problems in the Taguchi methods [11]. 

The GRA theory adopts the Grey theory, which is derived from the mixing of clear and unclear information. 

For example, Black is denoted as vague information, which is considered rudimentary information. In 

contrast, white signifies completely clear information. However, some information falls in between black and 

white, referred to as Grey, information that has some things that are clear and unclear or less perfect [12]. 

However, in real cases, this method doesn’t work at best, Hotelling and Pearson developed principal 

component analysis (PCA), which calculates prioritized weights for each quality response. Kumar et al. 

applied PCA in GRA to optimize the mechanical properties of silica fly ash composites [13]. PCA has been 

vastly applied in fields of EDM [14], weaving [15], welding [16] [17], etc. 
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2.3 Experimental Work 

The experiments use the Taguchi method and specific orthogonal array to maximize the number of 

process parameters included in the empirical matrix and their levels and minimize the number of experiments. 

The design of the orthogonal array is influenced by the number of factors and their degrees of freedom (dof) 

for each factor. Table 1 shows the factors used and their levels. 

Table 1. Input Parameters and Levels  

No 
Factors 

(Units) 
Symbols 

Level 
Degree of 

Freedom Level 1 Level 2 Level 3 

1 
Plunge Depth 

(mm) 
A 0.12 0.21 - 1 

2 
Tool Rotational Speed 

(rev/min) 
B 600 815 1100 2 

3 
Welding Speed 

(mm/min) 
C 63 98 132 2 

4 
Shoulder Diameter 

(mm) 
D 16 20 24 2 

The factors and their levels that were taken into consideration in this study are shown in Table 1. There 

are three factors that have three levels and one factor with only two levels, so the mixed levels approach will 

be used in this study. The full factorial of this experiment is 2x33 = 54 trials. Based on Taguchi method, this 

mixed level of experiment can be done by using L18 orthogonal array. The array has 4 columns with mixed 

degree of freedom based on its level. Table 2 shows the L18 orthogonal array. 

Table 2. L18 Orthogonal Array 

Trial no. A B C D 

1 0.12 600 63 24 

2 0.12 600 98 20 

3 0.12 600 132 16 

4 0.12 815 63 24 

5 0.12 815 98 20 

6 0.12 815 132 16 

7 0.12 1100 63 20 

8 0.12 1100 98 16 

9 0.12 1100 132 24 

10 0.21 600 63 16 

11 0.21 600 98 24 

12 0.21 600 132 20 

13 0.21 815 63 20 

14 0.21 815 98 16 

15 0.21 815 132 24 

16 0.21 1100 63 16 

17 0.21 1100 98 24 

18 0.21 1100 132 20 

This design is applied to generate multi-responses approach of weld quality parameters [18]. There are 

eight weld quality parameters, namely ultimate tensile strength (UTS), yield strength (YS), percentage of 

elongation (% E), compressive stress (CS), bending angle, average hardness at the nugget zone (NZ), thermo 

mechanical affected zone (TMAZ) and heat affected zone (HAZ) were measured after the experiment and 

are given in Table 3. 
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Table 3. Experimentally Measured Output Responses Corresponding to The Parameters Settings 

Trial 

no. 

UTS 

(MPa) 

YS 

(MPa) 
% E 

CS 

(MPa) 

Bending 

Angle (') 

Avg. Hat 

NZ (HV) 

Avg. Hat 

TMAZ 

(HV) 

Avg. Hat 

HAZ 

(HV) 

1 132.17 115.56 2.17 9.46 45 55.76 52.03 48.5 

2 112.46 105.96 1.89 4.38 30 56.52 53.63 50.67 

3 59.48 48.5 1.07 1.5 15 54.38 52.78 50.42 

4 91.2 74.55 2.63 7.06 35 56.71 54.34 50.92 

5 101.1 90.16 1.83 7.39 45 55.9 53.33 49.92 

6 65.56 60.13 1.57 3.72 20 56.43 53.73 50.42 

7 100.99 90.55 2.76 5.11 30 54.43 53.58 50.75 

8 54.9 46.5 1.33 7.38 55 53.48 51.33 50.66 

9 127.27 86.86 5.87 5.42 30 59.38 58.9 53.5 

10 63.25 60.89 1.33 5.23 30 57.24 54.66 50.92 

11 113.04 109.64 1.46 5.23 35 52 50.36 48.66 

12 90.83 86.5 1.07 1.51 15 54.38 52.3 49.41 

13 49.02 43.63 1.63 2.38 20 54.43 52 51 

14 68.47 60.01 2 9.78 90 55.9 53.41 50.71 

15 101.02 84.61 2.93 5.2 30 51.29 50.33 48.75 

16 46.02 38.15 1.26 6.73 60 52.52 51.67 49.67 

17 78.55 77.47 1.76 8.37 85 53.95 53.67 47.83 

18 107.52 84.6 2.66 5.13 30 54.16 52.5 49.17 

The study utilized Taguchi orthogonal arrays to generate a design matrix that encompasses the entire 

parametric space with a limited number of experiments. The experiments were done based on the Taguchi 

orthogonal array design, which is frequently used to optimize engineering problems [19]-[21]. However, the 

Taguchi method is a single-optimization process and cannot effectively handle the optimization of multiple 

responses, which is required for several processes [22]. 

 
Figure 1. Concept Behind PCA-GRA 

 



BAREKENG: J. Math. & App., vol. 17(4), pp. 2033- 2046, December, 2023  2037 

 

The larger the better S/N ratio as computed from Equation (1): 

 
𝑆

𝑁⁄ 𝑟𝑎𝑡𝑖𝑜 = (−10) × 𝑙𝑜𝑔10 (
1

𝑥
)∑

1

𝑦𝑖𝑗
2

𝑥
𝑖=1         (1) 

The smaller the better S/N ratio as computed by Equation (2): 

𝑆
𝑁⁄ 𝑟𝑎𝑡𝑖𝑜 = (−10) × 𝑙𝑜𝑔10 (

1

𝑥
)∑ 𝑦𝑖𝑗

2𝑥
𝑖=1       (2) 

where x is number of replications and yij is measured observation. 

Welding process has multiple responses and welding quality sturdily depends upon optimizing all 

responses simultaneously. Therefore, researchers frequently employ GRA coupled with PCA as weights for 

optimization of multiple responses simultaneously. These techniques are entirely different from traditional 

single response optimization. These are effective statistical methods and offer quite successful results in 

obtaining a combination of parameters for multiple response optimizations [23]. Figure 1 depicts the concept 

of PCA-GRA. 

As a result, a larger-the-better criterion has been chosen for these quality characteristics. The 

normalized results can be expressed as Equation (3). 

𝑦𝑗
∗(𝑞) =

𝑦𝑗(𝑞)−min𝑦𝑗(𝑞)

max 𝑦𝑗(𝑞)−min𝑦𝑗(𝑞)
       (3) 

Thus, the smaller-the-better is used, as represented in Equation (4). 

𝑦𝑗
∗(𝑞) =

max 𝑦𝑗(𝑞)−𝑦𝑗(𝑞)

max 𝑦𝑗(𝑞)−min𝑦𝑗(𝑞)
       (4) 

where 𝑦𝑗
∗(𝑞) are the generated grey relational values, while 𝑚𝑎𝑥 𝑦𝑖(𝑞) and 𝑚𝑖𝑛 𝑦𝑖(𝑞) are the largest and 

smallest values of 𝑦𝑗(𝑞) for 𝑞𝑡ℎ trial, respectively. 𝑞 = 8 is the number of response variables. The eighteen 

observations of the experiments are comparability sequence 𝑦𝑗(𝑞), 𝑗 = 1,2,… ,18,. The best normalized 

results should be equal to 1. Therefore, for achieving better performance, we expect larger value of 

normalized results. 

  Data normalization is followed by calculation of grey relational coefficients (GRC) that explains the 

relationship between desirable and real experimental normalized results. Expression of GRC 𝜉𝑗(𝑞) is 

determined, as follows in Equation (5). 

𝜉 (𝑦𝑗
∗(𝑞), 𝑦0

∗(𝑞)) =
∆𝑚𝑖𝑛(𝑞)+𝜍 ∆𝑚𝑎𝑥(𝑞)

∆0𝑗(𝑞)+∆𝑚𝑎𝑥(𝑞)
       (5) 

where 𝛥0𝑖(𝑞) = |𝑦0
∗(𝑞) − 𝑦(𝑞)| is deviation sequence, defined as absolute of difference between reference 

sequence 𝑦0
∗(𝑞) and comparability sequence 𝑦𝑗

∗(𝑞). The identification or distinguishing coefficient (𝜁), takes 

value as 𝜁 𝜖 [0, 1], which is generally and in this study were set as 0.5 [24]. Grey relational grade (GRG) 

provides information about correlation strength between the experimental runs, which is computed by 

weighted mean of respective GRC’s for all experimental. GRG value lies between 0 and 1, 𝛾 𝜖 [0, 1]. Usually, 

an experimental run with larger GRG is considered the ideal case, which indicates the strength of correlation 

between corresponding experiments and the ideally normalized value. When equal weights are opted for all 

quality responses, Equation (6) is used for GRG calculation. 

𝛾𝑗(𝑦0
∗, 𝑦𝑗

∗) =
1

𝑛
∑ 𝜉 (𝑦𝑗

∗(𝑞), 𝑦0
∗(𝑞))𝑛

𝑞=1        (6) 

  In some applied application, weights of quality characteristics are different likewise weights obtained 

from Principal Component Analysis (PCA). In such cases, Equation (6) is modified as Equation (7) by 

applying a weight [25]. 

𝛾𝑗(𝑦0
∗, 𝑦𝑗

∗) =
1

𝑛
∑ 𝑤𝑞 𝜉 (𝑦𝑗

∗(𝑞), 𝑦0
∗(𝑞))𝑛

𝑞=1        (7) 

where 𝛾𝑗(𝑦0
∗, 𝑦𝑗

∗) is GRG for 𝑗𝑡ℎ experimental run, 𝑛 is number of quality response, 𝑤𝑞 is weight of 𝑞𝑡ℎ 

quality response and  ∑ 𝑤𝑞
𝑛
𝑞=1 = 1. 
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  PCA is a powerful multivariate statistical technique for multi-objective optimization [26] that reduces 

the complexity, correlation, vagueness, and dimensions of information by simplifying and combining 

numerous allied arrays into few uncorrelated arrays and principal components. PCA employs linear 

permutation for conserving unique information to maximum extent [27]. Thus, it converts multi-response 

optimization to single response optimization without compromising original information [28]. It starts by 

setting a structure of linear combinations arrays of multi-responses. The GRC’s computed for response 

variables is employed to form a matrix, presented as Equation (8). 

𝑦 =

[
 
 
 
 
𝑦1(1) 𝑦1(2) ⋯ 𝑦1(𝑘)

𝑦2(1)
⋯
⋯

𝑦𝑗(1)

𝑦2(2)
⋯
⋯

𝑦𝑗(2)

⋯
⋯
⋯
⋯

𝑦2(𝑘)
⋯
⋯

𝑦𝑗(𝑘)]
 
 
 
 

      (8) 

where 𝑦𝑝(𝑞) is GRC of each quality responses, 𝑝 = 1, 2,… , 𝑗, experiments and 𝑞 = 1, 2, … , 𝑘, quality 

responses. In this research,  𝑗 = 18 and 𝑘 = 8. Thereafter, the coefficient correlation matrix can be produced 

by the following Equation (9) 

𝑅𝑗𝑙 = (
𝐶𝑜𝑣(𝑦𝑝(𝑞),𝑦𝑝(𝑙))

𝜎𝑦𝑝(𝑞)∗𝜎𝑦𝑝(𝑙)
) ;  𝑞 = 1,2,… , 𝑘; 𝑙 = 1,2,… , 𝑘        (9) 

where 𝐶𝑜𝑣(𝑦𝑝(𝑞), 𝑦𝑝(𝑙)) is covariance of sequences 𝑦𝑝(𝑞) and 𝑦𝑝(𝑙). 𝜎𝑦𝑝(𝑞) is standard deviation of 

sequence  𝑦𝑝(𝑞) and 𝜎𝑦𝑝(𝑙) is standard deviation of sequence 𝑦𝑝(𝑙). The eigen values and eigen vectors are 

computed from 𝑅𝑗𝑙 array as per Equation (10) 

(𝑅 − 𝜆𝑘𝑙𝑗)𝑉𝑝𝑘 = 0       (10) 

  Thereafter, eigenvalues (𝜆𝑘) and eigenvectors (𝑉𝑝𝑘) of square matrix R are used to determine the 

uncorrelated principal components (PC’s) by using Equation (11) 

𝑍𝑗𝑘 = ∑ Υ𝑗(𝑝) × 𝑉𝑝𝑘
𝑛
𝑖=1        (11) 

where 𝑍𝑗𝑘 corresponds to 𝑘𝑡ℎ principal component. Eigenvalues and principal components are arranged in 

descending order with respect to explained variance. Therefore, first eigenvalue associated with first PC 

accounts for largest variance contribution. Eigenvalues corresponding to eigenvectors are presented in the 

Table 4 for case 1 and Table 5 for case 2. 

Table 4. Principal Component Analysis for Case 1 

Component PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 

Eigen Value 0.0944 0.0652 0.0565 0.0063 0.0044 0.0015 0.0003 0.0002 

Variation 

(%) 
0.413 0.285 0.247 0.027 0.019 0.007 0.001 0.001 

Cumulative 

(%) 
0.413 0.698 0.945 0.972 0.991 0.998 0.999 1.00 

         

Eigen Vector 0.475 -0.38 -0.299 -0.151 0.227 -0.227 0.5 0.405 

 0.257 -0.478 -0.474 0.009 -0.446 0.332 -0.336 -0.244 

 0.442 0.073 0.18 -0.526 0.32 -0.096 -0.115 -0.604 

 -0.033 -0.615 0.385 0.398 0.492 0.055 -0.261 -0.028 

 -0.181 -0.408 0.564 -0.417 -0.482 0.027 0.273 0.038 

 0.418 0.096 0.237 0.6 -0.347 -0.261 0.312 -0.337 

 0.412 0.128 0.259 -0.069 -0.216 -0.292 -0.6 0.5 

 0.367 0.228 0.253 0.046 0.076 0.82 0.155 0.212 
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Table 5.  Principal Component Analysis for Case 2 

Component PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 

Eigen Value 
0.0811 0.0663 0.0635 0.0214 0.0086 0.0037 0.0017 0.0007 

Variation 

(%) 0.328 0.268 0.257 0.087 0.035 0.015 0.007 0.003 

Cumulative 

(%) 0.328 0.597 0.854 0.941 0.975 0.99 0.997 1 

         

Eigen Vector 0.639 -0.05 0.181 -0.011 0.035 -0.003 -0.729 -0.152 

 0.555 -0.257 0.141 -0.388 0.025 -0.397 0.505 0.205 

 -0.409 -0.191 -0.037 -0.789 0.154 -0.078 -0.359 0.1314 

 0.281 -0.018 -0.64 -0.052 0.463 0.466 0.054 0.272 

 0.009 0.001 -0.711 0.071 -0.214 -0.609 -0.128 -0.238 

 -0.139 -0.582 0.021 0.41 -0.042 -0.165 -0.216 0.631 

 -0.093 -0.622 0.047 0.138 0.441 0.018 0.119 -0.611 

 0.092 -0.411 -0.167 -0.177 -0.72 0.47 0.063 -0.142 

3. RESULTS AND DISCUSSION 

3.1 Implementation of Taguchi GRA with PCA 

In the present investigation, Taguchi GRA has been applied for selection of optimal parameter settings. 

All the eight output responses presented in Table 3 were standardized using Equations (3) or Equation (4). 

Two optimization scenarios were considered: In Case-1, all quality parameters were assumed to be "higher 

the better," which means that the purpose of Case-1 was to maximize all quality parameters. In Case-2, UTS, 

YS, CS, and bending angle were considered "higher the better" while percentage elongation and average 

hardness values at NZ, TMAZ, and HAZ were considered "lower the better" with the goal of maximizing 

UTS, YS, CS, and bending angle and minimizing percentage elongation and hardness values at the same 

time. The choice between Case-1 or Case-2 depends on the user's preference or specific application 

requirements. Case-1 is preferable when high values of quality parameters are desired, while Case-2 is more 

suitable when the tensile property needs to be high and the hardness needs to be low. 

3.2 Case-1: All the Output Responses are taken as “Higher the Better” 

For Case-1, all the outputs responses are taken as “higher the better”. It is preferable when high values 

of quality parameters are desired. Hence, for this case, it uses Equations (3) to do normalization and the 

results are shown in Table 6. After getting the normalized data, GRCs are calculated using Equations (5), 

and the results of the GRCs are obtained in Table 7. 

Then, the results of the GRCs will be subjected to PCA analysis, which will later be used to calculate 

the weighting when calculating the GRG. The component used is the first component that shown in Table 4. 

The weight is the squared result of the eigenvector PC1, which will later calculate the GRG value using 

Equations (7) and the results can be seen also in Table 7 along with the rank order. From the results of the 

GRG weighting, it was found that the value of GRG was around from 0 to 1 with results trial no. 9, 1, and 2 

sequentially are the three best rank trials. 

After getting W-GRG of each trial, then it can be calculated the Average W-GRG of each parameter, 

including plunging depth (PD), tool rotation speed (RPM), welding speed (WS), and shoulder diameter (SD). 

From that Average W-GRG, the rank and optimum parameters can be found. Table 8 shows the optimum 

parameters level (PD1, RPM3, WS3 and SD1) namely plunging depth 0.12 mm, tool rotation speed 1100 

rev/min, welding speed 132 mm/min, and shoulder diameter 16 mm. 
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Table 6. Calculated Normalized for Case 1 

Trial 

no. 

UTS 

(MPa) 

YS 

(MPa) 
% E 

CS 

(MPa) 

Bending 

Angle (') 

Avg. Hat 

NZ (HV) 

Avg. Hat 

TMAZ 

(HV) 

Avg. Hat 

HAZ 

(HV) 

1 1.000 1.000 0.229 0.961 0.400 0.553 0.198 0.118 

2 0.771 0.876 0.171 0.348 0.200 0.646 0.385 0.501 

3 0.156 0.134 0.000 0.000 0.000 0.382 0.286 0.457 

4 0.524 0.470 0.325 0.671 0.267 0.670 0.468 0.545 

5 0.639 0.672 0.158 0.711 0.400 0.570 0.350 0.369 

6 0.227 0.284 0.104 0.268 0.067 0.635 0.397 0.457 

7 0.638 0.677 0.352 0.436 0.200 0.388 0.379 0.515 

8 0.103 0.108 0.054 0.710 0.533 0.271 0.117 0.499 

9 0.943 0.629 1.000 0.473 0.200 1.000 1.000 1.000 

10 0.200 0.294 0.054 0.450 0.200 0.735 0.505 0.545 

11 0.778 0.924 0.081 0.450 0.267 0.088 0.004 0.146 

12 0.520 0.625 0.000 0.001 0.000 0.382 0.230 0.279 

13 0.035 0.071 0.117 0.106 0.067 0.388 0.195 0.559 

14 0.261 0.282 0.194 1.000 1.000 0.570 0.359 0.508 

15 0.638 0.600 0.388 0.447 0.200 0.000 0.000 0.162 

16 0.000 0.000 0.040 0.632 0.600 0.152 0.156 0.325 

17 0.378 0.508 0.144 0.830 0.933 0.329 0.390 0.000 

18 0.714 0.600 0.331 0.438 0.200 0.355 0.253 0.236 

Table 7. Calculated GRC and W-GRG for Case 1 

Trial 

no. 

UTS 

(MPa) 

YS 

(MPa) 
% E 

CS 

(MPa) 

Bending 

Angle (') 

Avg. Hat 

NZ (HV) 

Avg. Hat 

TMAZ 

(HV) 

Avg. Hat 

HAZ 

(HV) 

W-

GRG 
Rank 

1 1.000 1.000 0.393 0.928 0.455 0.528 0.384 0.362 0.591 2 

2 0.686 0.801 0.376 0.434 0.385 0.586 0.448 0.500 0.540 3 

3 0.372 0.366 0.333 0.333 0.333 0.447 0.412 0.479 0.397 16 

4 0.513 0.486 0.426 0.604 0.405 0.602 0.484 0.524 0.503 4 

5 0.581 0.604 0.373 0.634 0.455 0.538 0.435 0.442 0.487 6 

6 0.393 0.411 0.358 0.406 0.349 0.578 0.453 0.479 0.440 11 

7 0.580 0.607 0.436 0.470 0.385 0.450 0.446 0.508 0.492 5 

8 0.358 0.359 0.346 0.633 0.517 0.407 0.361 0.500 0.389 17 

9 0.898 0.574 1.000 0.487 0.385 1.000 1.000 1.000 0.928 1 

10 0.385 0.415 0.346 0.476 0.385 0.654 0.503 0.524 0.465 8 

11 0.692 0.867 0.352 0.476 0.405 0.354 0.334 0.369 0.465 9 

12 0.510 0.571 0.333 0.334 0.333 0.447 0.394 0.409 0.429 14 

13 0.341 0.350 0.361 0.359 0.349 0.450 0.383 0.531 0.398 15 

14 0.403 0.411 0.383 1.000 1.000 0.538 0.438 0.504 0.463 10 

15 0.580 0.556 0.449 0.475 0.385 0.333 0.333 0.374 0.434 12 

16 0.333 0.333 0.342 0.576 0.556 0.371 0.372 0.425 0.368 18 

17 0.445 0.504 0.369 0.746 0.882 0.427 0.450 0.333 0.431 13 

18 0.636 0.556 0.428 0.471 0.385 0.437 0.401 0.396 0.475 7 
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Table 8. Response Table of Average W-GRG for Case 1 

Parameters 
Levels 

Delta Rank 
1 2 3 

PD 0.5296* 0.4364 - 0.0932 2 

RPM 0.4811 0.4539 0.5139* 0.0600 3 

WS 0.4693 0.4625 0.5171* 0.0547 4 

SD 0.5585* 0.4700 0.4205 0.1380 1 

* Optimal level of parameters (PD1, RPM3, WS3, SD1)  

Table 9. ANOVA for individual W-GRG Responses Case 1 

Source DF 
Adj Sum 

of squares 

Adj Mean 

Squares 
F-Value P-Value 

Percentage of 

contribution 
Rank 

PD 1 0.0391 0.0391 2.76 0.128 14.995* 2 

RPM 2 0.0108 0.0054 0.38 0.692 4.1410 3 

WS 2 0.0106 0.0053 0.38 0.696 4.0760 4 

SD 2 0.0587 0.0294 2.07 0.177 22.493* 1 

Residual error 10 0.1417 0.0142     54.295  

Total 17 0.2610         

The ANOVA analysis in Table 9 shows the performance of statistical significance and the percentage 

contribution to each parameter. Unfortunately, in this case, all of the parameters are not significant, with the 

percentage contribution to each parameter sequentially starting from the largest SD with 22.49%, PD with 

14.99%, RPM with 4.14% and WS with 4.08%. Then, the variance contribution of each response can be seen 

in Table 10. 

Table 10. Variance contribution of response variables for first PC 

Response Variable Contribution 

UTS (MPa) 0.226 

YS (MPa) 0.066 

% E 0.195 

CS (MPa) 0.001 

Bending Angle (') 0.033 

Avg. Hat NZ (HV) 0.175 

Avg. Hat TMAZ (HV) 0.170 

Avg. Hat HAZ (HV) 0.135 

The ANOVA analysis also need to be checked of residual assumption. The assumption that required 

to be satisfy are normal distribution of residual. In this case, the residual normal distribution test using 

Anderson-Darling Test in Figure 2 with the result that this residual doesn’t satisfy the normal distribution. 

In this analysis also calculate the variance contribution of response variables for first PC shown at Table 10 

which is conclude that UTS is the highest value. 

 
Figure 2. Normal Distribution Test for ANOVA Case-1 
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3.2 Case-2: Some of Output Responses Taken as “Higher the better” and “Lower the Better” 

For Case-2, some parameters UTS, YS, CS, and bending angle were considered "higher the better" 

while percentage elongation and average hardness values at NZ, TMAZ, and HAZ were considered "lower 

the better". This case is more suitable when the tensile property needs to be high and the hardness needs to 

be low.  

Table 11. Calculated Normalized for Case 2 

Trial 

no. 

UTS 

(MPa) 

YS 

(MPa) 
% E 

CS 

(MPa) 

Bending 

Angle (') 

Avg. Hat 

NZ (HV) 

Avg. Hat 

TMAZ 

(HV) 

Avg. Hat 

HAZ 

(HV) 

1 1.000 1.000 0.771 0.961 0.400 0.447 0.909 1.345 

2 0.771 0.876 0.829 0.348 0.200 0.354 0.711 1.077 

3 0.156 0.134 1.000 0.000 0.000 0.618 0.816 1.108 

4 0.524 0.470 0.675 0.672 0.267 0.330 0.623 1.046 

5 0.639 0.672 0.842 0.711 0.400 0.430 0.748 1.169 

6 0.227 0.284 0.896 0.268 0.067 0.365 0.698 1.108 

7 0.638 0.677 0.648 0.436 0.200 0.612 0.717 1.067 

8 0.103 0.108 0.946 0.710 0.533 0.729 0.995 1.078 

9 0.943 0.629 0.000 0.473 0.200 0.000 0.059 0.727 

10 0.200 0.294 0.946 0.450 0.200 0.265 0.583 1.046 

11 0.778 0.924 0.919 0.450 0.267 0.912 1.115 1.325 

12 0.520 0.625 1.000 0.001 0.000 0.618 0.875 1.232 

13 0.035 0.071 0.883 0.106 0.067 0.612 0.912 1.036 

14 0.261 0.282 0.806 1.000 1.000 0.430 0.738 1.072 

15 0.638 0.600 0.613 0.447 0.200 1.000 1.119 1.314 

16 0.000 0.000 0.960 0.632 0.600 0.848 0.953 1.200 

17 0.378 0.508 0.856 0.830 0.933 0.671 0.706 1.428 

18 0.714 0.600 0.669 0.438 0.200 0.645 0.850 1.262 

Table 12. Calculated GRC and W-GRG for Case-2 

Trial 

no. 

UTS 

(MPa) 

YS 

(MPa) 
% E 

CS 

(MPa) 

Bending 

Angle 

(') 

Avg. 

Hat NZ 

(HV) 

Avg. Hat 

TMAZ 

(HV) 

Avg. Hat 

HAZ 

(HV) 

W-

GRG 
Rank 

1 1.000 1.000 0.686 0.928 0.455 0.475 0.704 0.858 0.927 1 

2 0.686 0.801 0.745 0.434 0.385 0.436 0.551 0.588 0.704 3 

3 0.372 0.366 1.000 0.333 0.333 0.567 0.623 0.610 0.480 15 

4 0.513 0.486 0.606 0.604 0.405 0.427 0.502 0.567 0.525 11 

5 0.581 0.604 0.759 0.634 0.455 0.467 0.574 0.659 0.620 5 

6 0.393 0.411 0.828 0.406 0.349 0.440 0.543 0.610 0.476 16 

7 0.580 0.607 0.587 0.470 0.385 0.563 0.554 0.581 0.580 8 

8 0.358 0.359 0.902 0.633 0.517 0.649 0.802 0.588 0.482 14 

9 0.898 0.574 0.333 0.487 0.385 0.333 0.321 0.416 0.650 4 

10 0.385 0.415 0.902 0.476 0.385 0.405 0.483 0.567 0.490 13 

11 0.692 0.867 0.860 0.476 0.405 0.851 0.993 0.830 0.764 2 

12 0.510 0.571 1.000 0.334 0.333 0.567 0.672 0.719 0.601 6 

13 0.341 0.350 0.811 0.359 0.349 0.563 0.708 0.561 0.433 18 

14 0.403 0.411 0.721 1.000 1.000 0.467 0.568 0.584 0.510 12 

15 0.580 0.556 0.563 0.475 0.385 1.000 1.000 0.815 0.575 9 

16 0.333 0.333 0.927 0.576 0.556 0.767 0.751 0.687 0.466 17 

17 0.445 0.504 0.777 0.746 0.882 0.603 0.548 1.000 0.551 10 

18 0.636 0.556 0.602 0.471 0.385 0.585 0.651 0.751 0.592 7 
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Hence, for this case, it needs to do normalization by using Equations (3) and the results are shown in 

Table 11. After getting the normalized data, then GRCs are calculated using Equations (5) and the results 

of the GRCs are obtained in Table 12. Then, the results of the GRCs will be subjected to PCA analysis which 

will later be used to calculate the weight when calculating the GRG. The component that used is the first 

component that shown in Table 5. The weight is the squared result of the eigen vector PC1, which will later 

calculate the GRG value using Equations (7) and the results can be seen also in Table 12 along with the rank 

order. From the results of the weighted GRG, it was found that the value of GRG was around from 0 to 1 

with results trial no. 1, 11, and 2 sequentially are the three best rank trials. 

Table 13. Response table of average W-GRG for Case-2 

Parameters 
Levels 

Delta Rank 
1 2 3 

PD 0.6049* 0.5534 - 0.0514 3 

RPM 0.6608* 0.5231 0.5536 0.1378 2 

WS 0.5702 0.6061* 0.5623 0.0428 4 

SD 0.6653* 0.5883 0.4840 0.1813 1 

* Optimal level of parameters (PD1, RPM1, WS2, SD1)  

After getting W-GRG of each trial, then it can be calculated the Average W-GRG of each parameters 

including plunging depth (PD), tool rotation speed (RPM), welding speed (WS), and shoulder diameter (SD). 

From that Average W-GRG, the rank and optimum parameters can be found. Table 13 shows the optimum 

parameters level (PD1, RPM1, WS2 and SD1) namely plunging depth 0.12 mm, tool rotation speed 600 

rev/min, welding speed 98 mm/min, and shoulder diameter 16 mm. 

Table 14. ANOVA For Individual W-GRG Responses for Case-2 

Source DF 
Adj Sum 

of squares 

Adj Mean 

Squares 
F-Value P-Value 

Percentage of 

contribution 
Rank 

PD 1 0.0119 0.0119 1.53 0.245 4.6169 3 

RPM 2 0.0628 0.0314 4.02 0.052 24.3158* 2 

WS 2 0.0062 0.0031 0.40 0.682 2.4025 4 

SD 2 0.0993 0.0497 6.36 0.017 38.4374* 1 

Residual error 10 0.0781 0.0078     30.2278  

Total 17 0.2584         

The ANOVA analysis in Table 14 shows the performance of statistical significance and the percentage 

contribution to each parameter. In this case all of the parameters are not significance with the percentage 

contribution to each parameter sequentially starting from the largest SD with 38.44%, RPM with 24.32%, PD 

with 4.62% and WS with 2.40%. The variance contribution of each response can be seen in Table 15. 

Table 15. Variance Contribution of Response Variables for First PC 

Response Variable Contribution 

UTS (MPa) 0.408 

YS (MPa) 0.308 

% E 0.167 

CS (MPa) 0.079 

Bending Angle (') 0.000 

Avg. Hat NZ (HV) 0.019 

Avg. Hat TMAZ (HV) 0.009 

Avg. Hat HAZ (HV) 0.008 

The ANOVA analysis also need to be checked of residual assumption. The assumption that required to 

be satisfy are normal distribution of residual. In this case, the residual normal distribution test using 

Anderson-Darling Test in Figure 3 with the result that this residual does satisfy the normal distribution. In 
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this analysis also calculate the variance contribution of response variables for first PC shown at Table 15 

which is conclude that UTS is the highest value. 

 

Figure 3. Normal Distribution Test for ANOVA Case-2 

4. CONCLUSIONS 

This paper tries to solve some parametric optimization of the quality response of Friction Stir Welded 

AM20 Magnesium Alloy. Initially, 18 experiments were designed and conducted as per Taguchi L18 

Orthogonal Array, followed by the application of GRA with the PCA approach to extract optimal solutions 

from multi-objective optimization problems. PCA is used for weighting of quality responses that affect 

GRGs. By applying it to 2 cases, the following research results are obtained. The optimal combination of 

parameters in case-1 is Plunge Depth 0.12 mm, Tool Rotational Speed 1100 rev/min, Welding Speed 132 

mm/min, and Shoulder Diameter 16 mm. While the optimal combination of parameters in case-2 is Plunge 

Depth 0.12 mm, Tool Rotational Speed 600 rev/min, Welding Speed 98 mm/min, and Shoulder Diameter 24 

mm. In both cases, the maximum influence of factor is Shoulder Diameter, while the most influence response 

is Ultimate Tensile Strength. The result of W-GRA methods can used for solving multi-response optimization 

problem in the FSW process. Due to limited resources, this research has not been able to use a confirmatory 

experiment to find out how well the suggested setup is compared to the initial setup. We suggest further 

research to be able to use confirmatory experiments so that we can find out how well the new setup that has 

been suggested. Future work on this may concentrate on finite element analysis, with a focus on other 

parameters, tests, and statistical techniques. 
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