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 ABSTRACT 

Article History: 
In small area estimation (SAE), the auxiliary variables used are commonly derived from 

registration data such as census and administrative data. It is assumed that the auxiliary 

variables are available for all areas. The limited availability of auxiliary variables can be an 

obstacle in SAE. The additional information from the survey can be alternative data, but it is 

assumed that the auxiliary variables will contain measurement errors. This study conducted a 

simulation of data that aims to handle when auxiliary variables are measured with errors. 

Two simulations were studied with some scenarios to the percentage area where the auxiliary 

variable is measured with error and scenarios to the generated auxiliary variables. Compare 

four methods: direct estimation, Fay-Herriot Empirical Best Linear Unbiased Prediction 

(EBLUP-FH), Ybarra-Lohr SAE with measurement error (SaeME), and Hierarchical 

Bayesian SaeME. The results show that, in both the simulation studies, the Hierarchical 

Bayesian SaeME method gives a smaller EMSE value than the other two methods when 

auxiliary information is measured with error. 
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1. INTRODUCTION 

Small area estimation is an estimation method that can overcome the sample size problem. Rao and 

Molina define a small area to denote any domain that cannot accurately produce a direct estimate [1]. 

Additional information is needed or known as auxiliary variables, to obtain an adequate level of precision in 

indirect estimation with small area estimation. SAE can increase the effectiveness of sample size by 

borrowing the strength of neighboring areas and information from the auxiliary variables that have a strong 

relationship with observational variables [2]. Generally, additional information in estimating small areas is 

obtained from census calculations and administrative records [3]. Census may completely enumerate all 

units of its target population, so it is assumed that the auxiliary variables used do not contain measurement 

errors. However, the census has several drawbacks, such as a long time and, high costs, lack sufficient 

detail about the characteristic of interest [4], so surveys are activities that are often carried out compared to 

censuses. Survey activities use more cost-effectiveness and faster implementation time. Still, when 

additional information is obtained from the results of survey calculations, it is assumed that the auxiliary 

variables will contain measurement errors. Measurement error arises when a recorded measurement value is 

not exactly the same as the actual value [5]. The existence of measurement errors in the model causes 

parameter estimates to be biased and inconsistent, and conclusions may be drawn erroneously [6]. 

Therefore, the estimation of parameters in small area estimation with auxiliary variables containing errors 

will also be a biased estimator, and the mean squared error of the predictor may be enhanced [7]. So, we 

need a small area estimation method to accommodate auxiliary variables with measurement errors. 

The development of a small area estimation model with auxiliary variables that contain measurement 

errors, in general, has been discussed by Hariyanto et al. [8] and Tanur [9]. In the unit-level small area 

estimation, Ghosh et al. [10] first developed a small area estimation with an auxiliary variable containing 

the error. Development is carried out by estimating a small area at the unit level with structural 

measurement errors in the auxiliary variables used. Torabi et al. [11] and Torkasvand et al. [12] estimated 

using the Bayesian method at the unit level with an auxiliary variable containing the error. At the area level, 

Ybarra and Lohr [13] modified the Fay-Herriot EBLUP method using auxiliary variables containing errors. 

Zhu and Zou [14], Datta et al. [15], Datta et al [16], and Wulandari et al. [17] used the SAE method which 

accommodates structural measurement errors. Komalasari M. [18] applies SUSENAS data to estimate the 

average length of schooling by sub-district in Kampar Regency. The results show that the Ybarra-Lohr 

SaeME estimation model can predict a smaller MSE value than direct estimation. Aziz and Ubaidillah [19] 

used two SAE models SAE EBLUP Fay-Herriot model with auxiliary variables Podes data and SAE with 

Error Measurement with auxiliary variable Twitter data. Estimation results using the SAE method are better 

than direct estimates. Auxiliary variables that contain errors are sources from Big data which as Twitter. 

Hariyanto et al. [20] estimate parameters and develop empirical bates in small area estimation with 

measurement error in t distributed covariate variable. Tanur and Kurnia [21] conducted a study that 

developed an alternative small-area estimation for the autoregressive model with auxiliary variables 

containing measurement errors. Novkaniza et al. [22] estimate non-symmetrical count data in SAE for the 

Poisson-lognormal model with measurement error in covariate.  

The Bayesian approach to estimating small areas at the area level by considering the auxiliary 

variables containing measurement errors was carried out by Arima et al. [23]. Method development from 

the Ybarra-Lohr SaeME method proposes an alternative estimator resulting from the Hierarchical Bayes 

measurement error model. Estimation in the simulation study is carried out with several scenarios that 

condition that there are unequal measurement errors in the generated areas. The simulations compared 

several SAE methods, including direct estimation, EBLUP-FH, EBLUP Bayesian, Ybarra-Lohr SaeME, 

and Hierarchical Bayesian SaeME. The simulation study results show that estimating with Hierarchical 

Bayes is more stable and has a smaller MSE value than the Ybarra–lohr SaeME estimation and others' 

estimation [23]. 

Arima et al. [23] only used one random effect variance and one auxiliary variable that contained 

errors in their simulation study. Based on this, in this study, an adaptation of the simulation conducted by 

Arima et al. [23] will be carried out by adding scenarios to the variance of random effect areas and 

scenarios to the auxiliary variables used. There are two simulations carried out in this study. These 

simulations were carried out by applying three small area estimation methods when the auxiliary variables 

have measurement errors, namely the SAE EBLUP-FH method, the Ybarra-Lohr SaeME method, and the 

Hierarchical Bayesian SaeME method. This study compares the four methods in some scenarios when the 

variance of random effect has different value. The first simulation was conducted to see each area's 
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different measurement error conditions.  The second simulation is carried out by creating scenarios on the 

auxiliary variables. The aim is to see the conditions when the auxiliary variables used are two auxiliary 

variables containing measurement errors and the conditions when some auxiliary variables used include 

measurement errors, and some do not. From these simulations can be used for the future research in 

applying empirical data with the method that can give the accurate result in estimating small area with 

auxiliary variables that containing measurement error. 

2. RESEARCH METHODS 

2.1 Fay-Herriot Model 

Small area estimation is done to estimate parameters indirectly in a relatively small area in a pilot 

survey [24]. The availability of additional information and determining a good and suitable model is 

important in obtaining indirect estimates, especially in small areas [1]. In the area level model, the auxiliary 

variables 𝒙𝒊 = (𝑥𝑖1, … 𝑥𝑖𝐾)𝑇available to a small level, and the observed variable is assumed to be a function 

of the average response variable 𝜃𝑖 = 𝑔(�̅�𝑖) for 𝑔(. ). Where 𝑧𝑖is a known positive value constant and 𝜷 =
(𝛽𝑖, … , 𝛽𝐾)𝑇 is the regression coefficient, 𝑢𝑖is the small random effect (often assumed to be normal), 𝑒𝑖is 

the sampling error, 𝑒𝑖~𝑁(0, 𝜎𝑒
2), so that the area level model (a model of linear mixed form or known as 

the Fay-Herriot model) can be written in Equation (1):                                           

𝜃�̂� = 𝒙𝒊
𝑻𝜷 + 𝑧𝑖𝑢𝑖 + 𝑒𝑖,  𝑖 = 1, … , 𝑚 (small area)                                      

(1) 

BLUP estimator (best linear unbiased prediction) to 𝜃𝑖 be formulated in Equation (2): 

                                            �̃�𝑖
𝐹𝐻 𝐵𝐿𝑈𝑃 = 𝒙𝑖

𝑻�̃� +  𝛾𝑖(𝜃𝑖 − 𝒙𝑖
𝑻�̃�) 

                                                     = 𝛾𝑖𝜃𝑖 + (1 − 𝛾𝑖) 𝒙𝑖
𝑻�̃�                                                       (2) 

In the BLUP estimator, the value 𝜎𝑢
2 is assumed to be known. However, the random effect variance 

(𝜎𝑢
2) is unknown in practice, so it must be estimated first. The estimate 𝜎𝑢

2will then be replaced by �̂�𝑢
2, the 

BLUP estimator. Then a new EBLUP estimator (empirical best linear unbiased prediction) will be obtained 

in Equation (3). Which is the weighted average (with weight 𝛾𝑖) of the direct estimator ( 𝜃𝑖) and the 

synthesis model (𝒙𝑖
𝑻�̂�).  

                                            𝜃𝑖
𝐹𝐻 𝐸𝐵𝐿𝑈𝑃 = 𝛾𝑖𝜃𝑖 + (1 − 𝛾𝑖) 𝒙𝑖

𝑻�̂�                           (3) 

with 𝛾𝑖 = �̂�𝑢
2𝑧𝑖

2/(�̂�𝑢
2𝑧𝑖

2 + 𝜎𝑒𝑖
2 ) and value �̂� is EBLUP estimator for value 𝜷. 

2.2 Ybarra-Lohr SaeME Model 

Ybarra and Lohr [13] developed this small area estimation because the survey has errors due to 

sampling and errors not due to sampling, so the additional information or auxiliary variables used contain 

errors. Therefore, this development is known as Small Area Estimation with Measurement Error (SaeME) 

or small Area estimation with auxiliary variables that contain errors. In small area estimation, 𝒙𝒊 is the 

value of the auxiliary variable area 𝑖. If all components 𝒙𝒊 is known, we use Equation (4): 

                                                           𝜃�̂� = 𝒙𝒊
𝑻𝜷 + 𝑧𝑖𝑢𝑖 + 𝑒𝑖                                                  (4) 

where 𝑢𝑖 and 𝑒𝑖 are independent, 𝑒𝑖 is the sampling error, 𝑒𝑖~𝑁(0, 𝜎𝑒
2). However, when 𝒙𝒊, there are 

auxiliary  variables that are measured with errors, then the model with measurements that contain errors is 

as follows  [13] in Equation (5): 

                                         𝜃�̂� = �̂�𝒊
𝑻𝜷 + 𝑟𝑖(�̂�𝒊, 𝒙𝒊) + 𝑒𝑖                                              (5) 

Estimator �̂�𝒊 replaces the value for 𝒙𝒊 with 𝑟𝑖(�̂�𝒊, 𝒙𝒊) =  𝑢𝑖 + (𝒙𝒊 −  �̂�𝒊)𝑇𝛽. It is assumed that the 

estimator for] 𝒙𝒊 is available for all areas i. We can input or estimate multiple components 𝒙𝒊 is not 

measurable. In this model, it is assumed that 𝑢𝑖 and 𝑒𝑖 are independent. Ybarra and Lohr SaeME formula 

can be written in Equation (6):  

                                        𝜃𝑖
𝑀𝐸 = 𝛾𝑖𝑦𝑖 + (1 − 𝛾𝑖) �̂�𝒊

𝑻𝜷                                                             (6) 
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model is denoted as with 𝛾𝑖 = 𝜎𝑢
2 + 𝛽𝑇𝐶𝑖𝛽/(𝜎𝑢

2 + 𝛽𝑇𝐶𝑖𝛽 + 𝜎𝑒
2). Suppose  𝑤1, … , 𝑤𝑚 is a set of finite 

weights bounded from 0. The estimated regression parameters are defined as follows in Equation (7): 

                                                          �̂�𝒘 = (∑ 𝑤𝑖(�̂�𝑖�̂�𝑖
𝑻 − 𝐶𝑖)𝑚

𝑖=1 )
−1

∑ 𝑤𝑖�̂�𝑖𝑦𝑖
𝑚
𝑖=1                                 (7) 

with 𝑤𝑖 = 1/(𝜎𝑢
2 + 𝛽𝑇𝐶𝑖𝛽 + 𝜎𝑒

2) for 𝑖 = 1, … , 𝑚. 

2.3 Hierarchical Bayesian SaeME Model 

Arima et al. [23] examined a Hierarchical Bayesian model with measurement errors. The results 

show that the uncertainty of measuring the posterior variance of the Bayesian estimator is more stable than 

the EBLUP MSE proposed by Ybarra-Lohr [13]. In the Hierarchical Bayesian approach, the unknown 

model parameters (including the variance components) are treated as random components, each with a 

certain prior distribution. The posterior distribution for the parameter of interest is obtained based on the 

entire prior distribution. The prior that used in this study is non informative prior. So it requires the 

generation of sample data from each 𝜃, 𝒙, 𝜷, 𝛿, dan 𝜎𝑢
2 given parameter and the remaining data. Bayesian 

procedure implementation is used with the Markov chain Monte Carlo technique, especially the Gibbs 

sampler. In obtaining posterior distribution results, the trace plot is used to analyze MCMC convergence 

[25]. Trace plot is a plot of interaction against the resulting values. If there is a certain pattern then the 

Markov chain has not reached convergence. it is important to check algorithm convergence. Hierarchical 

Bayesian SaeME model can be witten in multi-stage model as follows in Equation (8):  

i. 𝜃𝑖|𝜷, 𝑢𝑖 , 𝜎𝑢
2, 𝜃(−𝑖),𝒙𝒊 , 𝑦, �̂�𝒊 ~𝑁 (

𝜎𝑒
2−1

𝑦𝑖+𝜎𝑢
−2(𝒙𝒊

′𝜷+𝑧′
𝑖𝑢𝑖)

𝜎𝑒
2−1

+𝜎𝑢
−2

, (𝜎𝑒
2−1

+ 𝜎𝑢
−2)

−1
);                   (8) 

ii. 𝒙𝒊|𝜷, 𝑢𝑖 , 𝜎𝑢
2𝜃, 𝒙−𝒊, 𝑦, 𝒙𝒊 ~𝑁 (�̂�𝒊 +  

𝑦𝑖−𝒙𝒊
′𝜷−𝑧′

𝑖𝑢𝑖

𝜎𝑒
2+𝜎𝑢

2+𝜷′𝐶𝑖𝜷
𝐶𝑖𝜷, 𝐶𝑖 −

𝐶𝑖𝜷𝜷′𝐶𝑖

𝜎𝑒
2+𝜎𝑢

2+𝜷′𝐶𝑖𝜷
) ;  

iii. 𝜷|𝑢𝑖, 𝜎𝑢
2𝜃, 𝒙𝒊, 𝑦, �̂�𝒊~𝑁((�̂�𝒊

′�̂�𝒊)
−𝟏𝒙′(𝜃 − 𝑍𝑢𝑖), 𝜎𝑢

2(𝒙′𝒙)−𝟏);                       

iv. 𝑢𝑖|𝜷, 𝜎𝑢
2, 𝜃, 𝒙𝒊, 𝑦, �̂�𝒊 ~𝑁((𝑍′𝑍)−𝟏𝒙′(𝜃 − 𝒙𝒊𝜷), 𝜎𝑢

2(𝑍′𝑍)−𝟏) ; 

v. 𝜎𝑢
2|𝜷, 𝑢𝑖 , 𝜃, 𝒙𝒊, 𝑦, �̂�𝒊 ~𝐼𝐺 (

𝟏

𝟐
(𝒎 − 2),

𝟏

𝟐
∑ (𝜃𝑖 − 𝒙𝑖

′𝜷 − 𝑧′
𝑖𝑢𝑖)𝒎

𝒊=𝟏 )            

2.4 Data Analysis Procedure 

The simulation data were analyzed using four estimation methods, including the direct estimation 

method. This SAE EBLUP-FH method assumes that the auxiliary variables containing errors are the true 

values, the Ybarra-Lohr SaeME method, and Hierarchical Bayesian SaeME. There were two simulations 

carried out in this study. Both simulations were carried out with scenarios on a variance of random effects 

(σu1
2 = 2 dan σu2

2 = 4) and scenarios on the measurement error (𝑐𝑖 𝜖 {0, 𝑑} where 𝑑= 2 and 4). The first 

simulation is carried out with several k scenarios, k ϵ{0,20,50,80,100} where k is the percentage of small 

areas where the auxiliary variables measured contain errors 𝑐𝑖 𝜖 {0, 𝑑}, for example, k = 80% and 𝑐𝑖= 2 

means that 80% of the small areas with auxiliary variables measured contained errors 𝑐𝑖= 2.  The 

percentage of k was used to see the small area with different measurement error conditions. The greater the 

percentage of k, the greater the percentage of small area with auxiliary variables measured with error. The 

rest has a value of 0. In comparison, the second simulation has two scenarios on the auxiliary variables 

used. There are two auxiliary variables used in the second simulation. The first scenario of the second 

simulation is that one auxiliary variable contains an error, and one auxiliary variable does not contain an 

error. The second scenario of this second simulation is that the two auxiliary variables used contain errors 

Both simulations were carried out with 100 iterations to get an optimal result. Data processing was carried 

out using the R program. The following are the stages of the simulation study carried out: 

1) Determine the number of small areas, namely m= 20. 

2) Generating random effect area (ui) with two scenarios, namely u1i
~N(0, σ2 =  2) and u2i

~N(0, σ2 =

 4) with i = 1,2,3 … . m. 

3) Generating a sampling error ei~N(0,1). 

4) Auxiliary variables that contain errors will later be generated with area error data of the auxiliary 
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variables (vi) from a normal distribution with zero expectation values and three scenarios of 

measurement error (ci), which are determined as constants ci ϵ {0, d} where d= 2 and 4.  

5) Generating the first simulation data as follows: 

(i)    Define values α = 1 and β = 3, 

(ii) Generating one auxiliary variable from the Normal distribution, namely xi~N(5,9). 

(iii) From each iteration will be drawn Yi = α + βxi + ui and yi = Yi + ei 

(iv) Generating auxiliary variables containing errors from the equation x̂i = xi + vi. 

(v) Several scenarios will be carried out 𝑘ϵ{0,20,50,80,100} with 𝑘 as a small percentage area with 

the measured auxiliary variables containing errors ci  

6) Generating the second simulation data as follows: 

(i) Define value α = 1 and value β with two scenarios β1 = 3 and β2 = 5 

(ii) Generating two auxiliary variables namely x1i
~N(5, σ =  3) and x2i

~N(3, σ =  5) 

(iii) From each iteration will be drawn Yi = α + β1x1i
+ β2x2i

+ ui and yi = Yi + ei 

(iv) Generating auxiliary variables that contain errors from the equation, namely x̂1i
= x1i

+ vi,                    

         and x̂2i
= x2i

+ vi 

(v) Modeling is built with two scenarios:  

a. One auxiliary variable contains an error, and one variable does not have an error  

b. Both auxiliary variables have errors 

7) Calculation of parameter estimators from both simulations is done by: 

(i) Direct estimation method yi 

(ii) SAE EBLUP-FH method assumes x̂i as the true value. 

(iii) The Ybarra-Lohr SaeME method  

(iv) Hierarchical Bayesian SaeME Method. The Bayesian procedure is implemented with a monte 

carlo markov chain simulation.  

8) The simulation results were evaluated by calculating the average bias and the average empirical mean 

squared error (EMSE) of 100 replicates for all scenarios. Then the results of all estimation methods are 

compared. The better method is the one with a smaller average bias (AB) and average EMSE 

(AEMSE) in Equation (9) and Equation (10) respectively.       

                                   AB = K−1 ∑ (m−1 ∑ |ŷi − yi|
m
i=1 )K

k=1                                   (9)   

                              AEMSE = K−1 ∑ (m−1 ∑ (ŷi − yi)
2m

i=1 )K
k=1                                                      (10)   

3. RESULTS AND DISCUSSION 

3.1 Simulation Study 1 

From the results of processing with the R program, the average bias and average empirical mean 

squared error (EMSE) of several scenarios were obtained. The results of the four methods are then 

compared, the direct estimation method (𝑦𝑖), the EBLUP-FH method, which assumes no errors in the 

auxiliary variables ( �̂�𝑖𝑆), the Ybarra-Lohr SaeME method (�̂�𝑖𝑀𝐸), and the Hierarchical Bayesian SaeME 

method with the auxiliary variables containing errors (�̂�𝑖𝐵). In obtaining good posterior distribution results 

for the Hierarchical Bayesian SaeME method, it is necessary to fulfill the convergence of the MCMC 

algorithm. The parameter estimation process for first simulation is carried out by generating sample data in 

10,000 iterations with a burn-in of 5,000 and a thin of 20. Based on the MCMC algorithm, convergence 

occurs when the resulting Markov chain distribution approaches the posterior interest distribution. To 

evaluate the convergence is done by looking at the resulting Trace plot. From several scenarios, the 
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resulting trace plot has a random pattern, and the plot is relatively stable at a specific value. So convergence 

has been achieved. 

Table 1. Average Bias with Random Effect Area 𝝈𝒖
𝟐= 2 and 𝒄𝒊 = 𝟐 

𝒌 𝒄𝒊 𝒚𝒊 �̂�𝒊𝑺 �̂�𝒊𝑴𝑬 �̂�𝒊𝑩 

0 0 -0.04009 -0.04009 -0.04009 -0.03910 

20 0 -0.05907 -0.06272 -0.06159 -0.06125 

  2 0.03584 0.05041 0.04467 0.04527 

50 0 -0.01910 -0.02845 -0.02799 -0.02769 

  2 -0.06109 -0.05173 -0.05301 -0.05255 

80 0 -0.08365 -0.07789 -0.07420 -0.07885 

  2 -0.02920 -0.03064 -0.03208 -0.03000 

100 2 -0.04009 -0.04009 -0.04009 -0.03976 

Table 1 above shows the average bias when 𝑚 = 20, the random effect area 𝜎𝑢
2= 2, and 𝑐𝑖= 2. The 

average bias is shown by separating the areas with 𝑐𝑖= 2 and 𝑐𝑖= 0. From these results it can be seen that the 

fourth method produces results that are not much different. However, in general it appears that direct 

estimation produces an average bias that is close to 0, especially when the percentage of area containing 

measurement error is 𝑘 = 20 and 𝑘 = 30 with c_i = (2, 3, or 4). However, when 𝑘 the values are 0 and 100, 

estimating with Hierarchical Bayesian SaeME ( �̂�𝑖𝐵) produces average bias, which is generally smaller than 

other methods. Table 2 shows the average bias when 𝑚 = 20 and the random effect area 𝜎𝑢
2= 4 and 𝑐𝑖= 2. 

Generally, when the variance of random effect is greater, 𝜎𝑢
2= 4, the average bias is greater than when the 

variance of random effect is 𝜎𝑢
2= 2. The result of average bias from four methods also close to 0. However, 

when 𝑘 is large, Hierarchical Bayesian estimation with auxiliary variables containing errors (�̂�𝑖𝐵) produces 

an average bias generally smaller than other methods. 

Table 2. Average Bias With Random Effect Area 𝝈𝒖
𝟐= 4 and 𝒄𝒊 = 𝟐 

𝒌 𝒄𝒊 𝒚𝒊 �̂�𝒊𝑺 �̂�𝒊𝑴𝑬 �̂�𝒊𝑩 

0 0 -0.04009 -0.04009 -0.04009 -0.03957 

20 0 -0.05907 -0.06210 -0.06125 -0.06135 

  2 0.03584 0.04794 0.04383 0.04463 

50 0 -0.01910 -0.02587 -0.02686 -0.02498 

  2 -0.06109 -0.05431 -0.05395 -0.05532 

80 0 -0.08365 -0.08012 -0.09375 -0.08423 

  2 -0.02920 -0.03008 -0.02764 -0.02943 

100 2 -0.04009 -0.04009 -0.04009 -0.03992 

Based on the calculation of the Empirical Mean Squared Error (EMSE), the result is that in a scenario 

with a random effect area 𝜎𝑢
2= 2 and 𝑐𝑖 = 2 shown in Figure 1. The average EMSE is shown by separating 

the areas with 𝑐𝑖= 2 and 𝑐𝑖= 0. At 𝑘 =0, the estimation results �̂�𝑖𝑆 provide the lowest average EMSE among 

the other methods. When 𝑐𝑖= 0, 𝑘 =20, 50, and 80, �̂�𝑖𝑆 provide the average EMSE lower than 𝑦𝑖 and  �̂�𝑖𝑀𝐸 . 
From two graphics, 𝑦𝑖 provides the average EMSE, bigger than three other methods, except when 𝑐𝑖= 0 and 

𝑘 =20, 50, and 80. For 𝑐𝑖 = 2,  When 𝑘 =20 and 𝑘 =50, the estimation �̂�𝑖𝑀𝐸  gives the smallest average 

EMSE among other estimation methods. It means that �̂�𝑖𝑀𝐸  provides the smallest average EMSE when 

there is a measurement error in the auxiliary variable with a small k. In contrast, the smallest average 

EMSE is obtained by �̂�𝑖𝐵 when 𝑘 values are 80 and 100. It can be said that the greater the percentage 𝑘 and 

the value of 𝑐𝑖, the estimator �̂�𝑖𝐵is, the best estimator.  
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                     Figure 1. Average EMSE with Random Effect Area 𝝈𝒖
𝟐= 2, when (a) 𝒄𝒊 = 𝟎, (b) 𝒄𝒊 = 𝟐 

The comparison average EMSE at 𝑚 = 20, 𝑐𝑖= 2, and the random effect area 𝜎𝑢
2= 4 is shown in 

Figure 2. At times 𝑘 =20, 50, and 80, 𝑐𝑖= 0, the smallest average EMSE was produced by estimating �̂�𝑖𝑆. 

For 𝑘 =20 and 𝑐𝑖= 2, the estimation �̂�𝑖𝑀𝐸  gives the smallest average EMSE among other estimation 

methods. And when 𝑘 =50, 80, and 100, 𝑐𝑖= 2, the estimation �̂�𝑖𝐵 gives the smallest average EMSE among 

other estimation methods. The average EMSE estimation 𝑦𝑖 is the largest among other methods for almost 

all 𝑘 and 𝑐𝑖 . Figures 1 and 2 show a similar pattern, but it can be seen that the four estimation method give 

a bigger average EMSE when 𝜎𝑢
2= 4 than 𝜎𝑢

2= 2. It means the bigger 𝜎𝑢
2, the bigger the average EMSE. 

From the bias average and EMSE average of the four methods, it can be said that �̂�𝑖𝐵 it gives the best results 

among the other methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a)                                                                                        (b) 

Figure 2. Average EMSE with Random Effect Area 𝝈𝒖
𝟐= 4, when (a) 𝒄𝒊 = 𝟎, (b) 𝒄𝒊 = 𝟐 

3.2 Simulation Study 2 

In simulation study 2, two scenarios are carried out in the parameter estimation model. The first 
scenario is carried out with one auxiliary variable(𝑥1𝑖) containing the measurement error and one auxiliary 
variable (𝑥2𝑖) which does not include the measurement error. The second scenario has two auxiliary 
variables, each containing measurement errors (𝑥1𝑖 and 𝑥2𝑖 ). The parameter estimation process with the 
Hierarchical Bayesian SaeME method is carried out by generating MCMC samples by generating sample 
data in 100,000 iterations with a burn-in of 5,000 and a thin of 20. The estimation is evaluated by 
comparing the average bias and the average EMSE.  

The average bias results with random effect area 𝜎𝑢
2= 2 and measurement error 𝑐𝑖= 2, 3, and 4 are 

shown in Table 3. It shows that the average bias produces in both scenarios 1 and 2 for each 𝑐𝑖  is the same 
for the three methods which 𝑦𝑖 , �̂�𝑖𝑆, and �̂�𝑖𝑀𝐸. Therefore, the average bias resulting from three methods, 
whether the auxiliary variable contains only one variable that containing measurement error or both 
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containing measurement error, is not different. The results are different from the average bias of  �̂�𝑖𝐵. The 
greater the number of auxiliary variables that contain measurement error, the greater the average bias. When 
in scenario 1, only one auxiliary variable contains measurement error, the average bias of �̂�𝑖𝐵 is smaller than 
other estimation methods. When the model contains auxiliary variables that both include errors, the 
resulting average bias is greater than the model where only one of the auxiliary variables has errors. In this 
simulation, the average bias of  �̂�𝑖𝑀𝐸 is not greater than �̂�𝑖𝑆. It relates to Ybarra and Lohr [13] in certain 
conditions, 𝑥𝑖 is ignored for mean squared error calculation, and the reported mean squared error of �̂�𝑖𝑆 will 
be too small, giving a misleading notion of precision. 

Table 3. Average Bias With Random Effect Area 𝝈𝒖
𝟐= 2 

Scenario 𝒄𝒊 
𝒚𝒊 �̂�𝒊𝑺 �̂�𝒊𝑴𝑬 �̂�𝒊𝑩 

1 

2 0.0424958 0.0424958 0.0424958 0.0419295 

3 0.0424958 0.0424958 0.0424958 0.0419235 

4 0.0424958 0.0424958 0.0424958 0.0419214 

2 

2 0.0424958 0.0424958 0.0424958 0.0425923 

3 0.0424958 0.0424958 0.0424958 0.0425620 

4 0.0424958 0.0424958 0.0424958 0.0426548 
 

Table 4. Average Bias With Random Effect Area 𝝈𝒖
𝟐= 4 

Scenario 𝒄𝒊 
𝒚𝒊 �̂�𝒊𝑺 �̂�𝒊𝑴𝑬 �̂�𝒊𝑩 

1 

2 0.0424958 0.0424958 0.0424958 0.0419279 

3 0.0424958 0.0424958 0.0424958 0.0419239 

4 0.0424958 0.0424958 0.0424958 0.0419217 

2 

2 0.0424958 0.0424958 0.0424958 0.0425438 

3 0.0424958 0.0424958 0.0424958 0.0425974 

4 0.0424958 0.0424958 0.0424958 0.0426585 
 

Table 4 shows the average bias when the random effect area 𝜎𝑢
2= 4. In general, the lowest bias 

average is obtained by the estimation method �̂�𝑖𝐵. Three estimation method which are 𝑦𝑖 , �̂�𝑖𝑆, and �̂�𝑖𝑀𝐸 give 

the result that is not different from Table 3. In general, the lowest average bias obtained by �̂�𝑖𝐵 estimation 

method is in scenario 1, only one of the auxiliary variables contains measurement error. From the two 

average bias tables, the four estimation methods produce an average bias that is close to 0. 

The estimation method is then evaluated by looking at the average EMSE output of the four 

estimation methods (Figure 3). The estimation 𝑦𝑖  provides the average EMSE, which is lowest than other 

methods. When the random effect area 𝜎𝑢
2= 2 and 𝑐𝑖= 2, 3, and 4, it can be seen that the larger 

𝑐𝑖, the greater the average EMSE value. The average EMSE resulting from the four methods is not too 

different. However, in general, the average EMSE of the two scenarios with the smallest value is produced 

by the method �̂�𝑖𝐵 compared to method �̂�𝑖𝑆and �̂�𝑖𝑀𝐸.  
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Figure 3. The Average EMSE with Random Effect Area 𝝈𝒖
𝟐= 2, (a) Scenario 1, (b) Scenario 2 

When the random effect area 𝜎𝑢
2= 4 and 𝑐𝑖= 2, 3, and 4, the average EMSE is shown in Figure 4. The 

average EMSE of the two scenarios with the smallest value is generally produced by the method �̂�𝑖𝐵 

compared to method �̂�𝑖𝑆 and �̂�𝑖𝑀𝐸. Not much different as at 𝜎𝑢
2= 2, the bigger it is, 𝑐𝑖, the bigger the average 

EMSE value. Although the resulting numbers are close enough, it is quite visible that the value increases as 

it increases 𝑐𝑖. However, it is different when compared, so the average EMSE value at 𝜎𝑢
2= 4 is smaller than 

at 𝜎𝑢
2= 2 in scenario 2. Based on the evaluation of the model estimation, both the average bias and the 

average EMSE, it can be said that the estimation of �̂�𝑖𝐵 gives the best results compared to the estimate of 𝑦𝑖, 

�̂�𝑖𝑆,and �̂�𝑖𝑀𝐸. 
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Figure 4. The Average EMSE with Random Effect Area 𝝈𝒖
𝟐=4, (a) Scenario 1, (b) Scenario 2 

4. CONCLUSIONS 

The first simulation study was conducted to see each area's different measurement error conditions. 

When the percentage of areas containing measurement errors is zero, which means there are no 

measurement errors, the estimation with SAE EBLUP-FH is better. This can be seen from the smaller 

average EMSE. When the percentage of small areas containing measurement error is 20 and 50, the 

estimation with Ybarra-Lohr SaeME produces smaller EMSE averages. When the percentage of small areas 

containing measurement errors is 80 to 100, the mean bias and EMSE results with Hierarchical Bayesian 

SaeME are smaller. The second simulation study was carried out by creating scenarios on the auxiliary 

variables. When the auxiliary variables that contain errors increase, the average bias value and the resulting 

average EMSE from Hierarchical Bayesian SaeME method are also greater as the measurement error on the 

auxiliary variables increases. In general, for estimating small area estimation with measurement error, the 

Hierarchical Bayesian SaeME estimator was the best for the one and two simulation studies because the 

average bias and average EMSE were lower than the direct estimates, SAE EBLUP-FH and Ybarra-Lohr 
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SaeME when auxiliary variable is measured with error. For future research, the Hierarchical Bayesian 

SaeME method can be used to obtain small area estimation for empirical data to obtain better accuracy 

results which the auxiliary variables containing measurement errors such as from survey data. 
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