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 ABSTRACT 

Article History: 
The eccentricity matrix is one of matrices to represent graphs. The eccentricity matrix is used 

as a basis for calculating the eccentricity spectrum and energy. This article aims to study the 

concepts of eccentricity spectrum and energy in simple graphs. For special cases, we also 

discuss eccentricity spectrum and energy of paths and cycles. All studies in this article focus on 

providing some examples to facilitate the reader's understanding of the concepts studied. In 

addition, this article also corrects the mistakes in the lemma about eccentricity spectrum of 

paths and theorem about eccentricity energy of odd-order cycles from reference articles. 

Corrections are made by indicating where the errors are in the referenced articles, providing 

counter examples, correcting inaccurate lemmas and theorems, and giving short proofs. At the 

end of the article, an open problem is also included to provide an overview of research ideas 

that can be developed from the concepts of eccentricity spectrum and energy. 
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1. INTRODUCTION 

The concept of graph theory was introduced by Euler in 1736 [1]. A graph is a system of a finite non-

empty set of vertices and a set of edges. Two vertices connected by at least one edge are said to be adjacent. 

The number of vertices in a graph is called order and the number of edges in a graph is called size. A simple 

graph is a graph that has no more than one edge between two vertices and no edges that start and end at the 

same vertex (without loops) [2]. 

Graphs can also be grouped into several graph classes based on their shape. Two classes of graphs that 

are often encountered are path graphs and cycle graphs. Path is a graph of order 𝑛 and has size 𝑛 − 1. Cycle 

is a graph that has order 𝑚 and has size 𝑚, where 𝑚 ≥ 3 [2]. When viewed from the neighboring elements, 

a path is a graph whose vertices can be arranged in a linear sequence in such a way that the two vertices are 

adjacent if they are consecutive in the sequence, and vice versa are not adjacent. Meanwhile, a cycle graph is 

a graph whose vertices can be arranged in a circular order in such a way that two adjacent vertices are 

consecutive in order [3]. Thus, path can be formed by deleting one edge of cycle. 

Graphs can be represented in the form of sets of vertices and edges, diagrams, or matrices [2]. One of 

the matrices to represent graphs is the eccentricity matrix proposed by Wang et al. in 2018 [4]. Reference [4] 

explained that the idea of forming an eccentricity matrix originated from the 𝐷𝑀𝐴𝑋 matrix proposed by Randić 

in 2013 [5]. The 𝐷𝑀𝐴𝑋 is a graph matrix that is built from a distance matrix. The distance matrix is a matrix 

whose entries represent the distance from every two vertices on the graph, namely the size of the shortest 

path that connects the two vertices [2]. The 𝑖𝑗 entry value in the 𝐷𝑀𝐴𝑋 matrix will have the same value as the 

𝑖𝑗 entry in the corresponding distance matrix if that value is greater than or equal to the smallest value between 

the largest value in the 𝑖-th row and the largest value in the 𝑗-th column, and vice versa is zero [5]. The 𝐷𝑀𝐴𝑋 

matrix was then redefined and given a new name as the eccentricity matrix by Wang et al [4]. Several studies 

regarding the properties of the eccentricity matrix in certain graph classes can be seen in [6]–[10]. 

The eccentricity matrix is needed as initial information to calculate eccentricity spectrum [4]. The 

eccentricity spectrum is then used as the basis for calculating the value of eccentricity energy [11]. Several 

studies regarding the eccentricity of energy in certain graph classes can be seen in [12] and [13]. Research on 

eccentricity spectrum and eccentricity energy in graph theory still has a great possibility to be developed 

considering the definition of eccentricity spectrum introduced by Wang et al. in 2018 in [4] and the definition 

of eccentricity energy introduced by Wang et al. in 2019 in [11]. The concept of eccentricity matrix is also 

related to the eccentricity spectral radius. Eccentricity spectral radius is the largest eigenvalue of the 

eccentricity matrix [4]. Several studies related to the eccentricity of the spectral radius can be seen in [14]–

[17]. However, this article does not include the study of eccentricity spectral radius. 

In order to increase the reader's understanding of the concepts of eccentricity spectrum and eccentricity 

energy, this article studies these concepts in simple graphs and their properties in the path and cycle graphs. 

The studies focused on providing some examples which were explained in detail and systematically. Section 

2 of this article contains research method that were carried out. Subsection 3.1 studies the concepts related to 

eccentricity spectrum and eccentricity energy. Subsection 3.2 describes the properties of the eccentricity 

spectrum and eccentricity energy of path. Subsection 3.3 describes the properties of the eccentricity spectrum 

and the eccentricity energy of cycle. Section 4 contains the conclusions of this entire studies along with open 

problems which can be used for further research related to the eccentricity matrix. This article is expected to 

be a reference in understanding the concepts related to eccentricity spectrum and eccentricity energy and their 

properties for certain types of graphs, namely paths and cycles. 

2. RESEARCH METHODS 

This article focuses on studying concepts related to eccentricity spectrum and energy and their 

properties for certain types of graphs, namely paths and cycles. The preparation of the article is based on 

literature study. The main references used are [4] and [11]. In this literature study, we provide definitions of 

the eccentricity of vertices in graphs, eccentricity matrix, eccentricity spectrum, and eccentricity energy, 

along with their properties especially in paths and cycles. Eight examples are given to make it easier to 

understand concepts based on definitions and characteristics studied from related literature. All of these 

examples are explained in detail and systematically. In addition, this article also give some corrections of the 

lemma related to eccentricity spectrum in paths and theorem related to eccentricity energy in odd-order cycles 

from [11]. This is because there are small mistakes in proving the lemma and the theorem in [11] that make 
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it incorrect. The corrections provided in this article are giving explanations regarding the location of the 

intended error, counter examples, and providing the appropriate forms of the lemma and theorem. This article 

also give some short corrected proofs of these lemma and theorem. 

3. RESULTS AND DISCUSSION 

This section explains the concepts related to eccentricity spectrum and eccentricity energy in a simple 

graph 𝐺 and its properties in path and cycle graph classes. 

3.1 Eccentricity Spectrum and Eccentricity Energy 

This subsection contains some definitions and examples related to the concept of eccentricity in graph 

𝐺 including matrix, eigenvalues, spectrum, and energy. 

Definition 1. [4] Let 𝐺 =  (𝑉, 𝐸) be a simple graph that has a set of vertices 𝑉(𝐺) and a set of edges 𝐸(𝐺). 
The eccentricity of vertex 𝑢 ∈ 𝑉(𝐺) written as 𝑒𝐺(𝑢)  and defined as: 

 𝑒𝐺(𝑢) = 𝑚𝑎𝑥{𝑑(𝑢,  𝑣) | 𝑣 ∈ 𝑉(𝐺)}, (1) 

where 𝑑(𝑢, 𝑣) is a distance between 𝑢 and 𝑣. 

Example 1. Given graph 𝐺 as in Figure 1.  

 
Figure 1. Graph 𝑮 

Based on Definition 1 and the definition of distance between two vertices listed in Section 1, it can be 

obtained: 

𝑒𝐺(𝑣1) = 𝑚𝑎𝑥 {
𝑑(𝑣1,  𝑣1), 𝑑(𝑣1,  𝑣2), 𝑑(𝑣1,  𝑣3),

𝑑(𝑣1,  𝑣4), 𝑑(𝑣1,  𝑣5), 𝑑(𝑣1,  𝑣6)
} = max{0,1,1,2,3,3} = 3, 

𝑒𝐺(𝑣2) = 𝑚𝑎𝑥 {
𝑑(𝑣2,  𝑣1), 𝑑(𝑣2,  𝑣2), 𝑑(𝑣2,  𝑣3),

𝑑(𝑣2,  𝑣4), 𝑑(𝑣2,  𝑣5), 𝑑(𝑣2,  𝑣6)
} = max{1,0,1,1,2,2} = 2, 

𝑒𝐺(𝑣3) = 𝑚𝑎𝑥 {
𝑑(𝑣3,  𝑣1), 𝑑(𝑣3,  𝑣2), 𝑑(𝑣3,  𝑣3),

𝑑(𝑣3,  𝑣4), 𝑑(𝑣3,  𝑣5), 𝑑(𝑣3,  𝑣6)
} = max{1,1,0,1,2,2} = 2, 

𝑒𝐺(𝑣4) = 𝑚𝑎𝑥 {
𝑑(𝑣4,  𝑣1), 𝑑(𝑣4,  𝑣2), 𝑑(𝑣4,  𝑣3),

𝑑(𝑣4,  𝑣4), 𝑑(𝑣2,  𝑣5), 𝑑(𝑣2,  𝑣6)
} = max{2,1,1,0,1,1} = 2, 

𝑒𝐺(𝑣5) = 𝑚𝑎𝑥 {
𝑑(𝑣5,  𝑣1), 𝑑(𝑣5,  𝑣2), 𝑑(𝑣5,  𝑣3),

𝑑(𝑣5,  𝑣4), 𝑑(𝑣5,  𝑣5), 𝑑(𝑣5,  𝑣6)
} = max{3,2,2,1,0,2} = 3, 

𝑒𝐺(𝑣6) = 𝑚𝑎𝑥 {
𝑑(𝑣6,  𝑣1), 𝑑(𝑣6,  𝑣2), 𝑑(𝑣6,  𝑣3),

𝑑(𝑣6,  𝑣4), 𝑑(𝑣6,  𝑣5), 𝑑(𝑣6,  𝑣6)
} = max{3,2,2,1,2,0} = 3. 

Definition 2. [4] The eccentricity matrix of graph 𝐺 is symbolized as 𝜀(𝐺). The entries in 𝜀(𝐺) are defined 

as follows: 

 
𝜀(𝐺) = {

 𝐷𝑖𝑗 ; 𝑗𝑖𝑘𝑎 𝐷𝑖𝑗 = 𝑚𝑖𝑛{𝑒𝐺(𝑢𝑖), 𝑒𝐺(𝑢𝑗)}

   0  ; 𝑗𝑖𝑘𝑎 𝐷𝑖𝑗 < 𝑚𝑖𝑛{𝑒𝐺(𝑢𝑖), 𝑒𝐺(𝑢𝑗)}
, 

 

(2) 

where 𝐷𝑖𝑗 is the entry of 𝑖-th row and 𝑗-th column of the distance matrix of graph 𝐺. In other words, 𝐷𝑖𝑗 is 

the distance between vertex 𝑣𝑖 and 𝑣𝑗. 

Example 2. Given graph 𝐺 according as in Figure 1. Recall that the distance matrix is a symmetric matrix. 

Consequently, the eccentricity matrix is also a symmetric matrix. Based on Definition 2   and the results in 

Example 1, we can calculate the eccentricity matrix of graph 𝐺 as follows: 

min{𝑒𝐺(𝑣1), 𝑒𝐺(𝑣1)} = min{3,3} = 3 ; 𝐷11 = 0 ; (𝜀(𝐺))11 = 0, 
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min{𝑒𝐺(𝑣1), 𝑒𝐺(𝑣2)} = min{3,2} = 2 ; 𝐷12 = 1 ; (𝜀(𝐺))12 = (𝜀
(𝐺))

21
= 0, 

min{𝑒𝐺(𝑣1), 𝑒𝐺(𝑣3)} = min{3,2} = 2 ; 𝐷13 = 1 ; (𝜀(𝐺))13 = (𝜀
(𝐺))

31
= 0, 

min{𝑒𝐺(𝑣1), 𝑒𝐺(𝑣4)} = min{3,2} = 2 ; 𝐷14 = 2 ; (𝜀(𝐺))14 = (𝜀
(𝐺))

41
= 2, 

min{𝑒𝐺(𝑣1), 𝑒𝐺(𝑣5)} = min{3,3} = 3 ; 𝐷15 = 3 ; (𝜀(𝐺))15 = (𝜀
(𝐺))

51
= 3, 

min{𝑒𝐺(𝑣1), 𝑒𝐺(𝑣6)} = min{3,3} = 3 ; 𝐷16 = 3 ; (𝜀(𝐺))16 = (𝜀
(𝐺))

61
= 3, 

min{𝑒𝐺(𝑣2), 𝑒𝐺(𝑣2)} = min{2,2} = 2 ; 𝐷22 = 0 ; (𝜀(𝐺))22 = 0, 

min{𝑒𝐺(𝑣2), 𝑒𝐺(𝑣3)} = min{2,2} = 2 ; 𝐷23 = 1 ; (𝜀(𝐺))23 = (𝜀
(𝐺))

32
= 0, 

min{𝑒𝐺(𝑣2), 𝑒𝐺(𝑣4)} = min{2,2} = 2 ; 𝐷24 = 1 ; (𝜀(𝐺))24 = (𝜀
(𝐺))

42
= 0, 

min{𝑒𝐺(𝑣2), 𝑒𝐺(𝑣5)} = min{2,3} = 2 ; 𝐷25 = 2 ; (𝜀(𝐺))25 = (𝜀
(𝐺))

52
= 2, 

min{𝑒𝐺(𝑣2), 𝑒𝐺(𝑣6)} = min{2,3} = 2 ; 𝐷26 = 2 ; (𝜀(𝐺))26 = (𝜀
(𝐺))

62
= 2, 

min{𝑒𝐺(𝑣3), 𝑒𝐺(𝑣3)} = min{2,2} = 2 ; 𝐷33 = 0 ; (𝜀(𝐺))33 = 0, 

min{𝑒𝐺(𝑣3), 𝑒𝐺(𝑣4)} = min{2,2} = 2 ; 𝐷34 = 1 ; (𝜀(𝐺))34 = (𝜀
(𝐺))

43
= 0 

min{𝑒𝐺(𝑣3), 𝑒𝐺(𝑣5)} = min{2,3} = 2 ; 𝐷35 = 2 ; (𝜀(𝐺))35 = (𝜀
(𝐺))

53
= 2, 

min{𝑒𝐺(𝑣3), 𝑒𝐺(𝑣6)} = min{2,3} = 2 ; 𝐷36 = 2 ; (𝜀(𝐺))36 = (𝜀
(𝐺))

63
= 2, 

min{𝑒𝐺(𝑣4), 𝑒𝐺(𝑣4)} = min{2,2} = 2 ; 𝐷44 = 0 ; (𝜀(𝐺))44 = 0, 

min{𝑒𝐺(𝑣4), 𝑒𝐺(𝑣5)} = min{2,3} = 2 ; 𝐷45 = 1 ; (𝜀(𝐺))45 = (𝜀
(𝐺))

54
= 0, 

min{𝑒𝐺(𝑣4), 𝑒𝐺(𝑣6)} = min{2,3} = 2 ; 𝐷46 = 1 ; (𝜀(𝐺))46 = (𝜀
(𝐺))

64
= 0, 

min{𝑒𝐺(𝑣5), 𝑒𝐺(𝑣5)} = min{3,3} = 3 ; 𝐷55 = 0 ; (𝜀(𝐺))55 = 0, 

min{𝑒𝐺(𝑣5), 𝑒𝐺(𝑣6)} = min{3,3} = 3 ; 𝐷56 = 2 ; (𝜀(𝐺))56 = (𝜀
(𝐺))

65
= 0, 

min{𝑒𝐺(𝑣6), 𝑒𝐺(𝑣6)} = min{3,3} = 3 ; 𝐷66 = 0 ; (𝜀(𝐺))66 = 0. 

As a result, the eccentricity matrix of graph 𝐺 is: 

𝜀(𝐺) =

(

  
 

0 0 0
0 0 0
0 0 0

2 3 3
0 2 2
0 2 2

2 0 0
3 2 2
3 2 2

0 0 0
0 0 0
0 0 0)

  
 
. 

The spectrum of a graph is usually formed by the eigenvalues of the adjacency matrices 𝐴(𝐺). Thus, 

an eccentricity spectrum (𝜀-spectrum) or the spectrum formed from the eccentricity matrix 𝜀(𝐺) requires 𝜀-
eigenvalues or eigenvalues of 𝜀(𝐺). Since 𝜀(𝐺) is a symmetric matrix, the 𝜀-eigenvalues of graph 𝐺 are real. 

Definition 3.  [4] Suppose 𝜀1 > 𝜀2 > ⋯ > 𝜀𝑘 are distinc 𝜀-eigenvalues. The 𝜀-spectrum of graph 𝐺 can be 

written as: 

 𝑆𝑝𝑒𝑐𝜀(𝐺) = (
𝜀1 𝜀2
𝑚1 𝑚2

𝜀3 ⋯
𝑚3 …

𝜀𝑘
𝑚𝑘
), (3) 

where 𝑚𝑖 indicating the number of eigenvalues 𝜀𝑖 and 1 ≤ 𝑖 ≤ 𝑘. Furthermore, the largest 𝜀-eigenvalue (𝜀1) 

is called eccentricity spectral radius. 

Example 3. Given graph 𝐺 as in Figure 1. In this example, we calculate 𝜀-spectrum of graph 𝐺. In Example 

1, we got: 

𝜀(𝐺) =

(

  
 

0 0 0
0 0 0
0 0 0

2 3 3
0 2 2
0 2 2

2 0 0
3 2 2
3 2 2

0 0 0
0 0 0
0 0 0)

  
 
. 

Then, we calculate the 𝜀-eigenvalues of 𝜀(𝐺). The 𝜀-eigenvalues obtained from 𝐺 are 

6.0194, 1.329, 0, 0, −1.329, and −6.0194. Note that 6.0194 > 1.329 > 0 > −1.329 > −6.0194. 

According to Definition 3, the 𝜀-spectrum of graph 𝐺 is: 
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𝑆𝑝𝑒𝑐𝜀(𝐺) = (
6.0194
1

1.329

1
0
2

−1.329

1
−6.0194

1
). 

Besides being represented by a spectrum, the eigenvalues of a graph can also be represented by a value called 

energy. The energy of the eccentricity matrix is called 𝜀-energy. 

Definition 4. [11] Suppose 𝜀1, 𝜀2, 𝜀3, … , 𝜀𝑛 are all 𝜀-eigenvalues of graph 𝐺. The eccentricity energy (𝜀-
energy) of graph 𝐺 is denoted 𝐸𝜀(𝐺) and defined as: 

 
𝐸𝜀(𝐺) =∑|𝜀𝑖|

𝑛

𝑖=1

. 
 

(4) 

Example 4. Given graph 𝐺 according to Figure 1. In this example, we count the ε-energy of graph 𝐺. 

According to Definition 4 and using the 𝜀-eigenvalues results in Example 3, we can get: 

𝐸𝜀(𝐺) =∑|𝜀𝑖|

𝑛

𝑖=1

= |6.0194| + |1.329| + 2|0| + |−1.329| + |−6.0194| = 14.6968. 

3.2 The 𝜺-Spectrum and 𝜺-Energy of a Path 

This subsection discusses lemmas and examples regarding the properties of the 𝜀-spectrum and 𝜀-
energy of paths. Lemma 1 explains about the properties of 𝜀-spectrum of paths with various order. Lemma 

2 is the correction of errors in Lemma 1. Then, Theorem 1 disscus about the properties of 𝜀-energy of paths 

with various order. 

Lemma 1. [11] Let 𝑃𝑛 be a path with order 𝑛.  

(i) If 𝑛 = 1,2,3 then 

 𝑆𝑝𝑒𝑐𝜀(𝑃1) = (
0
1
) , 𝑆𝑝𝑒𝑐𝜀(𝑃2) = (

1 −1
1 1

),  

𝑆𝑝𝑒𝑐𝜀(𝑃3) = (
1 + √3 1 − √3 −2
1 1 1

). 

 

  (5) 

(ii) If 𝑛 = 2𝑘 and 𝑘 ≥ 2, then 

 

𝑆𝑝𝑒𝑐𝜀(𝑃2𝑘) = (
𝑗 + √𝑎

6
1

𝑗 − √𝑎

6
1

−𝑗 + √𝑎

6

−𝑗 − √𝑎

6
0

1 1 2𝑘 − 4

), 
 

(6) 

where 𝑗 = 6𝑘 − 3 and 𝑎 = 𝑗(14𝑘2 − 20𝑘 + 9). 

(iii) If 𝑛 = 2𝑘 + 1 and 𝑘 ≥ 2, then 

(iv)  

𝑆𝑝𝑒𝑐𝜀(𝑃2𝑘+1) = (
6𝑘 + √𝑏

6
1

6𝑘 − √𝑏

6
1

−6𝑘 + √𝑐

6

−6𝑘 − √𝑐

6
0

1 1 2𝑘 − 3

), 

 

(7) 

where 𝑏 = 6𝑘(14𝑘2 + 3𝑘 + 1) and 𝑐 = 6𝑘(14𝑘2 − 9𝑘 + 1). 

Example 5. These examples are related to Lemma 1.  

(i) For 𝑛 = 1, 𝑛 = 2, and 𝑛 = 3, we can get consecutive graphs 𝑃1, 𝑃2, and 𝑃3 as in Figure 2. 

 
      𝑃1  𝑃2           𝑃3 

Figure 2. Graphs 𝑷𝟏, 𝑷𝟐, and 𝑷𝟑 

According to Definition 1, the eccentricity in 𝑃1 is 𝑒𝑃1(𝑣1) = max{𝑑(𝑣1,  𝑣1)} = 0. Therefore, 

according to Definition 2, 𝜀(𝑃1) = 0. A zero matrix with size 1 × 1 has 1 eigenvalue 0. As a result and 

refer to Definition 3, we can get 𝑆𝑝𝑒𝑐𝜀(𝑃1) = (
0
1
).  

Futhermore, the eccentricity of all vertices in 𝑃2 are 𝑒𝑃2(𝑣1) = max{𝑑(𝑣1,  𝑣1), 𝑑(𝑣1,  𝑣2)} =

max {0,1} = 1 and 𝑒𝑃2(𝑣2) = max{𝑑(𝑣2,  𝑣1), 𝑑(𝑣2,  𝑣2)} = max {1,0} = 1. Thus, according to 

Definition 2, 𝜀(𝑃2) = (
0 1
1 0

). Eigenvalues of 𝜀(𝑃2) are calculated. The eigenvalues of 𝜀(𝑃2) are 

obtained, namely −1 and 1. Consequently, according to Definition 3, we obtain:  
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𝑆𝑝𝑒𝑐𝜀(𝑃2) = (
1 −1
1 1

).  

In an analogous way, we get 𝜀(𝑃3) = (
0 1 2
1 0 1
2 1 0

). Thus, the eigenvalues of 𝜀(𝑃3) (with 4 decimal 

places) are −2,−0.7321, and 2.7321. Note that √3 ≈ 1.7321, so −0.7321 = 1 − √3 and 2.7321 =

1 + √3. Thus, according to Definition 3, 𝑆𝑝𝑒𝑐𝜀(𝑃3) = (
1 + √3 1 − √3 −2
1 1 1

). 

(ii) For 𝑛 even, choose 𝑘 = 4 so that 𝑛 = 2𝑘 = 8. Graph 𝑃8 can be seen on Figure 3. 

 
Figure 3. Graph 𝑷𝟖 

In a similar way of Example 1 and Example 2, it can be obtained:  

𝜀(𝑃8) =

(

 
 
 
 
 

0 0 0
0 0 0
0 0 0

0 4 5
0 0 0
0 0 0

6 7
0 6
0 5

0 0 0
4 0 0
5 0 0

0 0 0
0 0 0
0 0 0

0 4
0 0
0 0

6 0 0
7 6 5

0 0 0
4 0 0

0 0
0 0)

 
 
 
 
 

. 

The eigenvalues of 𝜀(𝑃8) with 4 decimal places are −12.9472,−5.9472, 0, 0, 0, 0, 5.9472, and 

12.9472. As a result, according to Definition 3, we get: 

𝑆𝑝𝑒𝑐𝜀(𝑃8) = (
12.9472
1

5.9472
1

0 −5.9472 −12.9472
4 1 1

). 

Note that the position of the eigenvalues in 𝑆𝑝𝑒𝑐𝜀(𝑃8) obtained is not in accordance with Lemma 1 (ii). 

So, Lemma 1 (ii) does not hold.  

Claim Lemma 1 (ii) holds. If 𝑘 = 4, then  𝑗 = 6(4) − 3 = 21 and 𝑎 = 21(14(4)2 − 20(4) + 9) =
3213, so that: 

𝑆𝑝𝑒𝑐𝜀(𝑃8) = (
21 + √3213

6
1

21 − √3213

6
1

−21 + √3213

6

−21 − √3213

6
0

1 1 4

) 

 ≈ (
12.9472
1

−5.9472
1

5.9472 −12.9472 0
1 1 4

). 

The writing style of 𝑆𝑝𝑒𝑐𝜀(𝑃8) ≈ (
12.9472
1

−5.9472
1

5.9472 −12.9472 0
1 1 4

) does not match 

with Definition 3 because the position of the eigenvalues on the 𝜀-spectrum must be sorted from the 

largest to the smallest eigenvalue. For this reason, we investigated the connection of 𝑗 and √𝑎 when 𝑘 ≥
2, in order to determine a more appropriate general form of 𝑆𝑝𝑒𝑐𝜀(𝑃2𝑘). We explained the investigation 

process in short proof of Lemma 2 (ii).  

(iii) For 𝑛 odd, choose 𝑘 = 4 so that 𝑛 = 2𝑘 + 1 = 9. Graph 𝑃9 ilustrated in Figure 4. 

 
Figure 4. Graph 𝑷𝟗 

In a similar way with Example 1 and Example 2, can be obtained: 
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𝜀(𝑃9) =

(

 
 
 
 
 
 

0 0 0
0 0 0
0 0 0

0 4 5
0 0 0
0 0 0

6 7 8
0 0 7
0 0 6

0 0 0
4 0 0
5 0 0

0 0 0
0 0 0
0 0 0

0 0 5
0 0 4
0 0 0

6 0 0
7 0 0
8 7 6

0 0 0
0 0 0
5 4 0

0 0 0
0 0 0
0 0 0)

 
 
 
 
 
 

 

Thus, the eigenvalues of 𝜀(𝑃9) with 4 decimal places are −15.2250,−8.5698, 0, 0, 0, 0, 0, 7.2250, and 

16.5698. Thus, according to Definition 3, the 𝜀-spectrum of 𝑃9 is: 

𝑆𝑝𝑒𝑐𝜀(𝑃9) = (
16.5698
1

7.2250
1

0 −8.5698 −15.2250
5 1 1

). 

Note that the position of the eigenvalues in 𝑆𝑝𝑒𝑐𝜀(𝑃9) obtained is not in accordance with Lemma 1 (iii), 

so Lemma 1 (iii) does not hold. 

Claim Lemma 1 (iii) holds. If 𝑘 = 4, then  𝑏 = 6(4)(14(42) + 3(4) + 1) = 5688 and 𝑐 =
6(4)(14(42) − 9(4) + 1) = 4536, so the 𝜀-spectrum of 𝑃9 is: 

𝑆𝑝𝑒𝑐𝜀(𝑃9) = (
24 + √5688

6
1

24 − √5688

6
1

−24 + √4536

6

−24 − √4536

6
0

1 1 5

) 

≈ (
16.5698
1

−8.5698
1

7.2250 −15.2250 0
1 1 5

). 

Analogous with (ii) in this example, the writing style of 𝑆𝑝𝑒𝑐𝜀(𝑃9) above does not match with 

Definition 3. For this reason, we investigate the connections of 
6𝑘+√𝑏

6
,
6𝑘−√𝑏

6
,
−6𝑘+√𝑐

6
,
−6𝑘−√𝑐

6
, and 0, 

when 𝑘 ≥ 2. The goal is to determine the general form of 𝑆𝑝𝑒𝑐𝜀(𝑃2𝑘+1). We explained the investigation 

process in short proof of Lemma 2 (iii).  

The error in Lemma 1 is caused by the Lemma proof in [11] not considering the order of the 

eigenvalues before including them in the 𝜀-spectrum form. A following Lemma which is an improvement on 

Lemma 1 can be formed as follows: 

Lemma 2. Let 𝑃𝑛 be a path with order 𝑛. 

(i) If 𝑛 = 1,2,3 then 

 𝑆𝑝𝑒𝑐𝜀(𝑃1) = (
0
1
) , 𝑆𝑝𝑒𝑐𝜀(𝑃2) = (

1 −1
1 1

),  

𝑆𝑝𝑒𝑐𝜀(𝑃3) = (
1 + √3 1 − √3 −2
1 1 1

). 

 

  (8) 

(ii) If 𝑛 = 2𝑘 and 𝑘 ≥ 2, then 

 

𝑆𝑝𝑒𝑐𝜀(𝑃2𝑘) = (
𝑗 + √𝑎

6
1

−𝑗 + √𝑎

6
1

0
𝑗 − √𝑎

6

−𝑗 − √𝑎

6
2𝑘 − 4 1 1

), 
 

(9) 

where 𝑗 = 6𝑘 − 3 and 𝑎 = 𝑗(14𝑘2 − 20𝑘 + 9). 

(iii) If 𝑛 = 2𝑘 + 1 and 𝑘 ≥ 2, then  

(iv)  

𝑆𝑝𝑒𝑐𝜀(𝑃2𝑘+1) = (
6𝑘 + √𝑏

6
1

−6𝑘 + √𝑐

6
1

0
6𝑘 − √𝑏

6

−6𝑘 − √𝑐

6
2𝑘 − 3 1 1

), 

 

(10) 

where 𝑏 = 6𝑘(14𝑘2 + 3𝑘 + 1) and 𝑐 = 6𝑘(14𝑘2 − 9𝑘 + 1). 

Proof: 

(i) Proof of Lemma 2 (i) already avaliable at the beginning of the proof of corresponding Lemma (namely 

Lemma 2.1) in [11]. 
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(ii) By the proof of Lemma 2.1 (ii) in [11], it obtained the eigenvalues of 𝜀(𝑃2𝑘) are 
𝑗+√𝑎

6
, 
𝑗−√𝑎

6
, 
−𝑗+√𝑎

6
, and 

−𝑗−√𝑎

6
, where 𝑗 = 6𝑘 − 3 and 𝑎 = 𝑗(14𝑘2 − 20𝑘 + 9). The matrix 𝜀(𝑃2𝑘) also has 2𝑘 − 4 zero 

eigenvalues, where 𝑘 ≥ 2. According to Definition 3, the position of the eigenvalues on the 𝜀-spectrum 

must be sorted from the largest to the smallest eigenvalue. For that reason, we investigated the 

connection of 𝑗 and √𝑎 when 𝑘 ≥ 2, in order to sort the eigenvalues on the 𝜀-spectrum. The proof in 

[11] ignore this step and make Lemma 1 (ii) does not hold. 

Given 𝑗 = 6𝑘 − 3, 𝑎 = 𝑗(14𝑘2 − 20𝑘 + 9), and 𝑘 ≥ 2. Claim 𝑗 > √𝑎, so it can be obtained that:  

       𝑗 > √𝑎 

 ⟺ 𝑗2 > 𝑎  

 ⟺ 𝑗2 − 𝑎 > 0 

 ⟺ (6𝑘 − 3)2 − (6𝑘 − 3)(14𝑘2 − 20𝑘 + 9) > 0 

Using algebraic operations, the results of the inequality are 𝑘 <
1

2
 or 

6

7
< 𝑘 < 1 which contradiction with 

the requirement 𝑘 ≥ 2. Consequently, 𝑗 < √𝑎, and because 𝑘 ≥ 2,  𝑗 and √𝑎 are always positive.  

As 𝑗 < √𝑎 with 𝑗 and √𝑎 are always positive, then:  

(𝑗 + √𝑎) > (−𝑗 + √𝑎) > 0 > (𝑗 − √𝑎) > (−𝑗 − √𝑎).  

It makes 
(𝑗+√𝑎)

6
>
(−𝑗+√𝑎)

6
> 0 >

(𝑗−√𝑎)

6
>
(−𝑗−√𝑎)

6
. Thus, the general form for 𝑆𝑝𝑒𝑐𝜀(𝑃2𝑘) when 𝑘 ≥

2 as follows: 

𝑆𝑝𝑒𝑐𝜀(𝑃2𝑘) = (
𝑗 + √𝑎

6
1

−𝑗 + √𝑎

6
1

0
𝑗 − √𝑎

6

−𝑗 − √𝑎

6
2𝑘 − 4 1 1

). 

(iii) By the proof of Lemma 2.1 (iii) in [11], it obtained the eigenvalues of 𝜀(𝑃2𝑘+1) are 
6𝑘+√𝑏

6
, 
6𝑘−√𝑏

6
, 

−6𝑘+√𝑐

6
, and 

−6𝑘−√𝑐

6
, where 𝑏 = 6𝑘(14𝑘2 + 3𝑘 + 1), 𝑐 = 6𝑘(14𝑘2 − 9𝑘 + 1), and 𝑘 ≥ 2. The matrix 

𝜀(𝑃2𝑘+1) also has 2𝑘 − 3 zero eigenvalues, where 𝑘 ≥ 2. According to Definition 3, the position of the 

eigenvalues on the 𝜀-spectrum must be sorted from the largest to the smallest eigenvalue. For that reason, 

we investigated the connection of 
6𝑘+√𝑏

6
,
6𝑘−√𝑏

6
,
−6𝑘+√𝑐

6
,
−6𝑘−√𝑐

6
, and 0, when 𝑘 ≥ 2, in order to sort the 

eigenvalues on the 𝜀-spectrum. The proof in [11] ignore this step and make Lemma 1 (iii) does not hold. 

Recall that 𝑘 ≥ 2, 𝑏 = 6𝑘(14𝑘2 + 3𝑘 + 1), and 𝑐 = 6𝑘(14𝑘2 − 9𝑘 + 1). Since 6𝑘 and √𝑏 are always 

positive, it holds  
6𝑘+√𝑏

6
>
6𝑘−√𝑏

6
. As 𝜀-eigenvalue is real, √𝑐 is real positive. İt holds √𝑐 > −6𝑘. Since 

−6𝑘 is always negative and √𝑐 is always positive, thus 
−6𝑘+√𝑐

6
>
−6𝑘−√𝑐

6
. Because 𝑐 has negative part, 

then 𝑏 > 𝑐. Consequently, √𝑏 > √𝑐. 

Next, we check the connections of  6𝑘 with √𝑏 and 6𝑘 with √𝑐. At first, Claim 6𝑘 > √𝑏. Note that: 

       6𝑘 > √𝑏 

 ⟺ (6𝑘)2 > 𝑏  

 ⟺ (6𝑘)2 − 𝑏 > 0 

 ⟺ (6𝑘)2 − 6𝑘(14𝑘2 + 3𝑘 + 1) > 0 

 ⟺ 6𝑘(6𝑘 − 14𝑘2 − 3𝑘 − 1) > 0 

 ⟺ 6𝑘(−14𝑘2 + 3𝑘 − 1) > 0 

Using algebraic operations is obtained that 𝑘 < 0, which contradiction with 𝑘 ≥ 2. Consequently, 6𝑘 <

√𝑏. In other words, 6𝑘 − √𝑏 < 0 

Given 𝑐 = 6𝑘(14𝑘2 − 9𝑘 + 1). Claim 6𝑘 > √𝑐, then it follows: 

       6𝑘 > √𝑐 

 ⟺ (6𝑘)2 > 𝑐  
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 ⟺ (6𝑘)2 − 𝑐 > 0 

 ⟺ (6𝑘)2 − 6𝑘(14𝑘2 − 9𝑘 + 1) > 0 

 ⟺ 6𝑘(6𝑘 − 14𝑘2 + 9𝑘 − 1) > 0 

 ⟺ 6𝑘(−14𝑘2 + 15𝑘 − 1) > 0 

Using algebraic operations, the result of the inequality are 𝑘 < 0 or 
1

14
< 𝑘 < 1, which contradiction 

with 𝑘 ≥ 2. So, it can conclude that 6𝑘 < √𝑐, or in other words −6𝑘 + √𝑐 > 0. 

Since 6𝑘 − √𝑏 < 0 and −6𝑘 + √𝑐 > 0, then 
−6𝑘+√𝑐

6
>
6𝑘−√𝑏

6
. It makes 

6𝑘−√𝑏

6
 and 

−6𝑘−√𝑐

6
 are always 

negative, also makes both 
6𝑘+√𝑏

6
 and 

−6𝑘+√𝑐

6
 are positive.   

In previous steps, we got 
6𝑘+√𝑏

6
>
6𝑘−√𝑏

6
 and 

−6𝑘+√𝑐

6
>
−6𝑘−√𝑐

6
.  

As √𝑏 > √𝑐, it holds  
6𝑘+√𝑏

6
>
−6𝑘+√𝑐

6
> 0 >

6𝑘−√𝑏

6
>
−6𝑘−√𝑐

6
. 

Thus, the general form for 𝑆𝑝𝑒𝑐𝜀(𝑃2𝑘+1) where 𝑘 ≥ 2 as follows: 

𝑆𝑝𝑒𝑐𝜀(𝑃2𝑘+1) = (
6𝑘 + √𝑏

6
1

−6𝑘 + √𝑐

6
1

0
6𝑘 − √𝑏

6

−6𝑘 − √𝑐

6
2𝑘 − 3 1 1

). 

Lemma 2 (ii) and (iii) are the corrections of Lemma 1 (ii) and (iii). Based on Example 5 (ii), we get the 

eigenvalues of 𝜀(𝑃8) and 𝑆𝑝𝑒𝑐𝜀(𝑃8). By using Lemma 2 (ii) for 𝑘 = 4, we obtain 𝑗 = 6(4) − 3 = 21 and 

𝑎 = 21(14(4)2 − 20(4) + 9) = 3213, so that: 

𝑆𝑝𝑒𝑐𝜀(𝑃8) = (
21 + √3213

6
1

−21 + √3213

6
1

0
21 − √3213

6

−21 − √3213

6
4 1 1

) 

 ≈ (
12.9472
1

5.9472
1

0 −5.9472 −12.9472
4 1 1

). 

In other hand, based on Example 5 (iii), we also get 𝑆𝑝𝑒𝑐𝜀(𝑃9). By using Lemma 2 (iii) when 𝑘 = 4, we 

obtain 𝑏 = 6(4)(14(42) + 3(4) + 1) = 5688 and 𝑐 = 6(4)(14(42) − 9(4) + 1) = 4536, so the                  

𝜀-spectrum of 𝑃9 is: 

𝑆𝑝𝑒𝑐𝜀(𝑃8) = (
24 + √5688

6
1

−24 + √4536

6
1

0
24 − √5688

6

−24 − √4536

6
5 1 1

) 

 ≈ (
16.5698
1

7.2250
1

0 −8.5698 −15.2250
5 1 1

). 

The next discussion is related to the 𝜀-energy of path graphs. 

Theorem 1. [11] Let 𝑃𝑛 be a path with order 𝑛. 

(i) If 𝑛 = 1,2,3 then 

 𝐸𝜀(𝑃1) = 0, 𝐸𝜀(𝑃2) = 2, 𝐸𝜀(𝑃3) = 2√3 + 2.  (11) 

(ii) If 𝑛 = 2𝑘 and 𝑘 ≥ 2, then 

 
𝐸𝜀(𝑃2𝑘) =

2

3
√𝑎, 

(12) 

where 𝑎 = (6𝑘 − 3)(14𝑘2 − 20𝑘 + 9). 

(iii) If 𝑛 = 2𝑘 + 1 and 𝑘 ≥ 2, then  

(iv)  
𝐸𝜀(𝑃2𝑘+1) =

1

3
(√𝑏 + √𝑐), 

 

(13) 

where 𝑏 = 6𝑘(14𝑘2 + 3𝑘 + 1) and 𝑐 = 6𝑘(14𝑘2 − 9𝑘 + 1). 
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Example 6. This example related to Theorem 1 about 𝜀-energy of paths. In previous example (Example 5), 

the 𝜀-eigenvalues of 𝑃1, 𝑃2, 𝑃3, 𝑃8, and 𝑃9 was calculated. Those 𝜀-eigenvalues is used to calculate 𝜀-energy 

of of 𝑃1, 𝑃2, 𝑃3, 𝑃8, and 𝑃9 in this example, according to the definition of 𝜀-energy in Definition 4. 

(i) For 𝑛 = 1, 𝑛 = 2, and 𝑛 = 3, we get graphs 𝑃1, 𝑃2, and 𝑃3 respectively, as can be seen in Figure 2. 

Suppose 𝐴, 𝐵, 𝐶 respectively are sets of the eigenvalues of 𝜀(𝑃1), 𝜀(𝑃2), and 𝜀(𝑃3). According to the 

results in Example 5 (i), 𝐴 = {0}, 𝐵 = {1,−1}, dan 𝐶 = {1 + √3, 1 − √3,−2}. Using Definition 4 and 

the concept of absolute value, it can be obtained: 

𝐸𝜀(𝑃1) = |0| = 0, 
𝐸𝜀(𝑃2) = |1| + |−1| = 2, 

𝐸𝜀(𝑃3) = |1 + √3| + |1 − √3| + |−2| = 1 + √3 − 1 + √3 + 2 = 2√3 + 2. 

For 𝑛 even, choose 𝑘 = 4 so that 𝑛 = 2𝑘 = 8. Graph 𝑃8 illustrated in Figure 3. According to the results 

in Example 5 (ii), 𝜀-eigenvalues of 𝑃8 are −12.9472,−5.9472, 0, 0, 0, 0, 5.9472, and 12.9472. By 

using Definition 4, the 𝜀-energy of 𝑃8: 

𝐸𝜀(𝑃8) = |−12.9472| + |−5.9472| + 4|0| + |5.9472| + |12.9472| = 37.7888. 

On the other hand, since 𝑘 = 4 and 𝑎 = (6𝑘 − 3)(14𝑘2 − 20𝑘 + 9), then: 

𝐸𝜀(𝑃8) =
2

3
√𝑎 =

2

3
√3213 ≈

2

3
× 56.6833 = 37.7888. 

(ii) For 𝑛 odd, choose 𝑘 = 4, so as 𝑛 = 2𝑘 + 1 = 9. Graph 𝑃9 can be seen in Figure 4. Using the results of 

𝜀-eigenvalues of 𝑃9 in Example 5 (iii) and the definition of 𝜀-energy in Definition 4, it can be obtained 

that: 

𝐸𝜀(𝑃9) = |−15.2250| + |−8.5698| + 5|0| + | 7.2250| + |16.5698| = 47.5896. 

On the other hand, since 𝑘 = 4, 𝑏 = 6𝑘(14𝑘2 + 3𝑘 + 1), and 𝑐 = 6𝑘(14𝑘2 − 9𝑘 + 1) then: 

𝐸𝜀(𝑃9) =
1

3
(√𝑏 + √𝑐) =

1

3
(√5688 + √4536) ≈

1

3
× 142.7687 ≈ 47.5896. 

3.3 The 𝜺-Spectrum and 𝜺-Energy of Cycle Graphs 

This subsection explains theorems and related examples of 𝜀-eigenvalues, 𝜀-spectrum, and 𝜀-energy 

of cycle graphs. Theorem 2 explains about the properties of 𝜀-spectrum of even-order cycles and 𝜀-
eigenvalues of odd-order cycles. Theorem 3 disscus about the properties of 𝜀-energy of cycles with various 

order. Then, Theorem 4 corrected an error in Theorem 3 (ii). 

Theorem 2. [4] Let 𝐶𝑛 be a cycle graph with order 𝑛. 

(i) If 𝑛 = 2𝑘, then 

 𝑆𝑝𝑒𝑐𝜀(𝐶2𝑘) = (
𝑘 −𝑘
𝑘 𝑘

). (14) 

(ii) If 𝑛 = 2𝑘 + 1, then the 𝜀-eigenvalues of 𝐶2𝑘+1 are 

 
𝜂𝑖 = 2𝑘 𝑐𝑜𝑠 (

2𝜋𝑖

2𝑘 + 1
) ; 𝑖 = 1,2,3, … ,  2𝑘 + 1. 

(15) 

Example 7. Choose 𝑘 = 4. Thus, 𝑛 = 8 for 𝑛 = 2𝑘 and 𝑛 = 9 for 𝑛 = 2𝑘 + 1. Graph 𝐶8  and 𝐶9 illustrated 

in Figure 5. 

 
 𝐶8    𝐶9 
Figure 5. Graphs 𝑪𝟖 and 𝑪𝟗 
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(i) For graph  𝐶8, using analogous steps on Example 1 and Example 2, the eccentricity matrix obtained as 

follows:  

𝜀(𝐶8) =

(

 
 
 
 
 

0 0 0
0 0 0
0 0 0

0 4 0
0 0 4
0 0 0

0 0
0 0
4 0

0 0 0
4 0 0
0 4 0

0 0 0
0 0 0
0 0 0

0 4
0 0
0 0

0 0 4
0 0 0

0 0 0
4 0 0

0 0
0 0)

 
 
 
 
 

. 

Then, the eigenvalues of 𝜀(𝑃8) are −4,−4,−4,−4, 4, 4,4 and 4. Thus, according to Definition 3 and 

since 𝑘 = 4, we can get 𝑆𝑝𝑒𝑐𝜀(𝑃8) = (
4 −4
4 4

) = (
𝑘 −𝑘
𝑘 𝑘

).  

(ii) For graph  𝐶9, using analogous steps on Example 1 and Example 2, it can be obtained that:  

𝜀(𝐶9) =

(

 
 
 
 
 
 

0 0 0
0 0 0
0 0 0

0 4 4
0 0 4
0 0 0

0 0 0
4 0 0
4 4 0

0 0 0
4 0 0
4 4 0

0 0 0
0 0 0
0 0 0

0 4 4
0 0 4
0 0 0

0 4 4
0 0 4
0 0 0

0 0 0
4 0 0
4 4 0

0 0 0
0 0 0
0 0 0)

 
 
 
 
 
 

 

As a results, the eigenvalues of 𝜀(𝑃9) with 4 decimal places are 

−7.5175,−7.5175,−4,−4, 1.3892, 1.3892, 6.1284, 6.1284, and 8. On the other hand, as 𝑘 = 4, noted 

that we can get: 

• 𝑖 = 1, 𝜂1 = 8𝑐𝑜𝑠 (
2𝜋

9
) ≈ 6.1284 

• 𝑖 = 2, 𝜂2 = 8𝑐𝑜𝑠 (
4𝜋

9
) ≈ 1.3892 

• 𝑖 = 3, 𝜂3 = 8𝑐𝑜𝑠 (
6𝜋

9
) = −4 

• 𝑖 = 4, 𝜂4 = 8𝑐𝑜𝑠 (
8𝜋

9
) ≈ −7.5175 

• 𝑖 = 5, 𝜂5 = 8𝑐𝑜𝑠 (
10𝜋

9
) ≈ −7.5175 

• 𝑖 = 6, 𝜂6 = 8𝑐𝑜𝑠 (
12𝜋

9
) = −4 

• 𝑖 = 7, 𝜂7 = 8𝑐𝑜𝑠 (
14𝜋

9
) ≈ 1.3892 

• 𝑖 = 8, 𝜂8 = 8𝑐𝑜𝑠 (
16𝜋

9
) ≈ 6.1284 

• 𝑖 = 9, 𝜂9 = 8𝑐𝑜𝑠(2𝜋) = 8 

As a result, eigenvalues of 𝜀(𝑃9) holds the form 𝜂𝑖 = 2𝑘 𝑐𝑜𝑠 (
2𝜋𝑖

2𝑘+1
) for 𝑖 = 1,2,3,…9.  

The following theorem is related to the 𝜀-energy of cycle graphs. 

Theorem 3. [11] Let 𝐶𝑛 be a cycle graph with order 𝑛.  

(i) If 𝑛 = 2𝑘, then 

 𝐸𝜀(𝐶2𝑘) = 2𝑘
2. (16) 

(ii) If 𝑛 = 2𝑘 + 1, then  

 
𝐸𝜀(𝐶2𝑘+1) =

𝑘

𝑠𝑖𝑛 (
𝜋

2𝑘 + 1
)
(𝑠𝑖𝑛 (

4𝑘 + 3

2𝑘 + 1
𝜋) − 𝑠𝑖𝑛 (

1

2𝑘 + 1
𝜋)). 

     

(17) 

Example 8. This example related to Theorem 3 about 𝜀-energy of cycles. In previous example (Example 

7), the 𝜀-eigenvalues of 𝐶8 and 𝐶9 was calculated. Those 𝜀-eigenvalues is used in this examples to calculate 

𝜀-energy of of 𝐶8 and 𝐶9, according to the definition of 𝜀-energy in Definition 4. 
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(i) For 𝑛 even, in Example 7 (i) has been obtained the 𝜀-eigenvalues of  𝐶8 are −4,−4,−4,−4, 4, 4, 4, dan 

4. According to the definition of 𝜀-energy in Definition 4 and since 𝑘 = 4, we get: 

𝐸𝜀(𝐶8) = 4|−4| + 4|4| = 4
2 + 42 = 2(42) = 2𝑘2. 

(ii) For 𝑛 odd, in Example 7 (ii) has been obtained the 𝜀-eigenvalues of  𝐶9 are 

−7.5175,−7.5175,−4,−4, 1.3892, 1.3892, 6.1284, 6.1284, and 8. According to the definition of 𝜀-
energy in Definition 4, we can get: 

𝐸𝜀(𝐶9) = 2|−7.5175| + 2|−4| + 2|1.3892| + 2|6.1284| = 32.4702. 

On the other hand, since 𝑘 = 4, the value of: 

 
𝑘

sin(
𝜋

2𝑘+1
)
(sin (

4𝑘+3

2𝑘+1
𝜋) − sin (

1

2𝑘+1
𝜋)) =

4

sin(
𝜋

9
)
(sin (

19

9
𝜋) − sin (

1

9
𝜋)) = 0 ≠ 32.4702. 

Consequently, Theorem 3 (ii) does not hold. 

Theorem 3 (ii) does not hold in counter example in Example 8 (ii) because there is a small error on 

the proof of corresponding Theorem (namely Theorem 2.2) in [11]. This error is caused by the proof in [11] 

not considering whether the value of cos (
2𝜋𝑖

2𝑘+1
) is positive or negative. In fact, 𝜀-energy is the absolute sum 

of 𝜀-eigenvalues. So, on the beginning of the proof, it should be considered the use of the absolute value 

concept according to the definition of 𝜀-energy as in Definition 4. The general correction of Theorem 3 can 

be written as Theorem 4 below: 

Theorem 4. Let 𝐶𝑛 be a cycle graph with order 𝑛. 

(i) If 𝑛 = 2𝑘, then 

 𝐸𝜀(𝐶2𝑘) = 2𝑘
2. (18) 

(ii) If 𝑛 = 2𝑘 + 1, then  

 

𝐸𝜀(𝐶2𝑘+1) = ∑ |2𝑘 cos (
2𝜋𝑖

2𝑘 + 1
)|

2𝑘+1

𝑖=1

. 
 

(19) 

Proof. 

(i) Proof of Theorem 4 (i)  has already available at the beginning of the proof of corresponding Theorem 

(namely Theorem 2.2) in [11]. 

(ii) For any graph 𝐶2𝑘+1, since 𝜀-energy is the absolute sum of 𝜀-eigenvalues, the general form 𝐸𝜀(𝐶2𝑘+1) 
can be found using Theorem 2 (ii) and the concept of absolute value. Based on Theorem 2 (ii), the 𝜀-
eigenvalues of graph 𝐶2𝑘+1 satisfy: 

𝜂𝑖 = 2𝑘 cos (
2𝜋𝑖

2𝑘 + 1
) ; 𝑖 = 1,2,3,… ,  2𝑘 + 1. 

Therefore, to find the general formula of 𝜀-energy of cycle with odd-order, its need to look for the 

patterns of ∑ |2𝑘 cos (
2𝜋

𝑛
𝑖)|𝑛

𝑖=1  for 𝑛 odd and 𝑛 ≥ 1, if its possible. In other words, according to 

definition of 𝜀-energy as in Definition 4 and the properties of 𝜀-eigenvalues of graph 𝐶2𝑘+1 in Theorem 

2 (ii), it can simply write as: 

𝐸𝜀(𝐶2𝑘+1) = ∑ |2𝑘 cos (
2𝜋𝑖

2𝑘 + 1
)|

2𝑘+1

𝑖=1

, 

without finding its pattern. So, Theorem 4 (ii) proved. 

4. CONCLUSIONS 

Based on the studies that have been conducted in this article, the following conclusions can be drawn: 

i) Both of eccentricity spectrum and eccentricity energy are representations of the eigenvalues of 

eccentricity matrix.  



BAREKENG: J. Math. & App., vol. 17(4), pp. 2081- 2094, December, 2023.   2093 

 

ii) Eccentricity spectrum and eccentricity energy of path that have 1, 2, and 3 vertices have a special form. 

Meanwhile, eccentricity spectrum and eccentricity energy of path with even and odd order have different 

formulas. The correction in lemma related to eccentricity spectrum of path graphs with order more than 

3 is obtained on Lemma 2. 

iii) Eccentricity spectrum and eccentricity energy of odd order cycles have different properties than even 

order cycles. The correction in theorem related to eccentricity energy of cycle graphs with odd-order are 

obtained on Theorem 4. 

Future research can study the eccentricity spectrum and eccentricity energy in graph classes other than 

paths and cycles. Besides that, the future research can propose the concept of eccentricity matrix and its 

properties on other types of graphs, for example fuzzy graphs. 
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