ALGEBRAIC CRYPTANALYSIS ON NTRU-HPS AND NTRU-HRSS

Fadila Paradise ${ }^{1 *}$, Kiki A. Sugeng ${ }^{2}$
1,2 Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Indonesia Kampus UI Depok, Depok, 16424, Indonesia
Corresponding author's e-mail: * fadila@sci.ui.ac.id

Article History:

Received: 8 ${ }^{\text {th }}$ July 2023
Revised: $5^{\text {th }}$ October 2023
Accepted: $4^{\text {th }}$ November 2023

Keywords:
Algebraic Cryptanalysis;
NTRU-HPS;
NTRU-HRSS.

ABSTRACT

NTRU is a lattice-based public-key cryptosystem designed by Hoffstein, Pipher, and Silverman in 1996. NTRU published on Algorithmic Number Theory Symposium (ANTS) in 1998. The ANTS'98 NTRU became the IEEE standard for public key cryptographic techniques based on hard problems over lattices in 2008. NTRU was later redeveloped by NTRU Inc. in 2018 and became one of the finalists in round 3 of the PQC (Post-Quantum Cryptography) standardization process organized by NIST in 2020. There are two types of NTRU algorithms proposed by NTRU Inc., which are classified based on parameter determination, NTRU-HPS (Hoffstein, Pipher, Silverman) and NTRU-HRSS (Hulsing, Rijnveld, Schanck, Schwabe). Algebraic cryptanalysis on ANTS'98 NTRU had previously been carried out in 2009 and 2012. In this paper, algebraic cryptanalysis is performed on NTRU-HPS with $q=2048, n=509$ (ntruhps2048509) and NTRU-HRSS with $n=701$ (ntruhrss701). This research aims to evaluate the resistance of NTRU-HPS and NTRU-HRSS algorithms against algebraic cryptanalysis by reconstructing the private key value. As a result, NTRU-HPS and NTRU-HRSS resistance to algebraic cryptanalysis.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-ShareAlike 4.0 International License.

How to cite this article:

F. Paradise and K. A. Sugeng, "ALGEBRAIC ATTACK ON NTRU-HPS AND NTRU-HRSS," BAREKENG: J. Math. \& App., vol. 17, iss. 4, pp. 2187-2196, December, 2023.

1. INTRODUCTION

The concept of quantum computing has changed many scientific fields, including cryptography. Quantum computers can run several code breaking methods faster than classical computers [1]. For example, the Shor algorithm created by Peter Shor in 1994 can solve the large integer factorization problem in RSA if run on a quantum computer [2].

Classical public key cryptosystems such as RSA are widely used in key exchange mechanisms and digital signatures [1]. Advances in computing and algorithm development increase the need for cryptosystem development to provide a replacement for classical cryptosystems that are vulnerable to quantum computerbased cryptanalysis. These replacement cryptosystems are referred to as post-quantum cryptography [3].

In the context of the Post Quantum Cryptography (PQC) standardization process, the National Institute of Standards and Technology (NIST) conducted a selection process for PQC-based public key algorithms starting in 2017 with a total of 69 candidates. In July 2020, NIST published the candidates that became finalists in round 3, one of which was NTRU [4]. NTRU is a lattice-based public key cryptosystem that provides encryption algorithm solutions [3]. NTRU was published at the Algorithmic Number Theory Symposium (ANTS) in 1998 [5] and became the standard public key cryptography technique based on hard problems on lattice in IEEE in 2008 [6]. NTRU ANTS'98 was then redeveloped by NTRU Inc. in 2018 and underwent several changes during the NIST standardization process. There are two types of NTRU algorithms proposed by NTRU Inc. in round 3 of the PQC standardization process, namely NTRU-HPS (Hoffstein, Pipher, Silverman) and NTRU-HRSS (Hulsing, Rijnveld, Schanck, Schwabe) [7].

Currently, there is a lot of research on the implementation of NTRU both on networks, hardware, and the Internet of Things (IoT) [8]. Several security tests were also carried out on NTRU ANTS'98, such as algebraic cryptanalysis using Witt vectors and Grobner bases by Bourgeois and Faugere in 2009 [9], algebraic cryptanalysis using the method of solving equations in real numbers by Ding and Schmidt in 2012 [10], and lattice cryptanalysis experiments conducted by Bi and Han in 2021 [11], and side channel attack by Askeland and Ronjom [12]. In this research, algebraic cryptanalysis is carried out on the NTRU algorithm which has been updated and submitted by NTRU Inc. in round 3 of the NIST PQC standardization process. The purpose of this research is to determine the algebraic cryptanalysis process on the NTRU-HPS and NTRU-HRSS algorithms and to determine the resistance of the NTRU-HPS and NTRU-HRSS algorithms to algebraic cryptanalysis.

2. RESEARCH METHODS

The research methods used in the research correspond to the methods used in algebraic cryptanalysis. The main principle of algebraic cryptanalysis is simple, which is to turn the problem of attacking a cryptographic system (such as finding the secret key) into solving a system of polynomial equations [13]. This basic idea is then mapped into two stages in performing algebraic cryptanalysis as follows.

2.1 Forming a System of Equation

In a public-key cryptosystem, the private key is a key that is only owned by the key owner and is the parameter used to provide confidentiality and non-repudiation services in the public-key cryptosystem. The power of the public key cryptosystem lies in the private key. A public-key cryptosystem is said to be vulnerable if the private key is compromised.

NTRU-HPS dan NTRU-HRSS are used for encryption and key exchange management. The private key in the NTRU is used in the decryption function. Therefore, in this research, the decryption function is utilized to form a system of equations. It is assumed that the cryptanalyst has access to the decryption machine so that it can get the corresponding plaintext and ciphertext pairs without knowing the private key.

After obtaining the corresponding plaintext and ciphertext pairs, the cryptanalyst represents the decryption function in the form of an algebraic function. Cryptanalyst then enters the ciphertext value and the unknown private key variable into the function, thus forming equations of degree $(n-1)^{2}$ that represents the plaintext value.

2.2 Finding The Solution of A System of Equations

There are several commonly used methods to find solutions to polynomial equations, including the Grobner Basis, F4, F5, and XL algorithm [14]. In this research, the method of solving the system of equations used is linearization and Gaussian elimination. The polynomial multiplication rules in NTRU-HPS and NTRU-HRSS make the equations formed in Section 2.1 have a degree of n, but the private keys in NTRUHPS and NTRU-HRSS have degree of n. A pair of plaintext and ciphertext can generate a system containing n equations. Therefore, n pairs of plaintext and ciphertext are generated to produce n^{2} equations so that Gaussian elimination can be applied. There are no special rules on scalar multiplication and polynomial subtraction in NTRU-HPS and NTRU-HRSS, but when applying Gaussian elimination the operations must be performed in modulus q.

3. RESULTS AND DISCUSSION

NTRU-HPS (Hoffstein, Pipher, Silverman) and NTRU-HRSS (Hulsing, Rijnveld, Schanck, Schwabe) are two types of NTRU algorithms proposed in the NIST PQC standardization process. Algebraic cryptanalysis was performed on NTRU-HPS with $n=509$ and $q=2048$ (ntruhps2048509) also on NTRU-HRSS with $n=701$ and $q=4096$ (ntruhrss701). This research determines n plaintexts encrypted using the same public key to produce n corresponding ciphertexts. These n pairs of plaintexts and ciphertexts are used to generate n^{2} polynomial equations according to the steps described in Section 3.1. The amount of n^{2} polynomial equations is determined because the combination of n monomials of f and n monomials of f_{p} will produce n^{2} monomials for every equation formed in Section 3.1.

3.1 System of Polynomial Equations

This research utilizes the decryption function in NTRU to generate a polynomial equation that represents the ciphertext bits. The decryption function on the NTRU consists of the following two operations

$$
\begin{gather*}
v=c \cdot f\left(\bmod q, \Phi_{1} \Phi_{n}\right) \tag{1}\\
m=v \cdot f_{p}\left(\bmod p, \Phi_{n}\right) \tag{2}
\end{gather*}
$$

Below is a brief explanation of the symbols in the decryption function.

- $\Phi_{1}=x-1$.
- $\Phi_{n}=\left(x^{n}-1\right) /(x-1)=x^{n-1}+x^{n-2} \ldots+1$.
- $\Phi_{1} \Phi_{n}=x^{n}-1$.
- m is the plaintext, represented as a polynomial in $\left(\bmod p, \Phi_{n}\right)$.
- $\quad c$ is the ciphertext, represented as a polynomial in $\left(\bmod q, \Phi_{1} \Phi_{n}\right)$.
- $\quad f$ is the private key, represented as a polynomial in $\left(\bmod p, \Phi_{n}\right)$.
- $\quad f_{p}$ is the private key, $f_{p} \equiv f^{-1}\left(\bmod p, \Phi_{n}\right)$.
- $\quad v$ is the polynomial product of c and f, represented as a polynomial in $\left(\bmod q, \Phi_{1} \Phi_{n}\right)$.

The polynomials f and f_{p} are in $\left(\bmod \Phi_{n}\right)$ where $\Phi_{n} \in \Phi_{1} \Phi_{n}$, so Equation (1) and Equation (2) can be merged into one algebraic equation as follow

$$
\begin{equation*}
m=c \cdot f \cdot f_{p}\left(\bmod q, \Phi_{1} \Phi_{n}\right)\left(\bmod p, \Phi_{n}\right) \tag{3}
\end{equation*}
$$

The polynomial product in NTRU is a cyclic convolution product defined as

$$
H_{k}=\sum_{i=0}^{k} F_{i} G_{k-i}+\sum_{i=k+1}^{n-1} F_{i} G_{n+k-i}=\sum_{i+j \equiv k(\bmod n)} F_{i} G_{j}
$$

where F, G, H are any polynomials [4].

Example 1. A sample in ntruhps2048509 $(q=2048, n=509)$ contains plaintext $m=\left\{1_{127}, 0_{254},-1_{127}\right\}$, ciphertext $c=\{1209,230,174,1154, \ldots,-1335\}, f=\left\{f_{0}, f_{1}, \ldots, f_{507}\right\}, f_{p}=\left\{f_{p_{0}} f_{p_{1}}, \ldots, f_{p_{507}}\right\}, p=3$. Polynomial m, c, f and f_{p} are represented as follows.

Table 1. Polynomial Representation of ntruhps2048509 Sample

Polynomial Representation	x^{0}	\boldsymbol{x}^{1}	x^{2}	x^{3}	...	x^{507}	x^{508}
m	1	1	1	1	...	-1	-1
c	773	317	1865	1897	...	641	-755
f	f_{0}	f_{1}	f_{2}	f_{3}	...	f_{507}	0
f_{p}	$f_{p_{0}}$	$f_{p_{1}}$	$f_{p_{2}}$	$f_{p_{3}}$...	$f_{p_{507}}$	0

Next, polynomial c, f and f_{p} are calculated as in Equation (3) using the cyclic convolution product with the process shown in Table 2.

Table 2. Cyclic Convolution Product in NTRU

To simplify the calculation, the unknown variables of the private keys f and f_{p} in the equations are sorted from $f_{0} f_{p_{0}}, f_{1} f_{p_{0}}, \ldots, f_{n-1} f_{p_{0}}$ to $f_{0} f_{p_{n-1}}, f_{1} f_{p_{n-1}}, \ldots, f_{n-1} f_{p_{n-1}}$ as shown in Table 3.

Table 3. Polynomial \boldsymbol{m} in NTRU with Sorted Unknown \boldsymbol{f} and $\boldsymbol{f}_{\boldsymbol{p}}$

\boldsymbol{m}	$\boldsymbol{f}_{\mathbf{0}} \boldsymbol{f}_{\boldsymbol{p}_{\mathbf{0}}}$	$\boldsymbol{f}_{\mathbf{0}} \boldsymbol{f}_{\boldsymbol{p}_{1}}$	\ldots	$\boldsymbol{f}_{\mathbf{0}} \boldsymbol{f}_{\boldsymbol{p}_{n-2}}$	$\boldsymbol{f}_{\mathbf{1}} \boldsymbol{f}_{\boldsymbol{p}_{\mathbf{0}}}$	\ldots	$\boldsymbol{f}_{\boldsymbol{n}-2} \boldsymbol{f}_{\boldsymbol{p}_{\mathbf{0}}}$	$\boldsymbol{f}_{\boldsymbol{n}-2} \boldsymbol{f}_{\boldsymbol{p}_{\mathbf{1}}}$	\ldots	$\boldsymbol{f}_{\boldsymbol{n}-\boldsymbol{2}} \boldsymbol{f}_{\boldsymbol{p}_{\boldsymbol{n}-2}}$
m_{0}	c_{0}	c_{n-1}	\ldots	c_{2}	c_{n-1}	\ldots	c_{2}	c_{1}	\ldots	c_{4}
m_{1}	c_{1}	c_{0}	\ldots	c_{3}	c_{0}	\ldots	c_{3}	c_{2}	\ldots	c_{5}
m_{2}	c_{2}	c_{1}	\ldots	c_{4}	c_{1}	\ldots	c_{4}	c_{3}	\ldots	c_{6}
\vdots										
m_{n-2}	c_{n-2}	c_{n-3}	\ldots	c_{0}	c_{n-3}	\ldots	c_{0}	c_{n-1}	\ldots	c_{2}
m_{n-1}	c_{n-1}	c_{n-2}	\ldots	c_{1}	c_{n-2}	\ldots	c_{1}	c_{0}	\ldots	c_{3}

The polynomial m in Table 3 then modulo Φ_{n} with the results listed in Table 4.
Table 4. Polynomial $\boldsymbol{m}\left(\bmod \boldsymbol{q}, \Phi_{1} \Phi_{n}\right)\left(\bmod \Phi_{n}\right)$ in NTRU

\boldsymbol{m}	$\boldsymbol{f}_{\mathbf{0}} \boldsymbol{f}_{\boldsymbol{p}_{\mathbf{0}}}$	$\boldsymbol{f}_{\mathbf{1}} \boldsymbol{f}_{\boldsymbol{p}_{\mathbf{0}}}$	\ldots	$\boldsymbol{f}_{\boldsymbol{n}-\mathbf{2}} \boldsymbol{f}_{\boldsymbol{p}_{\mathbf{0}}}$	$\boldsymbol{f}_{\mathbf{0}} \boldsymbol{f}_{\boldsymbol{p}_{\mathbf{1}}}$	\ldots	$\boldsymbol{f}_{\mathbf{0}} \boldsymbol{f}_{\boldsymbol{p}_{\boldsymbol{n}-\mathbf{2}}}$	$\boldsymbol{f}_{\mathbf{1}} \boldsymbol{f}_{\boldsymbol{p}_{\boldsymbol{n}-\mathbf{2}}}$	\ldots	$\boldsymbol{f}_{\boldsymbol{n - 2}} \boldsymbol{f}_{\boldsymbol{p}_{\boldsymbol{n}-\mathbf{2}}}$
m_{0}	$c_{0}-c_{n-1}$	$c_{n-1}-c_{n-2}$	\ldots	$c_{2}-c_{1}$	$c_{n-1}-c_{n-2}$	\ldots	$c_{2}-c_{1}$	$c_{1}-c_{0}$	\ldots	$c_{4}-c_{3}$
m_{1}	$c_{1}-c_{n-1}$	$c_{0}-c_{n-2}$	\ldots	$c_{3}-c_{1}$	$c_{0}-c_{n-2}$	\ldots	$c_{3}-c_{1}$	$c_{2}-c_{0}$	\ldots	$c_{5}-c_{3}$
m_{2}	$c_{2}-c_{n-1}$	$c_{1}-c_{n-2}$	\ldots	$c_{4}-c_{1}$	$c_{1}-c_{n-2}$	\ldots	$c_{4}-c_{1}$	$c_{3}-c_{0}$	\ldots	$c_{6}-c_{3}$
\vdots										
m_{n-2}	$c_{n-2}-c_{n-1}$	$c_{n-3}-c_{n-2}$	\ldots	$c_{0}-c_{1}$	$c_{n-3}-c_{n-2}$	\ldots	$c_{0}-c_{1}$	$c_{n-1}-c_{0}$	\ldots	$c_{2}-c_{3}$

The values in Table 1 are then entered into the variables in Table 4 to produce the values in Table 5.
Table 5. Polynomial $\operatorname{m}\left(\bmod \boldsymbol{q}, \Phi_{1} \Phi_{n}\right)\left(\bmod \Phi_{n}\right)$ in ntruhps2048509

\boldsymbol{m}	$\boldsymbol{f}_{\mathbf{0}} \boldsymbol{f}_{\boldsymbol{p}_{\mathbf{0}}}$	$\boldsymbol{f}_{\mathbf{1}} \boldsymbol{f}_{\boldsymbol{p}_{\mathbf{0}}}$	\ldots	$\boldsymbol{f}_{\boldsymbol{n}-\mathbf{2}} \boldsymbol{f}_{\boldsymbol{p}_{\mathbf{0}}}$	$\boldsymbol{f}_{\mathbf{0}} \boldsymbol{f}_{\boldsymbol{p}_{\mathbf{1}}}$	\ldots	$\boldsymbol{f}_{\mathbf{0}} \boldsymbol{f}_{\boldsymbol{p}_{\boldsymbol{n}-\mathbf{2}}}$	$\boldsymbol{f}_{\boldsymbol{1}} \boldsymbol{f}_{\boldsymbol{p}_{\boldsymbol{n}-\mathbf{2}}}$	\ldots	$\boldsymbol{f}_{\boldsymbol{n}-\mathbf{2}} \boldsymbol{f}_{\boldsymbol{p}_{\boldsymbol{n}-\mathbf{2}}}$
m_{0}	1528	652	\ldots	1548	652	\ldots	1548	1592	\ldots	759
m_{1}	1072	132	\ldots	1580	132	\ldots	1580	1092	\ldots	1835
m_{2}	572	1724	\ldots	291	1724	\ldots	291	1124	\ldots	1552
\vdots										
m_{507}	1396	1061	\ldots	454	1061	\ldots	454	520	\ldots	2016

Based on the parameters in Example 1 and the values in Table 5, below is the illustration of polynomial equations that represent bits of the ntruhps 2048509 plaintext sample.

1. $1528 f_{0} f_{p_{0}}+652 f_{1} f_{p_{0}}+987 f_{2} f_{p_{0}}+1688 f_{3} f_{p_{0}}+166 f_{4} f_{p_{0}}+\cdots+759 f_{507} f_{p_{507}}=1$
2. $1072 f_{0} f_{p_{0}}+132 f_{1} f_{p_{0}}+1639 f_{2} f_{p_{0}}+627 f_{3} f_{p_{0}}+1854 f_{4} f_{p_{0}}+\cdots+1835 f_{507} f_{p_{507}}=1$
3. $572 f_{0} f_{p_{0}}+1724 f_{1} f_{p_{0}}+1119 f_{2} f_{p_{0}}+1279 f_{3} f_{p_{0}}+793 f_{4} f_{p_{0}}+\cdots+1552 f_{507} f_{p_{507}}=1$
4. $604 f_{0} f_{p_{0}}+1224 f_{1} f_{p_{0}}+663 f_{2} f_{p_{0}}+759 f_{3} f_{p_{0}}+1445 f_{4} f_{p_{0}}+\cdots+1761 f_{507} f_{p_{507}}=1$
5. $1363 f_{0} f_{p_{0}}+1256 f_{1} f_{p_{0}}+163 f_{2} f_{p_{0}}+303 f_{3} f_{p_{0}}+925 f_{4} f_{p_{0}}+\cdots+219 f_{507} f_{p_{507}}=1$
6. $391 f_{0} f_{p_{0}}+2015 f_{1} f_{p_{0}}+195 f_{2} f_{p_{0}}+1851 f_{3} f_{p_{0}}+469 f_{4} f_{p_{0}}+\cdots+585 f_{507} f_{p_{507}}=1$
7. $108 f_{0} f_{p_{0}}+1043 f_{1} f_{p_{0}}+954 f_{2} f_{p_{0}}+1883 f_{3} f_{p_{0}}+2017 f_{4} f_{p_{0}}+\cdots+847 f_{507} f_{p_{507}}=1$
8. $317 f_{0} f_{p_{0}}+760 f_{1} f_{p_{0}}+2030 f_{2} f_{p_{0}}+594 f_{3} f_{p_{0}}+1 f_{4} f_{p_{0}}+\cdots+717 f_{507} f_{p_{507}}=1$
9. $823 f_{0} f_{p_{0}}+969 f_{1} f_{p_{0}}+1747 f_{2} f_{p_{0}}+1670 f_{3} f_{p_{0}}+760 f_{4} f_{p_{0}}+\cdots+1273 f_{507} f_{p_{507}}=1$
10. $1189 f_{0} f_{p_{0}}+1475 f_{1} f_{p_{0}}+1956 f_{2} f_{p_{0}}+1387 f_{3} f_{p_{0}}+1836 f_{4} f_{p_{0}}+\cdots+1180 f_{507} f_{p_{507}}=1$
11. $1451 f_{0} f_{p_{0}}+1841 f_{1} f_{p_{0}}+414 f_{2} f_{p_{0}}+1596 f_{3} f_{p_{0}}+1553 f_{4} f_{p_{0}}+\cdots+1497 f_{507} f_{p_{507}}=1$
12. $1321 f_{0} f_{p_{0}}+55 f_{1} f_{p_{0}}+780 f_{2} f_{p_{0}}+54 f_{3} f_{p_{0}}+1762 f_{4} f_{p_{0}}+\cdots+171 f_{507} f_{p_{507}}=1$
13. $1877 f_{0} f_{p_{0}}+1973 f_{1} f_{p_{0}}+1042 f_{2} f_{p_{0}}+420 f_{3} f_{p_{0}}+220 f_{4} f_{p_{0}}+\cdots+1584 f_{507} f_{p_{507}}=1$
14. $1784 f_{0} f_{p_{0}}+481 f_{1} f_{p_{0}}+912 f_{2} f_{p_{0}}+682 f_{3} f_{p_{0}}+586 f_{4} f_{p_{0}}+\cdots+1201 f_{507} f_{p_{507}}=1$
15. $53 f_{0} f_{p_{0}}+388 f_{1} f_{p_{0}}+1468 f_{2} f_{p_{0}}+552 f_{3} f_{p_{0}}+848 f_{4} f_{p_{0}}+\cdots+2021 f_{507} f_{p_{507}}=1$
16. $775 f_{0} f_{p_{0}}+705 f_{1} f_{p_{0}}+1375 f_{2} f_{p_{0}}+1108 f_{3} f_{p_{0}}+718 f_{4} f_{p_{0}}+\cdots+301 f_{507} f_{p_{507}}=1$
17. $140 f_{0} f_{p_{0}}+1427 f_{1} f_{p_{0}}+1692 f_{2} f_{p_{0}}+1015 f_{3} f_{p_{0}}+1274 f_{4} f_{p_{0}}+\cdots+1255 f_{507} f_{p_{507}}=1$
18. $1805 f_{0} f_{p_{0}}+792 f_{1} f_{p_{0}}+366 f_{2} f_{p_{0}}+1332 f_{3} f_{p_{0}}+1181 f_{4} f_{p_{0}}+\cdots+706 f_{507} f_{p_{507}}=1$
19. $577 f_{0} f_{p_{0}}+409 f_{1} f_{p_{0}}+1779 f_{2} f_{p_{0}}+6 f_{3} f_{p_{0}}+1498 f_{4} f_{p_{0}}+\cdots+1046 f_{507} f_{p_{507}}=1$
20. $905 f_{0} f_{p_{0}}+1229 f_{1} f_{p_{0}}+1396 f_{2} f_{p_{0}}+1419 f_{3} f_{p_{0}}+172 f_{4} f_{p_{0}}+\cdots+1979 f_{507} f_{p_{507}}=1$
$507.409 f_{0} f_{p_{0}}+1421 f_{1} f_{p_{0}}+194 f_{2} f_{p_{0}}+1260 f_{3} f_{p_{0}}+2038 f_{4} f_{p_{0}}+\cdots+468 f_{507} f_{p_{507}}=-1$
$508.1396 f_{0} f_{p_{0}}+1061 f_{1} f_{p_{0}}+360 f_{2} f_{p_{0}}+1882 f_{3} f_{p_{0}}+1426 f_{4} f_{p_{0}}+\cdots+2016 f_{507} f_{p_{507}}=-1$
Below is the illustration of polynomial equations that represent bits of ntruhrss701 plaintext sample with plaintext $=\left\{1,0_{700}\right\}$, ciphertext $=\{1363,2145,4414,5577, \ldots, 3025,-7599\}, q=8192, n=701$.
21. $770 f_{0} f_{p_{0}}+5760 f_{1} f_{p_{0}}+7298 f_{2} f_{p_{0}}+4844 f_{3} f_{p_{0}}+1343 f_{4} f_{p_{0}}+\cdots+1442 f_{699} f_{p_{699}}=1$
22. $1552 f_{0} f_{p_{0}}+6530 f_{1} f_{p_{0}}+4866 f_{2} f_{p_{0}}+3950 f_{3} f_{p_{0}}+6187 f_{4} f_{p_{0}}+\cdots+7070 f_{699} f_{p_{699}}=0$
23. $3821 f_{0} f_{p_{0}}+7312 f_{1} f_{p_{0}}+5636 f_{2} f_{p_{0}}+1518 f_{3} f_{p_{0}}+5293 f_{4} f_{p_{0}}+\cdots+6462 f_{699} f_{p_{699}}=0$
24. $4984 f_{0} f_{p_{0}}+1389 f_{1} f_{p_{0}}+6418 f_{2} f_{p_{0}}+2288 f_{3} f_{p_{0}}+2861 f_{4} f_{p_{0}}+\cdots+1109 f_{699} f_{p_{699}}=0$
25. $6426 f_{0} f_{p_{0}}+2552 f_{1} f_{p_{0}}+495 f_{2} f_{p_{0}}+3070 f_{3} f_{p_{0}}+3631 f_{4} f_{p_{0}}+\cdots+6346 f_{699} f_{p_{699}}=0$
26. $3862 f_{0} f_{p_{0}}+3994 f_{1} f_{p_{0}}+1658 f_{2} f_{p_{0}}+5339 f_{3} f_{p_{0}}+4413 f_{4} f_{p_{0}}+\cdots+442 f_{699} f_{p_{699}}=0$
27. $3254 f_{0} f_{p_{0}}+1430 f_{1} f_{p_{0}}+3100 f_{2} f_{p_{0}}+6502 f_{3} f_{p_{0}}+6682 f_{4} f_{p_{0}}+\cdots+5638 f_{699} f_{p_{699}}=0$
28. $6093 f_{0} f_{p_{0}}+822 f_{1} f_{p_{0}}+536 f_{2} f_{p_{0}}+7944 f_{3} f_{p_{0}}+7845 f_{4} f_{p_{0}}+\cdots+4098 f_{699} f_{p_{699}}=0$
29. $3138 f_{0} f_{p_{0}}+3661 f_{1} f_{p_{0}}+8120 f_{2} f_{p_{0}}+5380 f_{3} f_{p_{0}}+1095 f_{4} f_{p_{0}}+\cdots+7146 f_{699} f_{p_{699}}=0$
30. $5426 f_{0} f_{p_{0}}+706 f_{1} f_{p_{0}}+2767 f_{2} f_{p_{0}}+4772 f_{3} f_{p_{0}}+6723 f_{4} f_{p_{0}}+\cdots+3111 f_{699} f_{p_{699}}=0$
31. $2430 f_{0} f_{p_{0}}+2994 f_{1} f_{p_{0}}+8004 f_{2} f_{p_{0}}+7611 f_{3} f_{p_{0}}+6115 f_{4} f_{p_{0}}+\cdots+4082 f_{699} f_{p_{699}}=0$
32. $890 f_{0} f_{p_{0}}+8190 f_{1} f_{p_{0}}+2100 f_{2} f_{p_{0}}+4656 f_{3} f_{p_{0}}+762 f_{4} f_{p_{0}}+\cdots+7455 f_{699} f_{p_{699}}=0$
33. $3938 f_{0} f_{p_{0}}+6650 f_{1} f_{p_{0}}+7296 f_{2} f_{p_{0}}+6944 f_{3} f_{p_{0}}+5999 f_{4} f_{p_{0}}+\cdots+2602 f_{699} f_{p_{699}}=0$
34. $8095 f_{0} f_{p_{0}}+1506 f_{1} f_{p_{0}}+5756 f_{2} f_{p_{0}}+3948 f_{3} f_{p_{0}}+95 f_{4} f_{p_{0}}+\cdots+4937 f_{699} f_{p_{699}}=0$
35. $874 f_{0} f_{p_{0}}+5663 f_{1} f_{p_{0}}+612 f_{2} f_{p_{0}}+2408 f_{3} f_{p_{0}}+5291 f_{4} f_{p_{0}}+\cdots+3825 f_{699} f_{p_{699}}=0$
36. $4247 f_{0} f_{p_{0}}+6634 f_{1} f_{p_{0}}+4769 f_{2} f_{p_{0}}+5456 f_{3} f_{p_{0}}+3751 f_{4} f_{p_{0}}+\cdots+4335 f_{699} f_{p_{699}}=0$
37. $7586 f_{0} f_{p_{0}}+1815 f_{1} f_{p_{0}}+5740 f_{2} f_{p_{0}}+1421 f_{3} f_{p_{0}}+6799 f_{4} f_{p_{0}}+\cdots+5652 f_{699} f_{p_{699}}=0$
38. $1729 f_{0} f_{p_{0}}+5154 f_{1} f_{p_{0}}+921 f_{2} f_{p_{0}}+2392 f_{3} f_{p_{0}}+2764 f_{4} f_{p_{0}}+\cdots+1259 f_{699} f_{p_{699}}=0$
39. $617 f_{0} f_{p_{0}}+7489 f_{1} f_{p_{0}}+4260 f_{2} f_{p_{0}}+5765 f_{3} f_{p_{0}}+3735 f_{4} f_{p_{0}}+\cdots+3900 f_{699} f_{p_{699}}=0$
40. $1127 f_{0} f_{p_{0}}+6377 f_{1} f_{p_{0}}+6595 f_{2} f_{p_{0}}+912 f_{3} f_{p_{0}}+7108 f_{4} f_{p_{0}}+\cdots+6815 f_{699} f_{p_{699}}=0$
$700.2432 f_{0} f_{p_{0}}+894 f_{1} f_{p_{0}}+3348 f_{2} f_{p_{0}}+6849 f_{3} f_{p_{0}}+1882 f_{4} f_{p_{0}}+\cdots+7029 f_{699} f_{p_{699}}=0$
The system of equations generated in this research consists of n^{2} polynomial equations, 508^{2} for ntruhps 2048509 and 700^{2} for ntruhrss 701 .

3.2 Solving System of Polynomial Equations

The way to solve the system of polynomial equations in this research basically uses the concept of linearization in XL Algorithm [15] and Gaussian elimination solution method, but the concept of extending system of polynomial equations in XL Algorithm is not suitable with this research because it will increase the number of monomials in the polynomial equations. To fulfill the number of equations needed in performing Gaussian elimination, the option chosen is by generating n plaintext ciphertext pairs and converting n^{2} plaintext bits into n^{2} polynomial equations.

Next step is linearizing the system of polynomial equations that have been formed in Section 3.1. Linearization is carried out to convert polynomial equations into linear equations to facilitate the Gaussian elimination process. In this research, the monomials contained in the system of polynomial equations on ntruhps 2048509 are 508^{2}, while on ntruhrss 701 are 700^{2}. Linearization is performed by substituting the monomials $f_{0} f_{p_{0}}, f_{0} f_{p_{1}}, \ldots, f_{n} f_{p_{n}}$ in the equations into monomials of degree 1 , namely $\mathrm{M} 1, \mathrm{M} 2, \mathrm{M} 3, \ldots$, $\mathrm{M}\left(n^{2}\right)$ respectively.

The linearized equation is converted into an $n^{2} \times n^{2}$ matrix. Gaussian elimination is then performed on the matrix. The coefficients of the polynomial equations are in \mathbb{Z}_{q} so that in this research the elementary row operations performed must pay attention to the rules of operation on the modulus q. The q values in NTRU-HPS and NTRU-HRSS are multiple of 2. Some coefficients will be not relatively prime with q that means they do not have an inverse in \mathbb{Z}_{q}. When the leading entry of a row has no inverse modulo q then it is difficult to convert the value to 1 . Therefore, the elementary row operation in this research will only produce matrices that are close to the row echelon form. Below are the tricks in performing row echelon operations in q modulus in this research:
a. Look at the leading entry of the top row.

1) If the leading entry is odd, calculate the inverse of the leading entry. Multiply all entries in the row by the inverse of its leading entry. Do multiplication and subtraction like row echelon operation in common to the all lower row. After that, do the step in point \mathbf{h}.
2) If the leading entry is even then do step in point \mathbf{b}.
b. Look at the leading entry of the lower row.
3) If the leading entry of the lower row is odd, swap it with the top row and do step in point a.1.
4) If the leading entry is even then repeat step in point \mathbf{b} until the lowest row.
5) If the leading entries in all rows are even, continue to the step in point \mathbf{c}.
c. Count the factor of the leading entries of this row and all lower rows. Move the row which has the smallest factor of 2 to the top.
d. Count gcd between leading entry of the top row and leading entries of all lower rows.
e. Divide each lower row by its gcd which obtained in point \mathbf{d}, then calculate the inverse of this division.
f. Multiply each lower row by the value obtained in point \mathbf{e}, and divide it by gcd in point \mathbf{d}.
g. Subtract each entry in the row by the product of the top row and the value at point \mathbf{f}.
h. If the top row in this step is not the second lowest row of this matrix, repeat all the steps form point \mathbf{a}. If not then the calculation is complete.

Example 2. Below is matrix "A" which coefficient is in modulus $q=8192$. The leading entries in the top row and all lower rows are even, so it is needed to carry out the steps in point \mathbf{b} until \mathbf{h}.
$\left[\begin{array}{ccccc}1 & 1771 & 5292 & 7068 & 7371 \\ 0 & 1 & 3783 & 4032 & 6124 \\ 0 & 0 & 6142 & 398 & 2976 \\ 0 & 0 & 1700 & 6344 & 1776 \\ 0 & 0 & 6896 & 4644 & 7140\end{array}\right]$

- Count the factor of the leading entries.
$a_{3,3}=6142=2 \cdot 3071 \rightarrow a_{3,3}$ becomes top row
$a_{4,3}=1700=2^{2} \cdot 425$
$a_{5,3}=6896=2^{4} \cdot 431$
- Count gcd between leading entry of the top row and leading entries of all lower rows.
$\operatorname{gcd}\left(a_{3,3}, a_{4,3}\right)=\operatorname{gcd}(6142,1700)=2$
$\operatorname{gcd}\left(a_{3,3}, a_{5,3}\right)=\operatorname{gcd}(6142,6896)=2$
- Divide each lower row by its gcd which obtained above, then calculate the inverse of this division.
$\left(\frac{a_{3,3}}{\operatorname{gcd}\left(a_{3,3}, a_{4,3}\right)}\right)^{-1}(\bmod 8192) \equiv\left(\frac{6142}{2}\right)^{-1}(\bmod 8192) \equiv 5119$
$\left(\frac{a_{3,3}}{\operatorname{gcd}\left(a_{3,3}, a_{5,3}\right)}\right)^{-1}(\bmod 8192) \equiv\left(\frac{6142}{2}\right)^{-1}(\bmod 8192) \equiv 5119$
- Multiply each lower row by the value obtained above, and divide it by the gcd.

$$
\begin{aligned}
& x_{4,3} \equiv \frac{a_{4,3}}{\operatorname{gcd}\left(a_{3,3}, a_{5,3}\right)} \cdot\left(\frac{a_{3,3}}{\operatorname{gcd}\left(a_{3,3}, a_{5,3}\right)}\right)^{-1}(\bmod 8192) \equiv \frac{1700}{2} \cdot 5119(\bmod 8192) \equiv 1198 \\
& x_{5,3} \equiv \frac{a_{5,3}}{\operatorname{gcd}\left(a_{3,3}, a_{5,3}\right)} \cdot\left(\frac{a_{3,3}}{\operatorname{gcd}\left(a_{3,3}, a_{5,3}\right)}\right)^{-1}(\bmod 8192) \equiv \frac{6896}{2} \cdot 5119(\bmod 8192) \equiv 4744
\end{aligned}
$$

- Subtract each entry in the row by the product of the top row and the value at point f
$a_{4,3}^{\prime}=a_{4,3}-a_{3,3} * x_{4,3}(\bmod q)=1700-6142 * 1198(\bmod 8192)=0$
$a_{5,3}^{\prime}=a_{5,3}-a_{3,3} * x_{5,3}(\bmod q)=6896-6142 * 4744(\bmod 8192)=0$
The same process done to $a_{4,4}, a_{4,5}, a_{5,4}, a_{5,5}$.
The elementary row operation on the system of polynomial equations representing the NTRU-HPS and NTRU-HRSS first plaintext bits in Example 2 resulted in the matrices shown in Table 6 and Table 7, respectively.

Table 6. Matrix of NTRU-HPS

	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	...	M508	$p t x$
c_{1}	1	149	744	995	414	852	42	1750	1573	82	398	2034	623	190	1701	1875	13	2015	\ldots	492	1
c_{2}	0	1	1295	752	1022	150	188	1826	1719	1099	1515	607	1196	706	2007	1952	137	298	...	316	0
c_{3}	0	0	1	1701	1609	1122	762	1500	705	1031	772	972	1307	229	1417	318	1234	362	...	1439	0
c_{4}	0	0	0	1	168	471	794	190	843	1483	926	1493	1696	698	1606	434	780	1103	...	1303	1
c_{5}	0	0	0	0	1	104	695	1754	222	2027	395	766	501	768	922	422	1202	1452	...	1379	1
c_{6}	0	0	0	0	0	1	341	59	1521	1049	679	1366	909	1748	509	303	370	1653	...	805	0
c_{7}	0	0	0	0	0	0	1	79	1260	369	221	1428	852	112	660	1916	105	1655	...	1363	-1
c_{8}	0	0	0	0	0	0	0	1	1604	314	933	1148	1195	566	1211	184	707	1479	...	1903	0
c_{9}	0	0	0	0	0	0	0	0	1	826	2040	63	185	664	1201	806	1041	780	...	1144	0
c_{10}	0	0	0	0	0	0	0	0	0	1	870	84	161	1811	714	1279	1652	499	...	1754	0
c_{11}	0	0	0	0	0	0	0	0	0	0	1	1578	1182	119	41	1128	1329	702	...	226	0
c_{12}	0	0	0	0	0	0	0	0	0	0	0	1	1414	1858	1955	725	1508	133	...	741	0
c_{13}	0	0	0	0	0	0	0	0	0	0	0	0	1	416	1936	519	1853	1434	...	900	0
c_{14}	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1954	1555	2014	1720	...	206	-1
c_{15}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1247	1689	1277	...	1553	0
c_{16}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1234	1167	...	452	0
c_{17}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	174	...	306	0
!	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	!	:	:	:	:
C_{508}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	...	1970	0

Table 7. Matrix of NTRU-HRSS

	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	...	M700	$p t x$
c_{1}	1	3280	2452	4582	1217	2293	876	3844	2802	7917	3121	6873	7650	375	1333	7	1603	7053	...	5106	0
c_{2}	0	1	3130	7072	2025	7	2920	2559	5184	4872	5196	3501	1984	198	6929	2102	4615	4327	...	6446	0
c_{3}	0	0	1	6894	5547	8191	3934	1897	7869	76	1271	1114	6152	1354	1258	668	8136	2515	...	7758	0
c_{4}	0	0	0	1	1441	3381	826	8055	2995	1845	1099	3209	8157	6306	2646	5325	4590	6884	...	4187	0
c_{5}	0	0	0	0	1	7254	1953	7115	6558	2080	1221	5742	2841	4998	684	6753	782	3804	...	1107	-1
c_{6}	0	0	0	0	0	1	4736	4097	2373	7576	16	6517	1728	7161	6672	7204	4201	3672	...	4783	-1
c_{7}	0	0	0	0	0	0	1	2674	6913	3917	5112	1293	8141	1484	4389	4068	3110	4904	...	2690	1
c_{8}	0	0	0	0	0	0	0	1	1258	2525	2149	3868	5781	997	1140	1705	5100	50	...	2096	1
c_{9}	0	0	0	0	0	0	0	0	1	920	2765	2763	5200	1285	3885	1678	4993	5458	...	5771	1
c_{10}	0	0	0	0	0	0	0	0	0	1	1186	5424	1248	4846	6044	5019	7994	1618	...	6691	-1
c_{11}	0	0	0	0	0	0	0	0	0	0	1	7402	3306	4640	1568	2240	2991	1274	...	3607	0
c_{12}	0	0	0	0	0	0	0	0	0	0	0	1	3681	3666	5603	3142	3086	5467	...	4332	1
c_{13}	0	0	0	0	0	0	0	0	0	0	0	0	1	4661	3027	6917	1472	2939	...	6887	0
c_{14}	0	0	0	0	0	0	0	0	0	0	0	0	0	1	6054	1170	3817	6974	...	73	-1
c_{15}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2797	1713	4912	...	6076	1
c_{16}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2928	6133	...	4972	-1
c_{17}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	6346	\ldots	5454	1
!	:	\vdots	!	\vdots	!	:	!	!	\vdots	:	\vdots	!	!	!	\vdots	:	:	:	\vdots	:	!
c_{700}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\cdots	1	1

The steps in Section 3.1 and Section 3.2 done to all plaintext ciphertext sample and form matrix with size $700^{2} \times 700^{2}$.

3.3 Key Recovery

The monomials in the resulting matrices in Section 3.2 that are then converted back to their original form $\left(f_{i} f_{p_{j}}\right)$. The difficulty is the value of each coefficient obtained in the matrices is the result of
multiplication between f_{i} and $f_{p_{j}}$, which means it will result in many solutions. Further research is needed on efficient calculations in factorizing numbers in the q modulus. Therefore, in this research, algebraic cryptanalysis on the NTRU-HPS and NTRU-HRSS algorithms cannot be carried out until the key recovery stage.

4. CONCLUSIONS

The NTRU-HPS algorithm with $q=2048, n=509$ and NTRU-HRSS with $n=701$ are resistant to algebraic cryptanalysis. However, there is still potential for algebraic cryptanalysis to be successfully performed on NTRU-HPS and NTRU-HRSS with further research in the future.

ACKNOWLEDGMENT

This research is funded by Dikti Research Grant No NKB-988/UN2.RST/HKP.05.00/2022.

REFERENCES

[1] M. Haart and C. Hoffs, "Quantum Computing: What it is, how we got here, and who's working on it.," Mar. 2019.
[2] K. Li, P. G. Yan and Q. Y. Cai, "Quantum computing and the security of public key cryptography," Fundamental Research, vol. 1, no. 1, pp. 85-87, Jan. 2021.
[3] K. S. Roy, "A survey on post-quantum cryptography for constrained devices," International Journal of Applied Engineering Research, vol. 14, pp. 2608-2615, May. 2019.
[4] D. Moody et al., "Status report on the second round of the NIST post-quantum cryptography standardization process," National Institute of Standards and Technology, 2020, doi: 10.6028/NIST.IR.8309.
[5] J. Hoffstein, J. Pipher and J. H. Silverman, "NTRU: A Ring-Based Public Key Cryptosystem," Lecture Notes in Computer Science, Berlin: Springer, 1998, 267-288.
[6] IEEE Standard Specification for Public Key Cryptographic Techniques Based on Hard Problems over Lattices IEEE Computer Society, IEEE Std 1363.1-2008, 2009.
[7] C. Chen et al., "NTRU algorithm specifications and supporting documentation," NTRU Inc., 2019.
[8] Y. M. Agus, M. A. Murti, F. Kurniawan, N. D. W. Cahyani, and G. B. Satrya, "An Efficient Implementation of NTRU Encryption in Post-Quantum Internet of Things," in 2020 27th International Conference on Telecommunications (ICT), 2020, pp. 1-5. doi: 10.1109/ICT49546.2020.9239560.
[9] G. Bourgeois and J. C. Faugère, "Algebraic attack on NTRU using Witt vectors and Gröbner bases," Journal of Mathematical Cryptology, vol. 3, no. 3, pp. 205-214, Sep. 2009, doi: 10.1515/JMC.2009.011.
[10] J. Ding and D. Schmidt, "Algebraic attack on lattice-based cryptosystems via solving equations over real numbers" Cryptology ePrint Archive, p. 94, 2012.
[11] J. Bi and L. Han, "Lattice Attacks on NTRU Revisited," IEEE Access, vol. 9, pp. 66218-66222, 2021, doi: 10.1109/ACCESS.2021.3076598.
[12] H. Arabnezhad-Khanoki, B. Sadeghiyan, and J. Pieprzyk, "S-boxes representation and efficiency of algebraic attack," IET Inf Secure, vol. 13, no. 5, pp. 448-458, Sep. 2019, doi: 10.1049/iet-ifs.2018.5201.
[13] A. Askeland and S. Rønjom. "A Side-Channel Assisted Attack on NTRU," IACR Cryptol. ePrint Arch., p. 790, 2021.
[14] A. Abdel-Hafez, R. A. Elbarkouky and W. Hafez, "Comparative Study of Algebraic Attacks," International Advanced Research Journal in Science, Engineering and Technology, vol. 3, pp. 85-90, 2016.
[15] C. Mascia, E. Piccione and M. Sala, "An algebraic attack on stream ciphers with application to nonlinear filter generators and WG-PRNG," arXiv, Cornell University, Dec. 2021, doi: 10.48550/arXiv.2112.12268.

