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 ABSTRACT 

Article History: 
NTRU is a lattice-based public-key cryptosystem designed by Hoffstein, Pipher, and Silverman 

in 1996. NTRU published on Algorithmic Number Theory Symposium (ANTS) in 1998. The 

ANTS’98 NTRU became the IEEE standard for public key cryptographic techniques based on 

hard problems over lattices in 2008. NTRU was later redeveloped by NTRU Inc. in 2018 and 

became one of the finalists in round 3 of the PQC (Post-Quantum Cryptography) 

standardization process organized by NIST in 2020. There are two types of NTRU algorithms 

proposed by NTRU Inc., which are classified based on parameter determination, NTRU-HPS 

(Hoffstein, Pipher, Silverman) and NTRU-HRSS (Hulsing, Rijnveld, Schanck, Schwabe). 

Algebraic cryptanalysis on ANTS’98 NTRU had previously been carried out in 2009 and 2012. 

In this paper, algebraic cryptanalysis is performed on NTRU-HPS with q=2048, n=509 

(ntruhps2048509) and NTRU-HRSS with n=701 (ntruhrss701). This research aims to evaluate 

the resistance of NTRU-HPS and NTRU-HRSS algorithms against algebraic cryptanalysis by 

reconstructing the private key value. As a result, NTRU-HPS and NTRU-HRSS resistance to 

algebraic cryptanalysis. 
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1. INTRODUCTION 

The concept of quantum computing has changed many scientific fields, including cryptography. 

Quantum computers can run several code breaking methods faster than classical computers [1]. For example, 

the Shor algorithm created by Peter Shor in 1994 can solve the large integer factorization problem in RSA if 

run on a quantum computer [2]. 

Classical public key cryptosystems such as RSA are widely used in key exchange mechanisms and 

digital signatures [1]. Advances in computing and algorithm development increase the need for cryptosystem 

development to provide a replacement for classical cryptosystems that are vulnerable to quantum computer-

based cryptanalysis. These replacement cryptosystems are referred to as post-quantum cryptography [3]. 

In the context of the Post Quantum Cryptography (PQC) standardization process, the National Institute 

of Standards and Technology (NIST) conducted a selection process for PQC-based public key algorithms 

starting in 2017 with a total of 69 candidates. In July 2020, NIST published the candidates that became 

finalists in round 3, one of which was NTRU [4]. NTRU is a lattice-based public key cryptosystem that 

provides encryption algorithm solutions [3]. NTRU was published at the Algorithmic Number Theory 

Symposium (ANTS) in 1998 [5] and became the standard public key cryptography technique based on hard 

problems on lattice in IEEE in 2008 [6]. NTRU ANTS'98 was then redeveloped by NTRU Inc. in 2018 and 

underwent several changes during the NIST standardization process. There are two types of NTRU 

algorithms proposed by NTRU Inc. in round 3 of the PQC standardization process, namely NTRU-HPS 

(Hoffstein, Pipher, Silverman) and NTRU-HRSS (Hulsing, Rijnveld, Schanck, Schwabe) [7].  

Currently, there is a lot of research on the implementation of NTRU both on networks, hardware, and 

the Internet of Things (IoT) [8]. Several security tests were also carried out on NTRU ANTS'98, such as 

algebraic cryptanalysis using Witt vectors and Grobner bases by Bourgeois and Faugere in 2009 [9], algebraic 

cryptanalysis using the method of solving equations in real numbers by Ding and Schmidt in 2012 [10], and 

lattice cryptanalysis experiments conducted by Bi and Han in 2021 [11], and side channel attack by Askeland 

and Ronjom [12]. In this research, algebraic cryptanalysis is carried out on the NTRU algorithm which has 

been updated and submitted by NTRU Inc. in round 3 of the NIST PQC standardization process. The purpose 

of this research is to determine the algebraic cryptanalysis process on the NTRU-HPS and NTRU-HRSS 

algorithms and to determine the resistance of the NTRU-HPS and NTRU-HRSS algorithms to algebraic 

cryptanalysis. 

2. RESEARCH METHODS 

The research methods used in the research correspond to the methods used in algebraic cryptanalysis. 

The main principle of algebraic cryptanalysis is simple, which is to turn the problem of attacking a 

cryptographic system (such as finding the secret key) into solving a system of polynomial equations [13]. 

This basic idea is then mapped into two stages in performing algebraic cryptanalysis as follows. 

2.1 Forming a System of Equation 

In a public-key cryptosystem, the private key is a key that is only owned by the key owner and is the 

parameter used to provide confidentiality and non-repudiation services in the public-key cryptosystem. The 

power of the public key cryptosystem lies in the private key. A public-key cryptosystem is said to be 

vulnerable if the private key is compromised. 

NTRU-HPS dan NTRU-HRSS are used for encryption and key exchange management. The private 

key in the NTRU is used in the decryption function. Therefore, in this research, the decryption function is 

utilized to form a system of equations. It is assumed that the cryptanalyst has access to the decryption machine 

so that it can get the corresponding plaintext and ciphertext pairs without knowing the private key. 

After obtaining the corresponding plaintext and ciphertext pairs, the cryptanalyst represents the 

decryption function in the form of an algebraic function. Cryptanalyst then enters the ciphertext value and 

the unknown private key variable into the function, thus forming equations of degree (𝑛 − 1)2 that represents 

the plaintext value. 
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2.2 Finding The Solution of A System of Equations 

There are several commonly used methods to find solutions to polynomial equations, including the 

Grobner Basis, F4, F5, and XL algorithm [14]. In this research, the method of solving the system of equations 

used is linearization and Gaussian elimination. The polynomial multiplication rules in NTRU-HPS and 

NTRU-HRSS make the equations formed in Section 2.1 have a degree of 𝑛, but the private keys in NTRU-

HPS and NTRU-HRSS have degree of 𝑛. A pair of plaintext and ciphertext can generate a system containing 

𝑛 equations. Therefore, 𝑛 pairs of plaintext and ciphertext are generated to produce 𝑛2 equations so that 

Gaussian elimination can be applied. There are no special rules on scalar multiplication and polynomial 

subtraction in NTRU-HPS and NTRU-HRSS, but when applying Gaussian elimination the operations must 

be performed in modulus 𝑞. 

3. RESULTS AND DISCUSSION 

NTRU-HPS (Hoffstein, Pipher, Silverman) and NTRU-HRSS (Hulsing, Rijnveld, Schanck, Schwabe) 

are two types of NTRU algorithms proposed in the NIST PQC standardization process. Algebraic 

cryptanalysis was performed on NTRU-HPS with 𝑛 = 509 and 𝑞 = 2048 (ntruhps2048509) also on 

NTRU-HRSS with 𝑛 = 701 and 𝑞 = 4096 (ntruhrss701). This research determines 𝑛 plaintexts encrypted 

using the same public key to produce 𝑛 corresponding ciphertexts. These 𝑛 pairs of plaintexts and ciphertexts 

are used to generate 𝑛2 polynomial equations according to the steps described in Section 3.1. The amount of 

𝑛2 polynomial equations is determined because the combination of 𝑛 monomials of 𝑓 and 𝑛 monomials of 

𝑓𝑝 will produce 𝑛2 monomials for every equation formed in Section 3.1. 

3.1 System of Polynomial Equations 

This research utilizes the decryption function in NTRU to generate a polynomial equation that 

represents the ciphertext bits. The decryption function on the NTRU consists of the following two operations 

 𝑣 = 𝑐 ∙ 𝑓 (𝑚𝑜𝑑 𝑞,Φ1Φ𝑛) (1) 

 𝑚 = 𝑣 ∙ 𝑓𝑝(𝑚𝑜𝑑 𝑝,Φ𝑛). (2) 

Below is a brief explanation of the symbols in the decryption function. 

• Φ1 = 𝑥 − 1. 

• Φ𝑛 = (𝑥𝑛 − 1)/(𝑥 − 1) = 𝑥𝑛−1 + 𝑥𝑛−2 …+ 1. 

• Φ1Φ𝑛 = 𝑥𝑛 − 1. 

• 𝑚 is the plaintext, represented as a polynomial in (𝑚𝑜𝑑 𝑝, Φ𝑛). 

• 𝑐 is the ciphertext, represented as a polynomial in (𝑚𝑜𝑑 𝑞,Φ1Φ𝑛). 

• 𝑓 is the private key, represented as a polynomial in (𝑚𝑜𝑑 𝑝,Φ𝑛). 

• 𝑓𝑝 is the private key, 𝑓𝑝 ≡ 𝑓−1 (𝑚𝑜𝑑 𝑝,Φ𝑛). 

• 𝑣 is the polynomial product of 𝑐 and 𝑓, represented as a polynomial in (𝑚𝑜𝑑 𝑞,Φ1Φ𝑛). 

The polynomials 𝑓 and 𝑓𝑝 are in (𝑚𝑜𝑑 Φ𝑛) where Φ𝑛 ∈ Φ1Φ𝑛, so Equation (1) and Equation (2) can be 

merged into one algebraic equation as follow 

 𝑚 = 𝑐 ∙ 𝑓 ∙ 𝑓𝑝 (𝑚𝑜𝑑 𝑞,Φ1Φ𝑛)(𝑚𝑜𝑑 𝑝,Φ𝑛). (3) 

The polynomial product in NTRU is a cyclic convolution product defined as 

𝐻𝑘 = ∑𝐹𝑖𝐺𝑘−𝑖

𝑘

𝑖=0

+ ∑ 𝐹𝑖𝐺𝑛+𝑘−𝑖

𝑛−1

𝑖=𝑘+1

= ∑ 𝐹𝑖𝐺𝑗

𝑖+𝑗≡𝑘(mod 𝑛)

 

where 𝐹, 𝐺, 𝐻 are any polynomials [4]. 
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Example 1. A sample in ntruhps2048509 (𝑞 = 2048, 𝑛 = 509) contains plaintext 𝑚 = {1127, 0254, −1127}, 
ciphertext 𝑐 = {1209,230,174,1154,… ,−1335}, 𝑓 = {𝑓0, 𝑓1, … , 𝑓507}, 𝑓𝑝 = {𝑓𝑝0

, 𝑓𝑝1
, … , 𝑓𝑝507

}, 𝑝 = 3. 

Polynomial 𝑚, 𝑐, 𝑓 and 𝑓𝑝 are represented as follows. 

Table 1. Polynomial Representation of ntruhps2048509 Sample 

Polynomial 

Representation 
𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑 … 𝒙𝟓𝟎𝟕 𝒙𝟓𝟎𝟖 

𝑚 1 1 1 1 … −1 −1 

𝑐 773 317 1865 1897 … 641 −755 

𝑓 𝑓0 𝑓1 𝑓2 𝑓3 … 𝑓507 0 

𝑓𝑝 𝑓𝑝0
 𝑓𝑝1

 𝑓𝑝2
 𝑓𝑝3

 … 𝑓𝑝507
 0 

Next, polynomial 𝑐, 𝑓 and 𝑓𝑝 are calculated as in Equation (3) using the cyclic convolution product 

with the process shown in Table 2. 

Table 2. Cyclic Convolution Product in NTRU 

Cyclic 

Convolution 

Product 

Output 

Index 

𝒄 ∙ 𝒇 𝒎 = 𝒄 ∙ 𝒇 ∙ 𝒇𝒑 (𝒎𝒐𝒅 𝒒,𝚽𝟏𝚽𝒏) 

𝟎 𝑐0𝑓0 + 𝑐𝑛−1𝑓1 + 𝑐𝑛−2𝑓2 + ⋯+ 𝑐2𝑓𝑛−2  (𝑐0𝑓0 + 𝑐𝑛−1𝑓1 + 𝑐𝑛−2𝑓2 + ⋯+ 𝑐2𝑓𝑛−2) ∙ 𝑓𝑝0
+ 

(𝑐𝑛−1𝑓0 + 𝑐𝑛−2𝑓1 + 𝑐𝑛−3𝑓2 …+ 𝑐1𝑓𝑛−2) ∙ 𝑓𝑝1
+ 

(𝑐𝑛−2𝑓0 + 𝑐𝑛−3𝑓1 + 𝑐𝑛−4𝑓2 + ⋯+ 𝑐0𝑓𝑛−2) ∙ 𝑓𝑝2
+ ⋯+ 

(𝑐2𝑓0 + 𝑐1𝑓1 + 𝑐0𝑓2 + ⋯ + 𝑐4𝑓𝑛−2) ∙ 𝑓𝑝𝑛−2
 

𝟏 𝑐1𝑓0 + 𝑐0𝑓1 + 𝑐𝑛−1𝑓2 + ⋯+ 𝑐3𝑓𝑛−2  (𝑐1𝑓0 + 𝑐0𝑓1 + 𝑐𝑛−1𝑓2 + ⋯+ 𝑐3𝑓𝑛−2) ∙ 𝑓𝑝0
+ 

(𝑐0𝑓0 + 𝑐𝑛−1𝑓1 + 𝑐𝑛−2𝑓2 + ⋯+ 𝑐2𝑓𝑛−2) ∙ 𝑓𝑝1
+ 

(𝑐𝑛−1𝑓0 + 𝑐𝑛−2𝑓1 + 𝑐𝑛−3𝑓2 …+ 𝑐1𝑓𝑛−2) ∙ 𝑓𝑝2
+ ⋯+ 

(𝑐3𝑓0 + 𝑐2𝑓1 + 𝑐1𝑓2 + ⋯ + 𝑐5𝑓𝑛−2) ∙ 𝑓𝑝𝑛−2
 

𝟐 𝑐2𝑓0 + 𝑐1𝑓1 + 𝑐0𝑓2 + ⋯+ 𝑐4𝑓𝑛−2  (𝑐2𝑓0 + 𝑐1𝑓1 + 𝑐0𝑓2 + ⋯+ 𝑐4𝑓𝑛−2) ∙ 𝑓𝑝0
+ 

(𝑐1𝑓0 + 𝑐0𝑓1 + 𝑐𝑛−1𝑓2 + ⋯+ 𝑐3𝑓𝑛−2) ∙ 𝑓𝑝1
+ 

(𝑐0𝑓0 + 𝑐𝑛−1𝑓1 + 𝑐𝑛−2𝑓2 + ⋯+ 𝑐2𝑓𝑛−2) ∙ 𝑓𝑝2
+ ⋯+ 

(𝑐4𝑓0 + 𝑐3𝑓1 + 𝑐2𝑓2 + ⋯ + 𝑐6𝑓𝑛−2) ∙ 𝑓𝑝𝑛−2
 

⋮ ⋮ ⋮ 
𝒏 − 𝟐 𝑐𝑛−2𝑓0 + 𝑐𝑛−3𝑓1 + 𝑐𝑛−4𝑓2 + ⋯+ 𝑐0𝑓𝑛−2  (𝑐𝑛−2𝑓0 + 𝑐𝑛−3𝑓1 + 𝑐𝑛−4𝑓2 + ⋯+ 𝑐0𝑓𝑛−2) ∙ 𝑓𝑝0

+ 

(𝑐𝑛−3𝑓0 + 𝑐𝑛−4𝑓1 + 𝑐𝑛−5𝑓2 …+ 𝑐𝑛−1𝑓𝑛−2) ∙ 𝑓𝑝1
+ 

(𝑐𝑛−4𝑓0 + 𝑐𝑛−5𝑓1 + 𝑐𝑛−6𝑓2 + ⋯+ 𝑐𝑛−2𝑓𝑛−2) ∙ 𝑓𝑝2
+ ⋯

+ 
(𝑐0𝑓0 + 𝑐𝑛−1𝑓1 + 𝑐𝑛−2𝑓2 + ⋯ + 𝑐2𝑓𝑛−2) ∙ 𝑓𝑝𝑛−2

 

𝒏 − 𝟏 𝑐𝑛−1𝑓0 + 𝑐𝑛−2𝑓1 + 𝑐𝑛−3𝑓2 … + 𝑐1𝑓𝑛−2  (𝑐𝑛−1𝑓0 + 𝑐𝑛−2𝑓1 + 𝑐𝑛−3𝑓2 …+ 𝑐1𝑓𝑛−2) ∙ 𝑓𝑝0
+ 

(𝑐𝑛−2𝑓0 + 𝑐𝑛−3𝑓1 + 𝑐𝑛−4𝑓2 + ⋯+ 𝑐0𝑓𝑛−2) ∙ 𝑓𝑝1
+ 

(𝑐𝑛−3𝑓0 + 𝑐𝑛−4𝑓1 + 𝑐𝑛−5𝑓2 …+ 𝑐𝑛−1𝑓𝑛−2) ∙ 𝑓𝑝2
+ ⋯+ 

(𝑐1𝑓0 + 𝑐0𝑓1 + 𝑐𝑛−1𝑓2 + ⋯ + 𝑐3𝑓𝑛−2) ∙ 𝑓𝑝𝑛−2
 

To simplify the calculation, the unknown variables of the private keys 𝑓 and 𝑓𝑝 in the equations are 

sorted from 𝑓0𝑓𝑝0
, 𝑓1𝑓𝑝0

, …, 𝑓𝑛−1𝑓𝑝0
 to 𝑓0𝑓𝑝𝑛−1

, 𝑓1𝑓𝑝𝑛−1
, …, 𝑓𝑛−1𝑓𝑝𝑛−1

 as shown in Table 3. 

Table 3. Polynomial 𝒎 in NTRU with Sorted Unknown 𝒇 and 𝒇𝒑 

𝒎 𝒇𝟎𝒇𝒑𝟎
 𝒇𝟎𝒇𝒑𝟏

 … 𝒇𝟎𝒇𝒑𝒏−𝟐
 𝒇𝟏𝒇𝒑𝟎

 … 𝒇𝒏−𝟐𝒇𝒑𝟎
 𝒇𝒏−𝟐𝒇𝒑𝟏

 … 𝒇𝒏−𝟐𝒇𝒑𝒏−𝟐
 

𝑚0 𝑐0 𝑐𝑛−1 … 𝑐2 𝑐𝑛−1 … 𝑐2 𝑐1 … 𝑐4 

𝑚1 𝑐1 𝑐0 … 𝑐3 𝑐0 … 𝑐3 𝑐2 … 𝑐5 

𝑚2 𝑐2 𝑐1 … 𝑐4 𝑐1 … 𝑐4 𝑐3 … 𝑐6 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑚𝑛−2 𝑐𝑛−2 𝑐𝑛−3 … 𝑐0 𝑐𝑛−3 … 𝑐0 𝑐𝑛−1 … 𝑐2 

𝑚𝑛−1 𝑐𝑛−1 𝑐𝑛−2 … 𝑐1 𝑐𝑛−2 … 𝑐1 𝑐0 … 𝑐3 
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The polynomial 𝑚 in Table 3 then modulo Φ𝑛 with the results listed in Table 4. 

Table 4. Polynomial 𝒎(𝒎𝒐𝒅 𝒒,𝚽𝟏𝚽𝒏)(𝒎𝒐𝒅 𝚽𝒏) in NTRU 

𝒎 𝒇𝟎𝒇𝒑𝟎
 𝒇𝟏𝒇𝒑𝟎

 … 𝒇𝒏−𝟐𝒇𝒑𝟎
 𝒇𝟎𝒇𝒑𝟏

 … 𝒇𝟎𝒇𝒑𝒏−𝟐
 𝒇𝟏𝒇𝒑𝒏−𝟐

 … 𝒇𝒏−𝟐𝒇𝒑𝒏−𝟐
 

𝑚0 𝑐0 − 𝑐𝑛−1 𝑐𝑛−1 − 𝑐𝑛−2 … 𝑐2 − 𝑐1 𝑐𝑛−1 − 𝑐𝑛−2 … 𝑐2 − 𝑐1 𝑐1 − 𝑐0 … 𝑐4 − 𝑐3 

𝑚1 𝑐1 − 𝑐𝑛−1 𝑐0 − 𝑐𝑛−2 … 𝑐3 − 𝑐1 𝑐0 − 𝑐𝑛−2 … 𝑐3 − 𝑐1 𝑐2 − 𝑐0 … 𝑐5 − 𝑐3 

𝑚2 𝑐2 − 𝑐𝑛−1 𝑐1 − 𝑐𝑛−2 … 𝑐4 − 𝑐1 𝑐1 − 𝑐𝑛−2 … 𝑐4 − 𝑐1 𝑐3 − 𝑐0 … 𝑐6 − 𝑐3 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑚𝑛−2 𝑐𝑛−2 − 𝑐𝑛−1 𝑐𝑛−3 − 𝑐𝑛−2 … 𝑐0 − 𝑐1 𝑐𝑛−3 − 𝑐𝑛−2 … 𝑐0 − 𝑐1 𝑐𝑛−1 − 𝑐0 … 𝑐2 − 𝑐3 

The values in Table 1 are then entered into the variables in Table 4 to produce the values in Table 5. 

Table 5. Polynomial 𝒎(𝒎𝒐𝒅 𝒒,𝚽𝟏𝚽𝒏)(𝒎𝒐𝒅 𝚽𝒏) in ntruhps2048509 

𝒎 𝒇𝟎𝒇𝒑𝟎
 𝒇𝟏𝒇𝒑𝟎

 … 𝒇𝒏−𝟐𝒇𝒑𝟎
 𝒇𝟎𝒇𝒑𝟏

 … 𝒇𝟎𝒇𝒑𝒏−𝟐
 𝒇𝟏𝒇𝒑𝒏−𝟐

 … 𝒇𝒏−𝟐𝒇𝒑𝒏−𝟐
 

𝑚0 1528 652 … 1548 652 … 1548 1592 … 759 

𝑚1 1072 132 … 1580 132 … 1580 1092 … 1835 

𝑚2 572 1724 … 291 1724 … 291 1124 … 1552 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑚507 1396 1061 … 454 1061 … 454 520 … 2016 

Based on the parameters in Example 1 and the values in Table 5, below is the illustration of polynomial 

equations that represent bits of the ntruhps2048509 plaintext sample. 

1. 1528𝑓0𝑓𝑝0
+ 652𝑓1𝑓𝑝0

+ 987𝑓2𝑓𝑝0
+ 1688𝑓3𝑓𝑝0

+ 166𝑓4𝑓𝑝0
+ ⋯+ 759𝑓507𝑓𝑝507

= 1 

2. 1072𝑓0𝑓𝑝0
+ 132𝑓1𝑓𝑝0

+ 1639𝑓2𝑓𝑝0
+ 627𝑓3𝑓𝑝0

+ 1854𝑓4𝑓𝑝0
+ ⋯+ 1835𝑓507𝑓𝑝507

= 1 

3. 572𝑓0𝑓𝑝0
+ 1724𝑓1𝑓𝑝0

+ 1119𝑓2𝑓𝑝0
+ 1279𝑓3𝑓𝑝0

+ 793𝑓4𝑓𝑝0
+ ⋯+ 1552𝑓507𝑓𝑝507

= 1 

4. 604𝑓0𝑓𝑝0
+ 1224𝑓1𝑓𝑝0

+ 663𝑓2𝑓𝑝0
+ 759𝑓3𝑓𝑝0

+ 1445𝑓4𝑓𝑝0
+ ⋯+ 1761𝑓507𝑓𝑝507

= 1 

5. 1363𝑓0𝑓𝑝0
+ 1256𝑓1𝑓𝑝0

+ 163𝑓2𝑓𝑝0
+ 303𝑓3𝑓𝑝0

+ 925𝑓4𝑓𝑝0
+ ⋯+ 219𝑓507𝑓𝑝507

= 1 

6. 391𝑓0𝑓𝑝0
+ 2015𝑓1𝑓𝑝0

+ 195𝑓2𝑓𝑝0
+ 1851𝑓3𝑓𝑝0

+ 469𝑓4𝑓𝑝0
+ ⋯+ 585𝑓507𝑓𝑝507

= 1 

7. 108𝑓0𝑓𝑝0
+ 1043𝑓1𝑓𝑝0

+ 954𝑓2𝑓𝑝0
+ 1883𝑓3𝑓𝑝0

+ 2017𝑓4𝑓𝑝0
+ ⋯+ 847𝑓507𝑓𝑝507

= 1 

8. 317𝑓0𝑓𝑝0
+ 760𝑓1𝑓𝑝0

+ 2030𝑓2𝑓𝑝0
+ 594𝑓3𝑓𝑝0

+ 1𝑓4𝑓𝑝0
+ ⋯+ 717𝑓507𝑓𝑝507

= 1 

9. 823𝑓0𝑓𝑝0
+ 969𝑓1𝑓𝑝0

+ 1747𝑓2𝑓𝑝0
+ 1670𝑓3𝑓𝑝0

+ 760𝑓4𝑓𝑝0
+ ⋯+ 1273𝑓507𝑓𝑝507

= 1 

10. 1189𝑓0𝑓𝑝0
+ 1475𝑓1𝑓𝑝0

+ 1956𝑓2𝑓𝑝0
+ 1387𝑓3𝑓𝑝0

+ 1836𝑓4𝑓𝑝0
+ ⋯+ 1180𝑓507𝑓𝑝507

= 1 

11. 1451𝑓0𝑓𝑝0
+ 1841𝑓1𝑓𝑝0

+ 414𝑓2𝑓𝑝0
+ 1596𝑓3𝑓𝑝0

+ 1553𝑓4𝑓𝑝0
+ ⋯+ 1497𝑓507𝑓𝑝507

= 1 

12. 1321𝑓0𝑓𝑝0
+ 55𝑓1𝑓𝑝0

+ 780𝑓2𝑓𝑝0
+ 54𝑓3𝑓𝑝0

+ 1762𝑓4𝑓𝑝0
+ ⋯+ 171𝑓507𝑓𝑝507

= 1 

13. 1877𝑓0𝑓𝑝0
+ 1973𝑓1𝑓𝑝0

+ 1042𝑓2𝑓𝑝0
+ 420𝑓3𝑓𝑝0

+ 220𝑓4𝑓𝑝0
+ ⋯+ 1584𝑓507𝑓𝑝507

= 1 

14. 1784𝑓0𝑓𝑝0
+ 481𝑓1𝑓𝑝0

+ 912𝑓2𝑓𝑝0
+ 682𝑓3𝑓𝑝0

+ 586𝑓4𝑓𝑝0
+ ⋯+ 1201𝑓507𝑓𝑝507

= 1 

15. 53𝑓0𝑓𝑝0
+ 388𝑓1𝑓𝑝0

+ 1468𝑓2𝑓𝑝0
+ 552𝑓3𝑓𝑝0

+ 848𝑓4𝑓𝑝0
+ ⋯+ 2021𝑓507𝑓𝑝507

= 1 

16. 775𝑓0𝑓𝑝0
+ 705𝑓1𝑓𝑝0

+ 1375𝑓2𝑓𝑝0
+ 1108𝑓3𝑓𝑝0

+ 718𝑓4𝑓𝑝0
+ ⋯+ 301𝑓507𝑓𝑝507

= 1 

17. 140𝑓0𝑓𝑝0
+ 1427𝑓1𝑓𝑝0

+ 1692𝑓2𝑓𝑝0
+ 1015𝑓3𝑓𝑝0

+ 1274𝑓4𝑓𝑝0
+ ⋯+ 1255𝑓507𝑓𝑝507

= 1 

18. 1805𝑓0𝑓𝑝0
+ 792𝑓1𝑓𝑝0

+ 366𝑓2𝑓𝑝0
+ 1332𝑓3𝑓𝑝0

+ 1181𝑓4𝑓𝑝0
+ ⋯+ 706𝑓507𝑓𝑝507

= 1 

19. 577𝑓0𝑓𝑝0
+ 409𝑓1𝑓𝑝0

+ 1779𝑓2𝑓𝑝0
+ 6𝑓3𝑓𝑝0

+ 1498𝑓4𝑓𝑝0
+ ⋯+ 1046𝑓507𝑓𝑝507

= 1 

20. 905𝑓0𝑓𝑝0
+ 1229𝑓1𝑓𝑝0

+ 1396𝑓2𝑓𝑝0
+ 1419𝑓3𝑓𝑝0

+ 172𝑓4𝑓𝑝0
+ ⋯+ 1979𝑓507𝑓𝑝507

= 1 

⋮ 
507. 409𝑓0𝑓𝑝0

+ 1421𝑓1𝑓𝑝0
+ 194𝑓2𝑓𝑝0

+ 1260𝑓3𝑓𝑝0
+ 2038𝑓4𝑓𝑝0

+ ⋯+ 468𝑓507𝑓𝑝507
= −1 

508. 1396𝑓0𝑓𝑝0
+ 1061𝑓1𝑓𝑝0

+ 360𝑓2𝑓𝑝0
+ 1882𝑓3𝑓𝑝0

+ 1426𝑓4𝑓𝑝0
+ ⋯+ 2016𝑓507𝑓𝑝507

= −1 

Below is the illustration of polynomial equations that represent bits of ntruhrss701 plaintext sample 

with plaintext = {1,0700}, ciphertext = {1363,2145,4414,5577,… ,3025,−7599}, 𝑞 = 8192, 𝑛 = 701. 

1. 770𝑓0𝑓𝑝0
+ 5760𝑓1𝑓𝑝0

+ 7298𝑓2𝑓𝑝0
+ 4844𝑓3𝑓𝑝0

+ 1343𝑓4𝑓𝑝0
+ ⋯+ 1442𝑓699𝑓𝑝699

= 1 
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2. 1552𝑓0𝑓𝑝0
+ 6530𝑓1𝑓𝑝0

+ 4866𝑓2𝑓𝑝0
+ 3950𝑓3𝑓𝑝0

+ 6187𝑓4𝑓𝑝0
+ ⋯+ 7070𝑓699𝑓𝑝699

= 0 

3. 3821𝑓0𝑓𝑝0
+ 7312𝑓1𝑓𝑝0

+ 5636𝑓2𝑓𝑝0
+ 1518𝑓3𝑓𝑝0

+ 5293𝑓4𝑓𝑝0
+ ⋯+ 6462𝑓699𝑓𝑝699

= 0 

4. 4984𝑓0𝑓𝑝0
+ 1389𝑓1𝑓𝑝0

+ 6418𝑓2𝑓𝑝0
+ 2288𝑓3𝑓𝑝0

+ 2861𝑓4𝑓𝑝0
+ ⋯+ 1109𝑓699𝑓𝑝699

= 0 

5. 6426𝑓0𝑓𝑝0
+ 2552𝑓1𝑓𝑝0

+ 495𝑓2𝑓𝑝0
+ 3070𝑓3𝑓𝑝0

+ 3631𝑓4𝑓𝑝0
+ ⋯+ 6346𝑓699𝑓𝑝699

= 0 

6. 3862𝑓0𝑓𝑝0
+ 3994𝑓1𝑓𝑝0

+ 1658𝑓2𝑓𝑝0
+ 5339𝑓3𝑓𝑝0

+ 4413𝑓4𝑓𝑝0
+ ⋯+ 442𝑓699𝑓𝑝699

= 0 

7. 3254𝑓0𝑓𝑝0
+ 1430𝑓1𝑓𝑝0

+ 3100𝑓2𝑓𝑝0
+ 6502𝑓3𝑓𝑝0

+ 6682𝑓4𝑓𝑝0
+ ⋯+ 5638𝑓699𝑓𝑝699

= 0 

8. 6093𝑓0𝑓𝑝0
+ 822𝑓1𝑓𝑝0

+ 536𝑓2𝑓𝑝0
+ 7944𝑓3𝑓𝑝0

+ 7845𝑓4𝑓𝑝0
+ ⋯+ 4098𝑓699𝑓𝑝699

= 0 

9. 3138𝑓0𝑓𝑝0
+ 3661𝑓1𝑓𝑝0

+ 8120𝑓2𝑓𝑝0
+ 5380𝑓3𝑓𝑝0

+ 1095𝑓4𝑓𝑝0
+ ⋯+ 7146𝑓699𝑓𝑝699

= 0 

10. 5426𝑓0𝑓𝑝0
+ 706𝑓1𝑓𝑝0

+ 2767𝑓2𝑓𝑝0
+ 4772𝑓3𝑓𝑝0

+ 6723𝑓4𝑓𝑝0
+ ⋯+ 3111𝑓699𝑓𝑝699

= 0 

11. 2430𝑓0𝑓𝑝0
+ 2994𝑓1𝑓𝑝0

+ 8004𝑓2𝑓𝑝0
+ 7611𝑓3𝑓𝑝0

+ 6115𝑓4𝑓𝑝0
+ ⋯+ 4082𝑓699𝑓𝑝699

= 0 

12. 890𝑓0𝑓𝑝0
+ 8190𝑓1𝑓𝑝0

+ 2100𝑓2𝑓𝑝0
+ 4656𝑓3𝑓𝑝0

+ 762𝑓4𝑓𝑝0
+ ⋯+ 7455𝑓699𝑓𝑝699

= 0 

13. 3938𝑓0𝑓𝑝0
+ 6650𝑓1𝑓𝑝0

+ 7296𝑓2𝑓𝑝0
+ 6944𝑓3𝑓𝑝0

+ 5999𝑓4𝑓𝑝0
+ ⋯+ 2602𝑓699𝑓𝑝699

= 0 

14. 8095𝑓0𝑓𝑝0
+ 1506𝑓1𝑓𝑝0

+ 5756𝑓2𝑓𝑝0
+ 3948𝑓3𝑓𝑝0

+ 95𝑓4𝑓𝑝0
+ ⋯+ 4937𝑓699𝑓𝑝699

= 0 

15. 874𝑓0𝑓𝑝0
+ 5663𝑓1𝑓𝑝0

+ 612𝑓2𝑓𝑝0
+ 2408𝑓3𝑓𝑝0

+ 5291𝑓4𝑓𝑝0
+ ⋯+ 3825𝑓699𝑓𝑝699

= 0 

16. 4247𝑓0𝑓𝑝0
+ 6634𝑓1𝑓𝑝0

+ 4769𝑓2𝑓𝑝0
+ 5456𝑓3𝑓𝑝0

+ 3751𝑓4𝑓𝑝0
+ ⋯+ 4335𝑓699𝑓𝑝699

= 0 

17. 7586𝑓0𝑓𝑝0
+ 1815𝑓1𝑓𝑝0

+ 5740𝑓2𝑓𝑝0
+ 1421𝑓3𝑓𝑝0

+ 6799𝑓4𝑓𝑝0
+ ⋯+ 5652𝑓699𝑓𝑝699

= 0 

18. 1729𝑓0𝑓𝑝0
+ 5154𝑓1𝑓𝑝0

+ 921𝑓2𝑓𝑝0
+ 2392𝑓3𝑓𝑝0

+ 2764𝑓4𝑓𝑝0
+ ⋯+ 1259𝑓699𝑓𝑝699

= 0 

19. 617𝑓0𝑓𝑝0
+ 7489𝑓1𝑓𝑝0

+ 4260𝑓2𝑓𝑝0
+ 5765𝑓3𝑓𝑝0

+ 3735𝑓4𝑓𝑝0
+ ⋯+ 3900𝑓699𝑓𝑝699

= 0 

⋮ 
699. 1127𝑓0𝑓𝑝0

+ 6377𝑓1𝑓𝑝0
+ 6595𝑓2𝑓𝑝0

+ 912𝑓3𝑓𝑝0
+ 7108𝑓4𝑓𝑝0

+ ⋯+ 6815𝑓699𝑓𝑝699
= 0 

700. 2432𝑓0𝑓𝑝0
+ 894𝑓1𝑓𝑝0

+ 3348𝑓2𝑓𝑝0
+ 6849𝑓3𝑓𝑝0

+ 1882𝑓4𝑓𝑝0
+ ⋯+ 7029𝑓699𝑓𝑝699

= 0 

 

The system of equations generated in this research consists of 𝑛2 polynomial equations, 5082 for 

ntruhps2048509 and 7002 for ntruhrss701. 

3.2 Solving System of Polynomial Equations 

The way to solve the system of polynomial equations in this research basically uses the concept of 

linearization in XL Algorithm [15] and Gaussian elimination solution method, but the concept of extending 

system of polynomial equations in XL Algorithm is not suitable with this research because it will increase 

the number of monomials in the polynomial equations. To fulfill the number of equations needed in 

performing Gaussian elimination, the option chosen is by generating 𝑛 plaintext ciphertext pairs and 

converting 𝑛2 plaintext bits into 𝑛2 polynomial equations. 

Next step is linearizing the system of polynomial equations that have been formed in Section 3.1. 

Linearization is carried out to convert polynomial equations into linear equations to facilitate the Gaussian 

elimination process. In this research, the monomials contained in the system of polynomial equations on 

ntruhps2048509 are 5082, while on ntruhrss701 are 7002. Linearization is performed by substituting the 

monomials 𝑓0𝑓𝑝0
, 𝑓0𝑓𝑝1

, …, 𝑓𝑛𝑓𝑝𝑛
 in the equations into monomials of degree 1, namely M1, M2, M3, ..., 

M(𝑛2) respectively. 

The linearized equation is converted into an 𝑛2 × 𝑛2 matrix. Gaussian elimination is then performed 

on the matrix. The coefficients of the polynomial equations are in ℤ𝑞 so that in this research the elementary 

row operations performed must pay attention to the rules of operation on the modulus 𝑞. The 𝑞 values in 

NTRU-HPS and NTRU-HRSS are multiple of 2. Some coefficients will be not relatively prime with 𝑞 that 

means they do not have an inverse in ℤ𝑞. When the leading entry of a row has no inverse modulo 𝑞 then it is 

difficult to convert the value to 1. Therefore, the elementary row operation in this research will only produce 

matrices that are close to the row echelon form. Below are the tricks in performing row echelon operations 

in 𝑞 modulus in this research: 

a. Look at the leading entry of the top row. 

1) If the leading entry is odd, calculate the inverse of the leading entry. Multiply all entries in the row by 

the inverse of its leading entry. Do multiplication and subtraction like row echelon operation in 

common to the all lower row. After that, do the step in point h. 

2) If the leading entry is even then do step in point b. 
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b. Look at the leading entry of the lower row. 

1) If the leading entry of the lower row is odd, swap it with the top row and do step in point a.1. 

2) If the leading entry is even then repeat step in point b until the lowest row. 

3) If the leading entries in all rows are even, continue to the step in point c. 

c. Count the factor of the leading entries of this row and all lower rows. Move the row which has the smallest 

factor of 2 to the top. 

d. Count gcd between leading entry of the top row and leading entries of all lower rows. 

e. Divide each lower row by its gcd which obtained in point d, then calculate the inverse of this division.  

f. Multiply each lower row by the value obtained in point e, and divide it by gcd in point d. 

g. Subtract each entry in the row by the product of the top row and the value at point f. 

h. If the top row in this step is not the second lowest row of this matrix, repeat all the steps form point a. If 

not then the calculation is complete. 

Example 2. Below is matrix “A” which coefficient is in modulus 𝑞 = 8192. The leading entries in the top 

row and all lower rows are even, so it is needed to carry out the steps in point b until h. 

[
 
 
 
 
1 1771
0 1

5292 7068 7371
3783 4032 6124

0    0   
0   
0   

 0
 0

   
 

6142 398 2976
1700
6896

6344
4644

1776
7140]

 
 
 
 

 

• Count the factor of the leading entries. 

𝑎3,3 = 6142 = 2 ∙ 3071  𝑎3,3 becomes top row 

𝑎4,3 = 1700 = 22 ∙ 425  

𝑎5,3 = 6896 = 24 ∙ 431  

• Count gcd between leading entry of the top row and leading entries of all lower rows. 

𝑔𝑐𝑑(𝑎3,3, 𝑎4,3) = 𝑔𝑐𝑑(6142,1700) = 2  

𝑔𝑐𝑑(𝑎3,3, 𝑎5,3) = 𝑔𝑐𝑑(6142,6896) = 2  

• Divide each lower row by its gcd which obtained above, then calculate the inverse of this division. 

(
𝑎3,3

𝑔𝑐𝑑(𝑎3,3,𝑎4,3)
)
−1

 (𝑚𝑜𝑑 8192) ≡ (
6142

2
)
−1

(𝑚𝑜𝑑 8192) ≡ 5119  

(
𝑎3,3

𝑔𝑐𝑑(𝑎3,3,𝑎5,3)
)
−1

 (𝑚𝑜𝑑 8192) ≡ (
6142

2
)
−1

(𝑚𝑜𝑑 8192) ≡ 5119  

• Multiply each lower row by the value obtained above, and divide it by the gcd. 

𝑥4,3 ≡
𝑎4,3

𝑔𝑐𝑑(𝑎3,3,𝑎5,3)
∙ (

𝑎3,3

𝑔𝑐𝑑(𝑎3,3,𝑎5,3)
)
−1

(𝑚𝑜𝑑 8192) ≡
1700

2
∙ 5119(𝑚𝑜𝑑 8192) ≡ 1198  

𝑥5,3 ≡
𝑎5,3

𝑔𝑐𝑑(𝑎3,3,𝑎5,3)
∙ (

𝑎3,3

𝑔𝑐𝑑(𝑎3,3,𝑎5,3)
)
−1

(𝑚𝑜𝑑 8192) ≡
6896

2
∙ 5119(𝑚𝑜𝑑 8192) ≡ 4744  

• Subtract each entry in the row by the product of the top row and the value at point f 

𝑎4,3
′ = 𝑎4,3 − 𝑎3,3 ∗ 𝑥4,3 (𝑚𝑜𝑑 𝑞) = 1700 − 6142 ∗ 1198 (𝑚𝑜𝑑 8192) = 0  

𝑎5,3
′ = 𝑎5,3 − 𝑎3,3 ∗ 𝑥5,3 (𝑚𝑜𝑑 𝑞) = 6896 − 6142 ∗ 4744 (𝑚𝑜𝑑 8192) = 0  

The same process done to 𝑎4,4, 𝑎4,5, 𝑎5,4, 𝑎5,5. 

The elementary row operation on the system of polynomial equations representing the NTRU-HPS and 

NTRU-HRSS first plaintext bits in Example 2 resulted in the matrices shown in Table 6 and Table 7, 

respectively. 
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Table 6. Matrix of NTRU-HPS 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 … M508 ptx 

𝑐1 1 149 744 995 414 852 42 1750 1573 82 398 2034 623 190 1701 1875 13 2015 … 492 1 

𝑐2 0 1 1295 752 1022 150 188 1826 1719 1099 1515 607 1196 706 2007 1952 137 298 … 316 0 

𝑐3 0 0 1 1701 1609 1122 762 1500 705 1031 772 972 1307 229 1417 318 1234 362 … 1439 0 

𝑐4 0 0 0 1 168 471 794 190 843 1483 926 1493 1696 698 1606 434 780 1103 … 1303 1 

𝑐5 0 0 0 0 1 104 695 1754 222 2027 395 766 501 768 922 422 1202 1452 … 1379 1 

𝑐6 0 0 0 0 0 1 341 59 1521 1049 679 1366 909 1748 509 303 370 1653 … 805 0 

𝑐7 0 0 0 0 0 0 1 79 1260 369 221 1428 852 112 660 1916 105 1655 … 1363 -1 

𝑐8 0 0 0 0 0 0 0 1 1604 314 933 1148 1195 566 1211 184 707 1479 … 1903 0 

𝑐9 0 0 0 0 0 0 0 0 1 826 2040 63 185 664 1201 806 1041 780 … 1144 0 

𝑐10 0 0 0 0 0 0 0 0 0 1 870 84 161 1811 714 1279 1652 499 … 1754 0 

𝑐11 0 0 0 0 0 0 0 0 0 0 1 1578 1182 119 41 1128 1329 702 … 226 0 

𝑐12 0 0 0 0 0 0 0 0 0 0 0 1 1414 1858 1955 725 1508 133 … 741 0 

𝑐13 0 0 0 0 0 0 0 0 0 0 0 0 1 416 1936 519 1853 1434 … 900 0 

𝑐14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1954 1555 2014 1720 … 206 -1 

𝑐15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1247 1689 1277 … 1553 0 

𝑐16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1234 1167 … 452 0 

𝑐17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 174 … 306 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑐508 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 1970 0 

Table 7. Matrix of NTRU-HRSS 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 … M700 ptx 

𝑐1 1 3280 2452 4582 1217 2293 876 3844 2802 7917 3121 6873 7650 375 1333 7 1603 7053 … 5106 0 

𝑐2 0 1 3130 7072 2025 7 2920 2559 5184 4872 5196 3501 1984 198 6929 2102 4615 4327 … 6446 0 

𝑐3 0 0 1 6894 5547 8191 3934 1897 7869 76 1271 1114 6152 1354 1258 668 8136 2515 … 7758 0 

𝑐4 0 0 0 1 1441 3381 826 8055 2995 1845 1099 3209 8157 6306 2646 5325 4590 6884 … 4187 0 

𝑐5 0 0 0 0 1 7254 1953 7115 6558 2080 1221 5742 2841 4998 684 6753 782 3804 … 1107 -1 

𝑐6 0 0 0 0 0 1 4736 4097 2373 7576 16 6517 1728 7161 6672 7204 4201 3672 … 4783 -1 

𝑐7 0 0 0 0 0 0 1 2674 6913 3917 5112 1293 8141 1484 4389 4068 3110 4904 … 2690 1 

𝑐8 0 0 0 0 0 0 0 1 1258 2525 2149 3868 5781 997 1140 1705 5100 50 … 2096 1 

𝑐9 0 0 0 0 0 0 0 0 1 920 2765 2763 5200 1285 3885 1678 4993 5458 … 5771 1 

𝑐10 0 0 0 0 0 0 0 0 0 1 1186 5424 1248 4846 6044 5019 7994 1618 … 6691 -1 

𝑐11 0 0 0 0 0 0 0 0 0 0 1 7402 3306 4640 1568 2240 2991 1274 … 3607 0 

𝑐12 0 0 0 0 0 0 0 0 0 0 0 1 3681 3666 5603 3142 3086 5467 … 4332 1 

𝑐13 0 0 0 0 0 0 0 0 0 0 0 0 1 4661 3027 6917 1472 2939 … 6887 0 

𝑐14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6054 1170 3817 6974 … 73 -1 

𝑐15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2797 1713 4912 … 6076 1 

𝑐16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2928 6133 … 4972 -1 

𝑐17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6346 … 5454 1 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

𝑐700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 1 1 

 
The steps in Section 3.1 and Section 3.2 done to all plaintext ciphertext sample and form matrix with 

size 7002 × 7002. 

3.3 Key Recovery 

The monomials in the resulting matrices in Section 3.2 that are then converted back to their original 

form (𝑓𝑖𝑓𝑝𝑗
). The difficulty is the value of each coefficient obtained in the matrices is the result of 
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multiplication between 𝑓𝑖 and 𝑓𝑝𝑗
, which means it will result in many solutions. Further research is needed 

on efficient calculations in factorizing numbers in the 𝑞 modulus. Therefore, in this research, algebraic 

cryptanalysis on the NTRU-HPS and NTRU-HRSS algorithms cannot be carried out until the key recovery 

stage. 

4. CONCLUSIONS 

The NTRU-HPS algorithm with 𝑞 = 2048, 𝑛 = 509 and NTRU-HRSS with 𝑛 = 701 are resistant to 

algebraic cryptanalysis. However, there is still potential for algebraic cryptanalysis to be successfully 

performed on NTRU-HPS and NTRU-HRSS with further research in the future. 
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