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 ABSTRACT 

Article History: 
There are three conditions for a topological space to be said a topological manifold of 

dimension 𝑛 : Hausdorff space, second-countable, and the existence of homeomorphism of a 

neighborhood of each point to an open subset of ℝ𝑛 or 𝑛-dimensional locally Euclidean. The 

differentiable structure is given if the intersection of two charts is an empty chart or its 

transition map is differentiable. In this article, we study a differentiable manifold on finite 

dimensional real vector spaces.  The aim is to prove that any finite-dimensional vector space is 

a differentiable manifold. First of all, it is proved that a finite dimensional vector space is a 

topological manifold by constructing a norm as its topology. Given a metric which is induced 

by a norm. Two norms on a finite dimensional vector space are always equivalent and they are 

determine the same topology.  Secondly, it is proved that the transition map in the finite 

dimensional vector space is differentiable. As conclusion, we have that any finite dimensional 

vector space with independent norm topology choice is a differentiable manifold.  As a matter 

of discussion, it can be studied that the vector space of all linear operators of a finite 

dimensional vector space has a differentiable manifold structure as well. 
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1. INTRODUCTION 

A manifold is a key word which gives a notion of a Lie group. It is interesting to study structures of 

Lie groups in the term of manifolds because a Lie group is nothing but a differentiable manifold. Furthermore, 

it corresponds to a Lie algebra. As the examples, it is well known that the notions of smooth functions, smooth 

maps, tangent bundles, cotangent bundles, vector bundles, left-invariant vector fields, tensor fields, 𝑘-forms, 

and symplectic manifolds (see [1], [2], [3], [4], [5]) are important parts to study manifolds. Roughly speaking, 

a Lie group is a group which has a differentiable manifold structure whose a map 𝜏 ∶  𝐺 × 𝐺 ∋ (𝑎, 𝑏) ↦
𝑎𝑏−1 ∈ 𝐺 is differentiable. By computing a tangent space of 𝐺 at the identity element 𝑒 ∈ 𝐺, we have a Lie 

algebra isomorphism among Lie(𝐺), the tangent space 𝑇𝑒𝐺, and a Lie algebra 𝔤. In the other words, Lie(𝐺) =
𝔤 and the tangent space 𝑇𝑒𝐺 are isomorphic as a vector space in which a vector space isomorphism is given 

by the evaluation map 𝜂: Lie(𝐺) ∋ 𝑋 ↦ 𝑋𝑒 ∈ 𝑇𝑒𝐺. In this research, applying the evaluation map, we get that 

the space 𝔤 is a finite dimensional space. Therefore, the dimension of 𝔤  is equal to dimension of 𝐺. Finally, 

we can observe that both Lie(𝐺) = 𝔤 and 𝑇𝑒𝐺 have an algebraic structure as a finite dimensional vector space.  

That is why the notion of a vector space is very important in Lie groups and Lie algebras. Particularly, we 

shall focus on the real vector space with finite dimension as a manifold.  

Corresponding to a Lie algebra, it is well known that a Lie algebra comes from a Lie group by 

construction of its tangent space at the identity (see in [3] and [6]).  The Lie algebra is also a vector space 

with certain conditions. Moreover, a vector space can act as a carrier space in representation theory of Lie 

groups [7]. Let 𝐺 be a group and 𝑉 be a vector space. A representation of 𝐺 on 𝑉 is given by a linear map 

𝜓𝑔: 𝑉 ∋ 𝑣 ↦ 𝜓𝑔(𝑣) ∈ 𝑉. We again state that a vector space is very important in the case of representation 

theory of Lie groups and Lie algebras.  

In summary, a 𝑘-dimensional topological manifold is a topological space in which it is a Hausdorff 

space, a second countable, and a locally Euclidean space of dimension 𝑘. Equipped with a maximum smooth 

atlas then we have the notion of a differentiable structure on the topological manifold. The notion of manifolds 

come in many researches (see for example in reduction theory [8], information of geometrical evaluation [9],  

application of liquid metal related to manifold [10], symplectic structure on affine Lie group [11] , Poisson 

Lie group [12], and contact Lie groups [13]). Therefore, we believe that the significance of research in 

manifolds is very important both in pure and applied mathematics including in non-mathematics research 

areas.  Manifolds arise in many branches of researches. Thus, we see it as very necessary to investigate the 

structure of a finite dimensional real vector space as a differentiable manifold.  

In contrast to the previous results, in this paper we restrict our study to the case of finite dimensional 

real vector space. We investigate that a finite dimensional real vector space has a differentiable manifold 

structure. The idea of proof come from [1] and some facts about topology in a finite dimensional vector space. 

As a differentiable manifold, a real vector space of finite dimension has two structures as a topological 

manifold and as a derivation or a smooth structure. Firstly, the proof of a finite dimensional vector space as 

a topological manifold considered by construction an isomorphism linear map which is given  𝜓: 𝑉 ∋ 𝑣 ↦
[𝑣]𝔅 ∈ ℝ𝑛 where 𝑉 is the real vector space of dimension 𝑛 whose basis 𝔅 = {𝑣1, 𝑣2, … , 𝑣𝑛} and [𝑣]𝔅 is a 

coordinate of vector 𝑣 ∈ 𝑉.  Another construction of an isomorphism linear map can be given by 𝜂: ℝ𝑛 ∋
𝑥 ↦ 𝑥𝑘𝑣𝑘 ∈ 𝑉 with 𝑥𝑘𝑣𝑘 is written in the Einsten summation for 𝑘 = 1,2,3, … , 𝑛.  Secondly, we prove 𝑉 has 

a differentiable structure by determining a smooth/differentiable transition map of 𝑉.   

2. RESEARCH METHODS 

To explore a finite dimensional real vector space as a differentiable manifold, we shall prepare some 

basic concepts. They are notions of topological spaces, topological manifolds, smooth/differentiable 

manifolds, a metric induced by a norm. Furthermore, on a finite dimensional vector space we have that both 

norms are equivalent and determine the same topology. 

Definition 1 [1]. Let 𝐺 be a topological space. The space 𝐺 is said to be a topological manifold of dimension 

𝑘 if the following conditions are satisfied : 

1. For each 𝑔1, 𝑔2 ∈ 𝐺 with 𝑔1 ≠ 𝑔2, there exist open subsets 𝐻1, 𝐻2 ⊆ 𝐺 whose intersection is an empty set 

such that 𝑔1 ∈ 𝐻1 and 𝑔2 ∈ 𝐻2. We name  𝐺 as a Hausdorff space.  
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2. The space 𝐺 has a countable topological basis. We call 𝐺 as a second countable.  

3. Let 𝑔 be an arbitrary element of 𝐺. There exists an open subset 𝐻 ⊆ 𝐺 with 𝑔 ∈ 𝐻 ⊆ 𝐺 and an open subset 

�̃� ⊆ ℝ𝑘 such that the map defined by 𝜂: 𝐻 ∋ 𝑔 ↦ 𝜂(𝑔) ∈ �̃� ⊆ ℝ𝑘 is a homeomorphism. In the other 

words, G is homeomorphic to ℝ𝑘 or k-dimensional locally Euclidean.  

Example 1. The familiar examples of manifolds are Euclidean space ℝ𝑛, 𝕊𝑛−1 = {𝑥 ∈ ℝ𝑛  |  ‖𝑥‖ = 1} ⊆
ℝ𝑛, the set of invertible matrices GL(𝑛, ℝ𝑛).  

Let  𝐻 ⊆ 𝐺 be an open subset of a topological manifold of dimension 𝑘. A pair (𝐻, 𝜂) is called a chart 

for 𝐺 if 𝑈 is homeomorphic to an open subset �̃� = 𝜂(𝐻) ⊆ ℝ𝑘. In coordinate we write 𝜂(𝑔) =
(𝑥1(𝑔), 𝑥2(𝑔), … , 𝑥𝑘(𝑔)) in which 𝑥𝑖 is a map defined from 𝐻 into ℝ. In the other words, (𝑥1, 𝑥2, … , 𝑥𝑘) is 

the component function of 𝜂. We notice here that a chart for a topological manifold is not unique.  

Definition 2 [1]. Let 𝐺 be a 𝑘-dimensional topological manifold whose charts are (𝐻1, 𝜂1) and (𝐻2, 𝜂2). Let 

the intersection of these charts be not an empty set. The map defined by 

𝜂1 ∘ 𝜂2
−1: 𝜂2(𝐻1 ∩ 𝐻2) → 𝜂1(𝐻1 ∩ 𝐻2)    (1) 

is called a transition map. The charts (𝐻1, 𝜂1) and (𝐻2, 𝜂2) are differentiable compatible each other if its 

intersection is an empty set or the transition map  𝜂1 ∘ 𝜂2
−1 given by Equation 1 is a diffeomorphism.  

In addition, let (𝐻𝛼 , 𝜂𝛼) charts for the 𝑘-dimensional topological manifolds 𝐺. An atlas ℌ for 𝐺 is a collection 

of charts (𝐻𝛼 , 𝜂𝛼) such that 𝐺 = ⋃ 𝐻𝛼𝛼 . The atlas ℌ is differentiable if any two charts are differentiable 

compatible each other and the atlas ℌ is maximal if there is no larger atlas containing ℌ. We mention here 

that some references use the notion ‘’smooth’’ instead of ‘’differentiable’’ notion.  

Definition 3 [1]. A 𝑘-dimensional topological manifold 𝐺 is said to be differentiable if it has a maximal 

differentiable atlas.  

Based on Definition 3 above, by construction a transition map on a 𝑘-dimensional topological 

manifold we can investigate whether an atlas has a differentiable structure or not. Furthermore, on a finite 

dimensional real vector space 𝑉 we shall see that a chart can be determined as a linear map isomorphism 

between 𝑉 and ℝ𝑘. The differentiable structure on 𝑉 is derived from the differentiable structure of the 

transition map.   

Definition 4 [1]. Let 𝑋 be a non-empty set with two metrics 𝑑1 and 𝑑2. Let these metrics define topologies 

Γ1 and Γ2  for 𝑋. The metrics 𝑑1 and 𝑑2 are said topologically equivalent if determine the same topology. In 

other words, the metrics 𝑑1 and 𝑑2 are said topologically equivalent if Γ1 = Γ2.  

Let 𝑑 be a metric in a topological space 𝑋. The subset 𝑌 ⊆ 𝑋 is open in 𝑋 if for each 𝑦 ∈ 𝑌, there exists 

𝑟 > 0 such that 𝑦 ∈ 𝔅𝑟(𝑦) = {𝑥 ∈ 𝑋  ; 𝑑(𝑥, 𝑦) < 𝑟} ⊆ 𝑌. We denote by 𝔅𝑟
1(𝑦) = {𝑥 ∈ 𝑋  ; 𝑑1(𝑥, 𝑦) < 𝑟} an 

open ball with respect to a metric 𝑑1. Two metrics 𝑑1 and 𝑑2 are topologically equivalent if for all 𝑥 ∈ 𝑋 and 

for all 𝑟 > 0 there exist 𝑟1, 𝑟2 > 0 such that  

𝐵𝑟1
1 (𝑥) ⊆ 𝐵𝑟

2(𝑥)   and 𝐵𝑟2
2 (𝑥) ⊆ 𝐵𝑟

1(𝑥).    (2) 

For a metric induced by a norm, then we have for simpler case in Definition 4 written as follows.  

Theorem 1 [1]. Let 𝑉 be a real finite dimensional vector space equipped with norms ⟦∘⟧1 and ⟦∘⟧2 which 

induce the metrics 𝑑1 and 𝑑2 for topologies  Γ1 and Γ2  of  𝑉. The necessary and sufficient conditions for 

norms ⟦∘⟧1 and ⟦∘⟧2 to be topologically equivalent are the existence of 𝐾1, 𝐾2 ∈ ℝ>0 such that 𝐾1⟦∘⟧1 ≤
⟦∘⟧2 ≤ 𝐾2⟦∘⟧1.  

Proof. Firstly, we prove the necessary condition. Let ⟦∘⟧1 and ⟦∘⟧2 be topologically equivalent. It means that 

Γ1 = Γ2, we shall prove that there exist 𝐾1, 𝐾2 ∈ ℝ>0 such that 𝐾1⟦∘⟧1 ≤ ⟦∘⟧2 ≤ 𝐾2⟦∘⟧1. It is enough to prove 

𝐾1⟦𝑝⟧1 ≤ ⟦𝑝⟧2 ≤ 𝐾2⟦𝑝⟧1 for each 𝑝 ∈ 𝐵1
1(0) ∩ 𝐵1

2(0) = {𝑦1 ∈ 𝑉  ;  ⟦𝑦⟧1 < 1} ∩ {𝑦2 ∈ 𝑉  ;  ⟦𝑦⟧2 < 1}. 

Another case can be generalized by multiple of 𝑝. By hypothesis we have Equation (2) for case 𝑟 = 1 and 

0 < 𝑟1, 𝑟2 < 1. Namely, we have  

𝐵𝑟1
1 (0) ⊆ 𝐵1

2(0)   and 𝐵𝑟2
2 (0) ⊆ 𝐵1

1(0).    (3) 

From Equation (3) then we have  
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⟦𝑝⟧2 ≤
⟦𝑝⟧1

𝑟1
   and ⟦𝑝⟧1 ≤

⟦𝑝⟧2

𝑟2
.   (4) 

Re-arranging Equation (4), then we obtain the following in-equality : 

𝑟2⟦𝑝⟧1 ≤ ⟦𝑝⟧2 ≤
1

𝑟1
⟦𝑝⟧1.     (5) 

Choose 𝐾1 = 𝑟2 and 𝐾2 =
1

𝑟1
 then we complete the proof as desired.  

Secondly, we assume that there exist  𝐾1, 𝐾2 ∈ ℝ>0 such that for each 𝑝 ∈ 𝑉,  𝐾1⟦𝑝⟧1 ≤ ⟦𝑝⟧2 ≤ 𝐾2⟦𝑝⟧1. 

Let 𝑝 = 𝑝1 − 𝑝2, then we have  

  𝐾1⟦𝑝1 − 𝑝2⟧1 ≤ ⟦𝑝1 − 𝑝2⟧2 ≤ 𝐾2⟦𝑝1 − 𝑝2⟧1.      (6) 

Equivalently, by writing Equation (6) in the following formula :  

𝐾1𝑑1(𝑝1, 𝑝2) ≤ 𝑑2(𝑝1 − 𝑝2) ≤ 𝐾2𝑑1(𝑝1, 𝑝2).    (7) 

In the other words, we can choose 𝑟1 = 𝑟/𝐾2 and 𝑟2 = 𝐾1𝑟 such that we obtain  

𝐵𝑟/𝐾2

1 (𝑝) ⊆ 𝐵𝑟
2(𝑝)   and 𝐵𝐾1𝑟

2 (𝑝) ⊆ 𝐵𝑟
1(𝑝),    (8) 

For all 𝑝 ∈ 𝑉 and 𝑟 > 0. Then we complete all proof.  

∎ 

Our conclusion state as a FACT 1 : Equivalent norms always give the same topology.  

Theorem 2 [1]. Let 𝑉 be a real finite dimensional vector space equipped with two  norms ⟦∘⟧1 and ⟦∘⟧2 

which induce the metrics 𝑑1 and 𝑑2. Then norms ⟦∘⟧1 and ⟦∘⟧2 are equivalent or considered the same 

topology for 𝑉.  

Our conclusion state as a FACT 2 : Any two norms on a real finite dimensional vector space are equivalent.  

3. RESULTS AND DISCUSSION 

In this section, firstly we state some previous results corresponding to the Euclidean space ℝ𝑛 as a 

topological manifold. We give roughly summary from [9] and [14]. Secondly, we give the main result that a 

finite dimensional vector spase is a differentiable manifold. 

Theorem 3 [15].  Let 𝑉 be a metric space whose metric is 𝑑. Then (𝑉, 𝑑) is Hausdorff space.  

Proof. Let 𝑣1 and 𝑣2 be elements of 𝑉, 𝑣1 ≠ 𝑣2,  with 𝑑(𝑣1, 𝑣2) = 𝑟.  We consider two open balls 𝐵𝑟

2

(𝑣1) =

{𝑝 ∈ 𝑉  ; 𝑑(𝑣1, 𝑝) <
𝑟

2
} and 𝐵𝑟

2

(𝑣2) = {𝑞 ∈ 𝑉  ; 𝑑(𝑣2, 𝑞) <
𝑟

2
}. These imply that 𝑣1 ∈ 𝐵𝑟

2

(𝑣1) and 𝑣2 ∈

𝐵𝑟

2

(𝑣2). The next step, we shall show that 𝐵𝑟

2

(𝑣1) ∩ 𝐵𝑟

2

(𝑣2) = ∅. Using contradiction, let 𝑣 ∈ 𝐵𝑟

2

(𝑣1) ∩

𝐵𝑟

2

(𝑣2). Then we have 𝑑(𝑣1, 𝑣) <
𝑟

2
  and 𝑑(𝑣2, 𝑣) <

𝑟

2
. The property of metric implies that  

𝑑(𝑣1, 𝑣2) ≤ 𝑑(𝑣1, 𝑣) + 𝑑(𝑣, 𝑣2) <
𝑟

2
+

𝑟

2
= 𝑟. 

This means that 𝑑(𝑣1, 𝑣2) < 𝑟. The latter is false since 𝑑(𝑣1, 𝑣2) = 𝑟. Thus, 𝐵𝑟

2

(𝑣1) ∩ 𝐵𝑟

2

(𝑣2) = ∅. 

∎ 

 

Remark 1. The Euclidean space ℝ𝒏 and any subspace of ℝ𝒏 are metric spaces. Therefore, ℝ𝒏 is Hausdorff.  

Theorem 4 [14]. The Euclidean space ℝ𝒏 has countable basis.  

Proof.  We claim that the set 𝔅 = {𝐵𝑟(𝑥) ;  𝑥 ∈ ℚ, 𝑟 ∈ ℚ>0 } of all open balls collection with rational centers 

𝑥  and rational radii 𝑟 > 0 is a basis form ℝ𝒏. We recall that the set 𝔅 is a basis for ℝ𝑛 if each open set in 

ℝ𝑛 is a union of sets in 𝔅. In the other words, given an open set 𝑉 ⊆ ℝ𝑛 and an element 𝑣 ∈ 𝑉, then we must 

prove that there exists an open set 𝑊 ∈ 𝔅 such that 𝑝 ∈ 𝑊 ⊆ 𝑉.  
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Let 𝑉 be an open set in  ℝ𝑛 and 𝑣 ∈ 𝑉. Since 𝑈 open, then there exists an open ball 𝐵𝑟(𝑣) with radius 𝑟 is 

rational such that 𝑣 ∈ 𝐵𝑟(𝑣) ⊆ 𝑈. Let 𝑢 be a rational element in  𝐵𝑟

2

(𝑣). We shall show that 𝑣 ∈ 𝐵𝑟

2

(𝑢) ⊆

𝐵𝑟(𝑣) ⊆ 𝑈.  Since 𝑢 ∈ 𝐵𝑟

2

(𝑣) then |𝑢 − 𝑣| < 𝑟/2. Thus, 𝑣 ∈ 𝐵𝑟

2

(𝑢). Let 𝑤 ∈ 𝐵𝑟

2

(𝑢) then  

|𝑣 − 𝑤| = |(𝑣 − 𝑢) + (𝑢 − 𝑤)| ≤ |𝑣 − 𝑢| + |𝑢 − 𝑤| <
𝑟

2
+

𝑟

2
= 𝑟. 

We obtain 𝑤 ∈ 𝐵𝑟(𝑣). Therefore, the set 𝔅 = {𝐵𝑟(𝑥) ;  𝑥 ∈ ℚ, 𝑟 ∈ ℚ>0 } is a basis for ℝ𝑛. But, the set ℚ 

and ℚ>0 are countable. Thus 𝔅 is a countable basis for ℝ𝑛.  

∎ 

Secondly, as mentioned before, we obtained that a real vector space of finite dimension equipped by a 

norm determines a differentiable manifold. An obtained metric is induced by the norm. Formally, in this 

section we state the main result in the following the Proposition 1. The result was obtained in ( [1], pp.17—

18) but we give the complete proof in the own way.   

Proposition 1 [1]. Let 𝑉 be a real vector space of dimension 𝑛 whose basis is 𝔄 = {𝜀𝑘}𝑘=1
𝑛 . Let ⟦∙⟧ be a norm 

on 𝑉 which induces a metric 𝑑. Then 𝑉 is a topological manifold of dimension 𝑛. Moreover, define an 

isomorphism 𝜓: ℝ𝑛 ∋ 𝛼 ↦ 𝛼𝑘𝜀𝑘 ∈ 𝑉. In this case 𝛼𝑘𝜀𝑘 is an abbreviation for ∑ 𝛼𝑘𝜀𝑘
𝑛
𝑘=1  by applying the 

Einstein summation convention.   Using a chart (𝑉, 𝜓−1) then 𝑉 has a differentiable structure. Therefore, a 

space 𝑉 is an 𝑛-differentiable manifold. 

Proof.   Firstly, let 𝑉 be a real vector space of dimension 𝑛 whose basis is 𝔅 = {𝜀𝑘}𝑘=1
𝑛 . Let ⟦∙⟧ be a norm 

on 𝑉 which induces a metric 𝑑. Since 𝑉 be a real vector space of finite dimension, then using FACT 2 we 

have that two norms on 𝑉 are always equivalent. Moreover, using FACT 1 then these norms define the same 

topology on 𝑉. Furthermore, with respect to the norm ⟦∙⟧,  a subset 𝑈 ⊆ 𝑉 is an open set if for each 𝑣 ∈ 𝑉 

there exists 𝑟 > 0 s.t. 𝐵𝑟(𝑣) = {𝑦 ∈ 𝑉   ;  ⟦𝑦 − 𝑥⟧ < 𝑟} ⊆ 𝑈. Let 

𝜓 : ℝ𝑛 ∋ 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ↦ 𝜓(𝑥) = 𝑥𝑘𝜀𝑘 ∈ 𝑉           (9) 

be a continuos linear map.   To see 𝜓 is a linear map, let 𝑎, 𝑏 ∈ ℝ𝑛 and 𝛼 ∈ ℝ. Then 𝜓(𝑎 + 𝑏) =

(𝑎𝑘 + 𝑏𝑘)𝜀𝑘 = 𝑎𝑘𝜀𝑘 + 𝑏𝑘𝜀𝑘 = 𝜓(𝑎) + 𝜓(𝑏).  In addition, 𝜓(𝛼𝑎) = (𝛼𝑎𝑘)𝜀𝑘 = 𝛼(𝑎𝑘𝜀𝑘) = 𝛼𝜓(𝑎). In the 

other hand, let 𝜓(𝑎) = 0, then 𝑎𝑘𝜀𝑘 = 0. But 𝔅 = {𝜀𝑘}𝑘=1
𝑛  is linear independence. This implies that 𝑎𝑘 = 0 

for each 𝑘 = 1,2, . . , 𝑛. Thus, 𝑎 = 0. Therefore, 𝜓 is one-one map. To prove 𝜓 is onto. Let 𝑦 = 𝑎𝑘𝜀𝑘 ∈ 𝑉, 

then we can choose 𝑎 = [𝑦]𝔅 = (𝑎1, 𝑎2, … , 𝑎𝑛) such that 𝜓(𝑎) = 𝑦. Thus 𝜓 is onto. We proved that 𝜓 is 

isomorphism linear map and homeomorphism (the invers map is given in the second proof). Therefore, 

topologically, Hausdorf space, second countable and Locally Euclidean space of dimension 𝑛 are inhereted 

from ℝ𝑛. Thus, 𝑉 is topological manifold.  

Secondly, Construct the inverse map of 𝜓 as written in Equation (9) in the  as following form : 

𝜓−1: 𝑉 ∋ 𝑣 ↦ [𝑣]𝔅 = (𝑥1, 𝑥2, … . , 𝑥𝑛) ∈ ℝ𝑛   (10) 

with [𝑣]𝔅 denotes a coordinate of vector  𝑣 ∈ 𝑉 with respect to the basis 𝔅. As proved before, 𝜓−1 is 

isomorphism linear map and homeomorphism as well. Since 𝑉 is open set, then the pair (𝑉, 𝜓−1) defines a 

chart for 𝑉. Now, let 𝔅′ = {𝜀𝑘
′ }𝑘=1

𝑛  be another basis for 𝑉. Then we can find a transisition matrix from 𝔅′ to 

𝔅 which is given by  

𝐴 = ([𝜀1
′ ]𝔅   [𝜀2

′ ]𝔅   …  [𝜀𝑛
′ ]𝔅 )               (11) 

which is invertible matrix. Of course, we also obtain 𝐵 = 𝐴−1 as transition matrix from the basis 𝔅 to the 

basis 𝔅′. For each 𝑣 ∈ 𝑉, we have [𝑣]𝔅 = 𝐴[𝑣]𝔅′.  The corresponding isomorphism of this basis can be 

written as 𝜓′(𝑥) = 𝑥𝑙 𝜀𝑙
′.  From the transition matrix 𝐴 = (𝐴)𝑘𝑙 we can consider the componens function 𝜓. 

Namely, 𝜓𝑘 = 𝐴𝑘𝑙 𝜀𝑙
′ with runs for all 𝑘. The transition map of charts is given as follows : 

(𝜓′)−1 ∘ 𝜓(𝑥) = 𝑥′.        (12) 

In this case 𝑥′ = ((𝑥1)′,  (𝑥2)′, … , (𝑥𝑛)′) is considered  (𝑥𝑙)
′
𝜀𝑙

′ = 𝑥𝑘𝜀𝑘 = 𝐴𝑘𝑙𝜀𝑘𝑒𝑙′. 

In other words, we have that (𝑥𝑙)
′

= 𝐴𝑘𝑙𝑥𝑘 for each 𝑘.  Therefore, the transition map in Equation 12 is 

diffeomorphism. Thus, 𝑉 has differentiable structure and 𝑉 is an 𝑛-differentiable manifold.  

∎ 
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Corollary 1. The space M𝑚×𝑛(ℝ) of all 𝑚 × 𝑛  real matrices is a differentiable manifold of dimension 𝑚𝑛. 

Proof. We can observe that under usual matrix addition and scalar multiplication, the set M𝑚×𝑛(ℝ) is a finite 

dimensional real vector space. Indeed, using Proposition 1, we have M𝑚×𝑛(ℝ) is an 𝑚𝑛-differentiable 

maniflod. We can see that M𝑚×𝑛(ℝ) can be identified by ℝ𝑚𝑛. Therefore, the differentiable structure is 

determined by the atlas of the chart Idℝmn.  

∎ 

4. CONCLUSIONS 

A real vector space of finite dimension equipped with a norm in which induces a metric has structure 

as a differentiable manifold. The choice of norms is independent since in finite dimensional vector space any 

two norms define the same topology. In the other words, if 𝑉 is a real vector space of dimension 𝑛 whose 

basis is 𝔄 = {𝜀𝑘}𝑘=1
𝑛  in which it is equipped with the norm  ⟦∙⟧ inducing a metric 𝑑,  then V is a topological 

manifold of dimension 𝑛. Moreover, by defining an isomorphism 𝜓: ℝ𝑛 ∋ 𝛼 ↦ ∑ 𝛼𝑘𝜀𝑘
𝑛
𝑘=1 ∈ 𝑉, we applied 

a chart (𝑉, 𝜓−1) to prove that 𝑉 has a differentiable structure. For further research, it is interesting to study a 

Lie algebra constructed from left-invariant vector fields of a Lie group.   
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