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 ABSTRACT 

Article History: 
Potatoes infected with the PLRV virus will experience a decrease in production up to 90%. In 

this paper, The PLRV distribution fractional differential equation model with potato and vector 

populations is reformulated by adding one new parameter, namely the rate of vector death due 

to predators. The model is divided into susceptible and infected classes. The PLRV dispersion 

model was developed and converted to a fractional order form for 0<σ ≤ 1. Next, the invariant 

region, positive solutions, basic reproduction number, equilibrium point, and stability were 

determined. Based on the stability analysis, it is shown that the stability of the disease-free 

equilibrium point is locally stable and globally stable if the basic reproduction number (R0)<1, 

and the stability of the endemic equilibrium point is globally stable if the basic reproduction 

number (R0)>1. Numerical solutions were also carried out to determine the effect of several 

parameters on the PLRV distribution model on potatoes. The numerical solution results show 

that the elimination rate of infected potatoes and the infection rate of potatoes have a significant 

role in controlling the spread of PLRV in potatoes. 
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1. INTRODUCTION 

In Indonesia, potatoes are one of the essential commodities of vegetables. Indonesia is the largest 

country that produces potatoes in South East Asia [1]. Potatoes are susceptible to several diseases, but  Potato 

Leaf Roll Virus (PLRV) is the dominant one worldwide [2]. Potatoes infected with the PLRV virus will 

experience a decrease in production up to 90%. The potato plant can be infected with the PLRV in two 

courses: primary and secondary infections. A primary infection is caused by the virus-carrying aphids (vector) 

during the growing season, while a secondary infection occurs when contaminated bulbs are planted [3].  

Controlling the spread of PLRV involves various measures, including using virus-free seed potatoes, 

implementing strict aphid control strategies, and promoting good agricultural practices. Mathematical models 

can be utilized to understand the dynamics of PLRV spread better and assess the effectiveness of different 

control measures. Early detection and prompt action are crucial in managing and minimizing the impact of 

the Potato Leaf Roll Virus on potato crops. 

Fractional differential equations can be used to understand the dynamics of real-life situations. Using 

fractional differential equations can provide better and more detailed information in approaching a problem. 

The fractional differential equation involves the derivative of an unknown function with fractional orders. 

For example, Ahmad et al. used fractional differential equations for the reaction-diffusion model [16], and 

Singh et al. applied them to obtain a hyperbolic-type solution for a particular equation [17]. Fractional 

differential equations form a mathematical model that can describe the propagation of PLRV. Mapinda et al. 

have used a typical differential equations system to model the spread of Banana Xanthomas Wilt bacteria 

(BXW) on bananas. Studies have shown that pruning bananas infected with BXW and sterile farming tools 

are necessary strategies to control the distribution of BXW [4]. Shah et al. applied a fractional differential 

equation to study the spread of pests in tea plants. The findings suggest that selecting predators as the enemy 

of problems has reduced the spread of pests in tea plants [5]. Ali et al. described regression modeling 

strategies to predict PLRV disease [18]. Furthermore, Bonyah formulated a potato disease model in a 

fractional-order derivative [19]. 

Tilahun et al. have also researched the mathematical model of PLRV deployment using differential 

fractional equations and stability [15]. This article reviewed the research by adding another new parameter: 

the rate of vector death because predators are viewed as an enemy to the vector. In this article, predators can 

help control the spread of PLRV in potatoes because predators are considered enemies of the vectors. Also, 

several studies have shown that leaf predators can help control vector populations and indirectly reduce the 

spread of diseases caused by these vectors. 

2. RESEARCH METHODS 

The research method contains sources of data and data analysis to show how to control the spread of 

PLRV on Potatoes. 

2.1 Sources of Data 

This paper uses data from published articles from Tilahun et al. [15]. The data has been collected in 
Table 2 to perform numerical simulations to investigate the effect of some parameters on disease control and 
support the theoretical analysis. 

2.2 Data Analysis 

This paper has developed a system of fractional differential equations of the PLRV model using 

fractional derivative Caputo to the ordinary differential equations. The PLRV model is analyzed qualitatively 

to determine the conditions of the PLRV model, and numerical simulation is performed by using MATLAB 

and presenting the results as a graph. 

3. RESULTS AND DISCUSSION 

3.1 PLRV Model using Fractional Differential Equation 

The fractional differential equation model of PLRV spread considers the populations of potatoes and 

vectors, each population consisting of susceptible and infected subclasses. The fractional differential equation 
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model of PLRV spread has four compartments: 𝑆𝑝(𝑡) representing the number of susceptible potato 

populations at time 𝑡, 𝐼𝑝(𝑡) representing the infected potato population at time 𝑡, 𝑆𝑣(𝑡) representing the 

susceptible vector population at time 𝑡, and 𝐼𝑣(𝑡) representing the infected vector population at time 𝑡. 

The plot and parameters of the model for the spread of PLRV in potatoes can be seen in Figure 1 and 

Table 1 below, respectively. 

 
Figure 1. Flow diagram of PLRV model 

Table 1. Parameters Description of the PLRV model 

Parameters Description Parameters Description 

𝑆𝑝  Population of susceptible potato 𝛾𝑣  Natural death rate of vector 

𝑆𝑣  Population of susceptible vector 𝜋1  Replanting rate of potato 

𝐼𝑝  Population of infected potato 𝜋2  Recruit rate of vector 

𝐼𝑣  Population of infected vector 𝑎 Infection rate of potato 

𝛼1 Virus induced death rate 𝛿 Infection rate of vector 

𝛼2 Elimination rate of infected potato 𝜆𝑣  Death of vector by predators 

𝛾𝑝  Natural death rate of potato   

From Figure 1 and Table 1, system of differential equation are generated. 

 

{
 
 
 
 

 
 
 
 

𝑑𝑆𝑝
𝑑𝑡

=  𝜋1 − 𝑎𝑆𝑝𝐼𝑣 − ϒ𝑝𝑆𝑝,

𝑑𝐼𝑝
𝑑𝑡

= 𝑎𝑆𝑝𝐼𝑣 − (𝛼2 + 𝛼2 + ϒ𝑝)𝐼𝑝,

𝑑𝑆𝑣
𝑑𝑡

=  𝜋2 − 𝛿𝑆𝑣𝐼𝑝 − (ϒ𝑣 + 𝜆𝑣)𝑆𝑣,

𝑑𝐼𝑣
𝑑𝑡

=  𝛿𝑆𝑣𝐼𝑝 − (ϒ𝑣 + 𝜆𝑣)𝐼𝑣 ,

 

 

(1)  

with initial value 𝑺𝒑(𝟎) = 𝑺𝒑𝟎 ≥ 𝟎, 𝑰𝒑(𝟎) = 𝑰𝒑𝟎 ≥ 𝟎, 𝑺𝒗(𝟎) = 𝑺𝒗𝟎 ≥ 𝟎, 𝑰𝒗(𝟎) = 𝑰𝒗𝟎 ≥ 𝟎 and 

𝜶𝟏, 𝜶𝟐, 𝜸𝒑, 𝜸𝒗, 𝝅𝟏, 𝝅𝟐, 𝜹, 𝒂 , 𝝀𝒗  > 𝟎. 

 Furthermore, system Equation (1) is converted into a fractional differential equation system for the 

order 0 < 𝜎 < 1 and 𝑛 = 1 using a fractional Caputo derivative [6]. For example, covert the first equation 

𝑑𝑆𝑝 on system Equation (1) into a fractional derivative. 

 

𝐷𝑐
𝜎 = 

1

𝛤(1 − 𝜎)
∫ (𝑡 − 𝑢)𝑛−𝜎−1𝑓(𝑛)𝑑𝑢,
𝑡

0

 

𝐷𝑐
𝜎 = 

1

𝛤(1 − 𝜎)
∫ (𝑡 − 𝑢)−𝜎 (

𝑑𝑆𝑝
𝑑𝑡
)𝑑𝑢

𝑡

0

= 𝐷𝜎𝑆𝑝. 

(2)  

Moreover, 𝐷𝜎𝐼𝑝, 𝐷
𝜎𝑆𝑣, and 𝐷

𝜎𝐼𝑣 are obtained similarly, so the following fractional differential 

equation was collected. 
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{
 
 

 
 

𝐷𝜎𝑆𝑝 = 𝜋1 − 𝑎𝑆𝑝𝐼𝑣 − ϒ𝑝𝑆𝑝,

𝐷𝜎𝐼𝑝 = 𝑎𝑆𝑝𝐼𝑣 − (𝛼2 + 𝛼2 + ϒ𝑝)𝐼𝑝,

𝐷𝜎𝑆𝑣 = 𝜋2 − 𝛿𝑆𝑣𝐼𝑝 − (ϒ𝑣 + 𝜆𝑣)𝑆𝑣,

𝐷𝜎𝐼𝑣 = 𝛿𝑆𝑣𝐼𝑝 − (ϒ𝑣 + 𝜆𝑣)𝐼𝑣,

 
(3)  

with order 𝟎 < 𝝈 < 𝟏, initial value 𝑺𝒑𝟎  ≥ 𝟎, 𝑰𝒑𝟎  ≥ 𝟎, 𝑺𝒗𝟎  ≥ 𝟎, 𝑰𝒗𝟎  ≥ 𝟎  and 

𝜶𝟏, 𝜶𝟐, 𝜸𝒑, 𝜸𝒗, 𝝅𝟏, 𝝅𝟐, 𝜹, 𝒂 , 𝝀𝒗  > 𝟎. 

3.2 Invariant Region 

The following theorem is the feasible solution that satisfies all the constraints and conditions imposed 

by the given system. 

Theorem 1. The feasible solution set {𝑆𝑝, 𝐼𝑝, 𝑆𝑣 , 𝐼𝑣} of the system equation of the model is 𝛺 =

{(𝑆𝑝, 𝐼𝑝, 𝑆𝑣 , 𝐼𝑣) ∈ ℝ+
4 ∶  (0 ≤ 𝑁𝑝(𝑡) ≤

𝜋1

𝛾𝑝
) ∪ (0 ≤ 𝑁𝑣(𝑡) ≤

𝜋2
(𝛾𝑣+𝜆𝑣)

) ; 𝑁𝑝 = 𝑆𝑝 + 𝐼𝑝, 𝑁𝑣 = 𝑆𝑣 + 𝐼𝑣}. 

Proof. Differentiate  𝑁𝑝 and 𝑁𝑣 with respect to time by considering fractional order 

 𝐷𝜎𝑁𝑝 = 𝐷
𝜎(𝑆𝑝 + 𝐼𝑝), 

(4)  

 𝐷𝜎𝑁𝑣 = 𝐷
𝜎(𝑆𝑣 + 𝐼𝑣). 

(5)  

Substitute Equation (3) to Equation (4) with 𝛼1 = 0 and 𝛼2 = 0, become 

 
𝐷𝜎𝑁𝑝 ≤ 𝜋1 − 𝛾𝑝𝑆𝑝 − 𝛾𝑝𝐼𝑝, 

𝐷𝜎𝑁𝑝 ≤ 𝜋1 − 𝛾𝑝𝑁𝑝. 

(6)  

Take Laplace transform [7] and substitute initial value, become 

 

ℒ{𝐷𝜎𝑁𝑝(𝑡)} +  ℒ{𝛾𝑝𝑁𝑝} ≥ ℒ{𝜋1}, 

𝑁𝑝(𝑠) ≤
𝜋1

𝑠(𝑠𝜎 + 𝛾𝑝)
. 

(7)  

Furthermore, find the Laplace inverse transform using Mittag-Leffler function [6], become 

 𝑁𝑝(𝑡) ≤
𝜋1
𝛾𝑝
(1 − 𝐸𝜎(−𝛾𝑝𝑡

𝜎)). (8)  

Let 𝑡 → ∞ and 𝛾𝑝 > 0, thus 𝑁𝑝(𝑡) →
𝜋1

𝛾𝑝
≥ 0. Therefore we have 

 0 ≤ 𝑁𝑝(𝑡) ≤
𝜋1
𝛾𝑝
. (9)  

After re-arranging Equation (9), obtained 

 Ω𝑝 = {(𝑆𝑝, 𝐼𝑝)  ∈  ℝ+
2 ∶ 0 ≤ 𝑁𝑝(𝑡) ≤

𝜋1
𝛾𝑝
}. 

(10)  

By using the same way for Equation (5), obtained 

 Ω𝑣 = {(𝑆𝑣 , 𝐼𝑣)  ∈  ℝ+
2 ∶ 0 ≤ 𝑁𝑣(𝑡) ≤

𝜋2
(𝛾𝑣 + 𝜆𝑣)

}. (11)  

In general, Equation (10) and Equation (11), invariant region of the system of the model is 

 

Ω = Ω𝑝 × Ω𝑣 = {(𝑆𝑝, 𝐼𝑝, 𝑆𝑣, 𝐼𝑣) ∈ ℝ+
4

∶  (0 ≤ 𝑁𝑝(𝑡) ≤
𝜋1
𝛾𝑝
) ∪ (0 ≤ 𝑁𝑣(𝑡) ≤

𝜋2
(𝛾𝑣 + 𝜆𝑣)

)}. 
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3.3 Positive Solutions 

All solutions of the fractional differential equation model of PLRV spread in potatoes are positive for 

future time if all the initial values are positive. 

Theorem 2. If 𝑆𝑝0  ≥ 0, 𝐼𝑝0  ≥ 0, 𝑆𝑣0  ≥ 0, 𝐼𝑣0  ≥ 0 then all solution sets (𝑆𝑝(𝑡), 𝐼𝑣(𝑡), 𝑆𝑝(𝑡), 𝐼𝑣(𝑡)) of the 

system of the model are positive for the future time. 

Proof. Take the first equation in Equation (3) with 𝜋𝑖 as positive 

  

𝐷𝜎𝑆𝑝 = 𝜋1 − 𝑎𝑆𝑝𝐼𝑣 − 𝛾𝑝𝑆𝑝, 

𝐷𝜎𝑆𝑝 ≥ −𝑆𝑝(𝑎𝐼𝑣 + 𝛾𝑝). 
(12)  

Using Laplace transform, become 

 

ℒ{𝐷𝜎𝑆𝑝} ≥ −(𝑎𝐼𝑣 + 𝛾𝑝)ℒ{𝑆𝑝}, 

𝑆𝑝(𝑠) ≥
𝑆𝑝0

𝑠𝜎 + (𝑎𝐼𝑣 + 𝛾𝑝)
. 

(13)  

Next, find the Laplace inverse transform [8] using Mittag-Leffler function, become 

 

 

𝑆𝑝(𝑡) ≥ 𝑆𝑝0𝑡
𝜎−1𝐸𝜎,𝜎(−(𝑎𝐼𝑣 + 𝛾𝑝)𝑡

𝜎) ≥ 0; 𝑡 > 0. 
 

By using the same way, the rest equation on Equation (3), obtained 

 
{

𝐼𝑝(𝑡) ≥ 𝐼𝑝0𝑡
𝜎−1𝐸𝜎,𝜎(−𝑘𝑡

𝜎) ≥ 0; 𝑡 > 0,

𝑆𝑣(𝑡) ≥ 𝑆𝑣0𝑡
𝜎−1𝐸𝜎,𝜎 (−(𝛿𝐼𝑝 + (𝛾𝑣 + 𝜆𝑣)) 𝑡

𝜎) ≥ 0; 𝑡 > 0,

𝐼𝑣(𝑡) ≥ 𝐼𝑣0𝑡
𝜎−1𝐸𝜎,𝜎(−(𝛾𝑣 + 𝜆𝑣)𝑡

𝜎) ≥ 0; 𝑡 > 0.

 

 

 

3.4 Equilibrium point and basic reproduction number 

There are two equilibrium points, disease free equilibrium point and endemic equilibrium point 

associated with basic reproduction number. The disease free equilibrium is the condition with no infection 

(𝐼𝑝 = 𝐼𝑣 = 0). Equation (3) has a disease free equilibrium point if it does [9]: 

 𝐷𝜎𝑆𝑝 = 0,𝐷
𝜎𝐼𝑣 = 0,𝐷

𝜎𝑆𝑝 = 0,𝐷
𝜎𝐼𝑣.  

Disease free equilibrium represented as 𝐸0 = (𝑆𝑝
0, 𝐼𝑣

0, 𝑆𝑝
0, 𝐼𝑣

0), so it become 

 𝐸0(𝑆𝑝
0, 𝐼𝑣

0, 𝑆𝑝
0, 𝐼𝑣

0) =  (
𝜋1
𝛾𝑝
, 0,

𝜋2
(𝛾𝑣 + 𝜆𝑣)

, 0).  

Basic reproduction numbers are obtained by using the next generation matrix method [10]. 

 𝐺 = 𝐹𝑉−1, (14)  

where 𝐹 and 𝑉 are the results of linearization using the Jacobian at the disease free equilibrium point which 

is (𝑆𝑝, 𝐼𝑣 , 𝑆𝑝, 𝐼𝑣) = (
𝜋1

𝛾𝑝
, 0,

𝜋2
(𝛾𝑣+𝜆𝑣)

, 0),  

 𝐹 = [
0 𝑎

𝜋1

𝛾𝑝

𝛿
𝜋2

(𝛾𝑣+𝜆𝑣)
0
] and V = [

𝑘 0
0 (𝛾𝑣 + 𝜆𝑣)

]. The next generation matrix is 

 𝐺 = 𝐹𝑉−1 = 

[
 
 
 0

𝑎𝜋1
𝛾𝑝(𝛾𝑣 + 𝜆𝑣)

𝛿𝜋2
𝑘(𝛾𝑣 + 𝜆𝑣)

0
]
 
 
 

. 
(15)  
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The basic reproduction number is the dominant of eigenvalues. Therefore 

𝑅0 = √
𝑎𝜋1𝛿𝜋2

𝑘𝛾𝑝(𝛾𝑣 + 𝜆𝑣)
2
. 

Furthermore, the endemic equilibrium is the condition with infection (𝐼𝑝 ≠ 0, 𝐼𝑣 ≠ 0). Endemic equilibrium 

represented as 𝐸∗ = (𝑆𝑝
∗, 𝐼𝑣

∗, 𝑆𝑝
∗, 𝐼𝑣

∗) and it becomes 

 

𝐸∗ = (𝑆𝑝
∗, 𝐼𝑣

∗, 𝑆𝑝
∗, 𝐼𝑣

∗) 

= 

(

 
 

𝜋1
𝑎𝐼𝑣
∗ + 𝛾𝑝

,
𝑎𝜋1𝐼𝑣

∗

𝑘(𝑎𝐼𝑣
∗ + 𝛾𝑝)

,

𝜋2𝑘(𝑎𝐼𝑣
∗ + 𝛾𝑝)

𝑎𝐼𝑣
∗(𝛿𝜋1 + (𝛾𝑣 + 𝜆𝑣)𝑘) + 𝑘𝛾𝑝(𝛾𝑣 + 𝜆𝑣)

,
𝑘(𝛾𝑣 + 𝜆𝑣)𝛾𝑝(𝑅0

2 − 1)

𝑎(𝛿𝛾1 + (𝛾𝑣 + 𝜆𝑣)𝑘) )

 
 
. 

 

 

3.5 Stability of equilibrium point 

There are two main types of stability associated with equilibrium points: local stability and global 

stability. Local stability and global stability of the equilibrium points is given in the following theorem. 

Theorem 3. The disease free equilibrium point is locally asymptotical stable if 𝑅0 < 1 and unstable if 

𝑅0 > 1. 

Proof. Jacobian matrix of Equation (1) at disease free equilibrium point is [11] 

 𝐽(𝐸0) =

[
 
 
 
 
 
 
 
 −𝛾𝑝 0 0 −𝑎

𝜋1
𝛾𝑝

0 −𝑘 0 𝑎
𝜋1
𝛾𝑝

0 −𝛿
𝜋2

(𝛾𝑣 + 𝜆𝑣)
−(𝛾𝑣 + 𝜆𝑣) 0

0 𝛿
𝜋2

(𝛾𝑣 + 𝜆𝑣)
0 −(𝛾𝑣 + 𝜆𝑣)]

 
 
 
 
 
 
 
 

. 
(16)  

Eigen values of Equation (16) is 𝜆1 = −𝛾𝑝 ≤ 0, 𝜆2 = −(𝛾𝑣 + 𝜆𝑣) ≤ 0 and polynomial equation  

𝜆2 + ((𝛾𝑣 + 𝜆𝑣) + 𝑘)⏟          + 

𝑏1

   (𝑘(𝛾𝑣 + 𝜆𝑣) −
𝑎𝜋1𝛿𝜋2

𝛾𝑝(𝛾𝑣 + 𝜆𝑣)
)

⏟                  
= 0

𝑏2

. 

 According to Routh-Hurtwitz criteria [12], a polynomial equation has a negative real root if and only if 

𝑏1 > 0 and 𝑏2 > 0. It is clearly  𝑏1 > 0 because it is the sum of positive parameters. But 𝑏2 > 0 if 

 

𝑏2 = (𝛾𝑣 + 𝜆𝑣)𝑘 −
𝑎𝜋1𝛿𝜋2

𝛾𝑝(𝛾𝑣 + 𝜆𝑣)
> 0, 

(𝛾𝑣 + 𝜆𝑣)𝑘 >  
𝑎𝜋1𝛿𝜋2

𝛾𝑝(𝛾𝑣 + 𝜆𝑣),
 

1 >  
𝑎𝜋1𝛿𝜋2

𝑘𝛾𝑝(𝛾𝑣 + 𝜆𝑣)
2
, 

(17)  

Equation (17) shows that 

 
𝑎𝜋1𝛿𝜋2

𝛾𝑝𝑘(𝛾𝑣 + 𝜆𝑣)
2
< 1. (18)  

Let 𝑅0 = √
𝑎𝜋1𝛿𝜋2

𝛾𝑝(𝛾𝑣+𝜆𝑣)
2𝑘

, then Equation (18) shows 𝑅0
2 < 1, it is means 𝑅0 < 1. Thus, the disease free 

equilibrium point is locally asymptotically stable if 𝑅0 < 1. 

Theorem 4. The disease free equilibrium point is locally asymptotical stable if all the eigenvalues of the 

𝐽(𝐸0) satisfy |𝑎𝑟𝑔(𝜆𝑖)| >
𝜎𝜋

2
 where 𝑖 = 1, 2, 3, 4. 

Proof. In the sub-section before, the eigen values are 

1. 𝜆1 = −𝛾𝑝. 
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2. 𝜆3 = −(𝛾𝑣 + 𝜆𝑣).  
3. 𝜆2 and 𝜆4 is.  

 
𝜆2 + ((𝛾𝑣 + 𝜆) + 𝑘)⏟        + 

𝑏1

   (𝑘(𝛾𝑣 + 𝜆𝑣) −
𝑎𝜋1𝛿𝜋2

𝛾𝑝(𝛾𝑣 + 𝜆𝑣)
)

⏟                  
= 0

𝑏2

. (19)  

Because 𝛾𝑝, 𝛾𝑣  and 𝜆𝑣 are a positive parameter, then 𝜆1 < 0 and 𝜆3 < 0, thus satisfying |𝑎𝑟𝑔(𝜆𝑖)| =  𝜋 >
𝜎𝜋

2
 

for any 0 < 𝜎 ≤ 1 [13]. 

Previously, it has shown that 𝑏1, 𝑏2 > 0 if 𝑅0 < 1, thus polynomial Equation (19) has the negative 

real root and satisfies |𝑎𝑟𝑔(𝜆𝑖)| =  𝜋 >
𝜎𝜋

2
 for any 0 < 𝜎 ≤ 1. Thus, disease free equilibrium point is locally 

asymptotically stable if 𝑅0 < 1. 

 

Theorem 5. The disease free equilibrium point is globally stable if 𝑅0 < 1. 

Proof. Consider Lyapunov function 

 

𝑉(𝑆𝑝, 𝐼𝑝, 𝑆𝑣, 𝐼𝑣)  

= (𝑆𝑝 − 𝑆𝑝
0 − 𝑆𝑝

0 𝑙𝑛 (
𝑆𝑝

𝑆𝑝
0)) + (𝐼𝑝 − 𝐼𝑝

0 − 𝐼𝑝
0 𝑙𝑛 (

𝐼𝑝

𝐼𝑝
0))

+ (𝑆𝑣 − 𝑆𝑣
0 − 𝑆𝑣

0 𝑙𝑛 (
𝑆𝑣

𝑆𝑣
0)) + (𝐼𝑣 − 𝐼𝑣

0 − 𝐼𝑣
0 𝑙𝑛 (

𝐼𝑣

𝐼𝑣
0)) 

(20)  

Thus 𝑉 > 0 for all (𝑆𝑝, 𝐼𝑝, 𝑆𝑣 , 𝐼𝑣) ≠ (𝑆𝑝
0, 𝐼𝑝

0, 𝑆𝑣
0, 𝐼𝑣

0)  and 𝑉 = 0 if and only if (𝑆𝑝, 𝐼𝑝, 𝑆𝑣 , 𝐼𝑣) =

(𝑆𝑝
0, 𝐼𝑝

0, 𝑆𝑣
0, 𝐼𝑣

0). Next, calculate 𝑉𝜎(𝑆𝑝, 𝐼𝑝, 𝑆𝑣 , 𝐼𝑣) to show 𝐷𝜎𝑉 ≤ 0 at disease free equilibirum point [14]. 

 𝐷𝜎𝑉 ≤  (
𝑆𝑝−𝑆𝑝

0

𝑆𝑝
)𝐷𝜎𝑆𝑝 + (

𝐼𝑝−𝐼𝑝
0

𝐼𝑝
)𝐷𝜎𝐼𝑝 + (

𝑆𝑣−𝑆𝑣
0

𝑆𝑣
)𝐷𝜎𝑆𝑣 + (

𝐼𝑣−𝐼𝑣
0

𝐼𝑣
)𝐷𝜎𝐼𝑣 . (21)  

By Equilibrium condition, 𝜋1 = 𝑆𝑝
0𝛾𝑝, 𝜋1 = 𝑆𝑣

0(𝛾𝑣 + 𝜆𝑣), 𝑆𝑝
0 =

𝜋2

𝛾𝑝
 and 𝑆𝑣

0 =
𝜋2

(𝛾𝑣+𝜆𝑣)
, Equation (21) become 

 𝐷𝜎𝑉 ≤ −𝛾𝑝  (

𝑆𝑝 −
𝜋1
𝛾𝑝

𝑆𝑝
)

2

− (𝛾𝑣 + 𝜆𝑣)(
𝑆𝑣 −

𝜋2
(𝛾𝑣 + 𝜆𝑣)

𝑆𝑣
)

2

+ 𝐼𝑣(𝛾𝑣 + 𝜆𝑣)(𝑅0
2 − 1). (22)  

Equation (22) shows that 𝐷𝜎𝑉 ≤ 0 if 𝑅0 < 1 for all (𝑆𝑝, 𝐼𝑝, 𝑆𝑣 , 𝐼𝑣) ∈ ℝ+
4  and 𝐷𝜎𝑉 = 0 if and only if 𝑆𝑝 =

𝑆𝑝
0, 𝐼𝑝 = 𝐼𝑝

0, 𝑆𝑣 = 𝑆𝑣
0, 𝐼𝑣 = 𝐼𝑣

0 . Therefore, the disease free equilibrium point is globally stable if 𝑅0 < 1. 

Theorem 6. Let 𝜎 ∈ (0,1] and 𝑅0 > 1. Then the endemic equilibrium of the fractional order model is globally 

stable in the interior of Ω. 

Proof. Consider Lyapunov function 

 

𝑉(𝑆𝑝, 𝐼𝑣, 𝑆𝑝, 𝐼𝑣)  

= (𝑆𝑝 − 𝑆𝑝
∗ − 𝑆𝑝

∗ 𝑙𝑛 (
𝑆𝑝
𝑆𝑝
∗)) + (𝐼𝑝 − 𝐼𝑝

∗ − 𝐼𝑝
∗  𝑙𝑛 (

𝐼𝑝
𝐼𝑝
∗))

+ (𝑆𝑣 − 𝑆𝑣
∗ − 𝑆𝑣

∗ 𝑙𝑛 (
𝑆𝑣
𝑆𝑣
∗)) + (𝐼𝑣 − 𝐼𝑣

∗ − 𝐼𝑣
∗ 𝑙𝑛 (

𝐼𝑣
𝐼𝑣
∗)) 

(23)  

Function 𝑉 is defined as continuous and positive definite for all 𝑆𝑝 > 0, 𝐼𝑝 > 0, 𝑆𝑣 > 0, 𝐼𝑣 > 0. 

Next, calculate 𝑉𝜎(𝑆𝑝, 𝐼𝑝, 𝑆𝑣, 𝐼𝑣) to shows 𝐷𝜎𝑉 ≤ 0 at the endemic equilibrium point [14]. 

 𝐷𝜎𝑉 ≤  (
𝑆𝑝−𝑆𝑝

∗

𝑆𝑝
)𝐷𝜎𝑆𝑝 + (

𝐼𝑝−𝐼𝑝
∗

𝐼𝑝
)𝐷𝜎𝐼𝑝 + (

𝑆𝑣−𝑆𝑣
∗

𝑆𝑣
)𝐷𝜎𝑆𝑣 + (

𝐼𝑣−𝐼𝑣
∗

𝐼𝑣
)𝐷𝜎𝐼𝑣 

(24)  

By equilibrium condition 𝜋1 = 𝑆𝑝
∗𝑎𝐼𝑝

∗ + 𝑆𝑝
∗𝛾𝑝, 𝜋2 = 𝑆𝑣

∗𝛿𝐼𝑝
∗ + 𝑆𝑣

∗(𝛾𝑣 + 𝜆𝑣) and let 𝐼𝑝
∗ = 𝑆𝑝

∗𝑎𝐼𝑣
∗ and 

𝐼𝑣
∗(𝛾𝑣 + 𝜆𝑣) = 𝑆𝑣

∗𝛿𝐼𝑝
∗.  Equation (24) becomes 
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𝐷𝜎𝑉 ≤  −𝛾𝑝 (
𝑆𝑝 − 𝑆𝑝

∗

𝑆𝑝
)

2

− 𝑘𝐼𝑝
∗ (
𝑆𝑝
∗

𝑆𝑝
− 2) − 𝑘𝐼𝑝 − 𝑎𝐼𝑣 (

𝐼𝑝
∗𝑆𝑝

𝐼𝑝
− 𝑆𝑝

∗)

− (𝛾𝑣 + 𝜆𝑣) (
𝑆𝑣 − 𝑆𝑣

∗

𝑆𝑣
)
2

− 𝐼𝑣(𝛾𝑣 + 𝜆𝑣) (
𝑆𝑣
∗

𝑆𝑣
− 2) − 𝐼𝑣(𝛾𝑣 + 𝜆𝑣)

−  𝛿𝐼𝑝 (
𝐼𝑣
∗𝑆𝑣
𝐼𝑣

− 𝑆𝑣
∗). 

(25)  

Equation (25) shows that 𝐷𝜎𝑉 ≤ 0 and 𝐷𝜎𝑉 = 0 if and only if 𝑆𝑝 = 𝑆𝑝
∗, 𝐼𝑝 = 𝐼𝑝

∗ , 𝑆𝑣 = 𝑆𝑣
∗, 𝐼𝑣 = 𝐼𝑣

∗. Therefore, 

𝐷𝜎𝑉 = 0 for all (𝑆𝑝
∗, 𝐼𝑝

∗ , 𝑆𝑣
∗, 𝐼𝑣

∗) ∈ Ω is endemic equilibrium, this shows that endemic equilibrium is globally 

assymptotically stable in Ω. 

3.6 Numerical Solution 

The numerical solutions were calculated using initial values from the fractional differential equation 

model for the spread of PLRV on potatoes. 

Table 2. Parameter Values for PLRV Model. 

Parameters Values Source Parameters Values Source 

𝑆𝑝0 600 [15 𝐼𝑝0 200 [15] 

𝑆𝑣0 100 [15] 𝐼𝑣0 10 [15] 

𝜋1 0.8 [15] 𝜋2 0.19 [15] 

𝑎 0.00022 [15] 𝛿 0.0025 [15] 

𝛼1 0.033 [15] 𝛼2 0.01 [15] 

𝛾𝑣 0.0028 [15] 𝛾𝑝 0.04 [15] 

𝜆𝑣 0.003 Asummed    

 
 

 

(a) (b) 

  

(c) (d) 

 

Figure 2. Numerical Solution of Endemic PLRV Condition, (a) Endemic PLRV on Susceptible Potato, (b) 

Endemic PLRV on Infected Potato, (c) Endemic PLRV on Susceptible Vector, (d) Endemic PLRV on infected 

vector 
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Figure 2 shows that fractional order which is 𝜎 related to how fast the system is heading towards an 

endemic PLRV point on potatoes, that is 𝐸∗ = (16.257, 1.804, 67.857, 41.856). Figure 2 also shows that 

the susceptible potato population and infected potato population is decreasing steadily. The susceptible vector 

population gets an extreme decrease at initial time and then increase of susceptible vector population follows. 

Otherwise, infected vector population gets an extreme increase at initial time and then the infected vector 

population getting decrease in future time. 

 
  

(a) (b) 

  
(c) (d) 

 

Figure 3. Numerical solution of free-PLRV condition, (a) Free-PLRV on susceptible potato, (b) Free-PLRV 

foninfected potato, (c) Free-PLRV on susceptible vector, (d) Free-PLRV on infected vector 

 

Figure 3 shows that fractional order which is 𝜎 related to how fast the system is heading towards a 

free PLRV point on potatoes, that is 𝐸0 = (20, 0, 32.7586, 0). Fractional order 𝜎 changes will affect the 

complexity interaction in the system. Figure 3 also shows that susceptible potato population and infected 

potato population is getting decreasing steadily. Susceptible vector population getting extreme decrease at an 

initial time and then increase of susceptible vector population followed. Otherwise, infected vector population 

gets an extreme increase at initial time and then in future time, infected vector population gets decrease faster 

than the endemic PLRV condition on potatoes. 
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Figure 4. Numerical Solution of Variation of 𝒂 on PLRV model 

 

Figure 4 shows that as the infection rate of potato (𝑎) rises, so does the infected potato population. It 

means, the virus will spread faster as the infection rate of potato increases.  

.  

Figure 5. Numerical Solution Of Variation of 𝜹 on PLRV model 

  

Figure 5 shows that as infection rate of the vectors (𝛿) rises, so does the infected potato population.  

 

 
Figure 6. Numerical Solution Of Variation of 𝜶𝟐 on PLRV model 

 

 Figure 6 shows that when the elimination rate of infected potato (𝛼2) rises, the infected potato 

population is reduced. It means, increasing the elimination rate of infected potato can be control the spread 

of PLRV.  
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CONCLUSIONS 

Based on the numerical solution, we conclude that: 

1. Endemic conditions of PLRV on  potatoes are obtained at the rate of death vectors by predators being 

ignored (λv = 0)  and R0 = 1.7922 > 1. 

2. PLRV-free conditions on potatoes are obtained at the rate of death vectors by predators (λv) is 0.03 

and R0 = 0.8652 < 1. 

3. In the absence of PLRV, the rate of potato infection (a) and the rate of the infected potato elimination 

(α2) can be better controlled the spread of the PLRV on potatoes by reducing the rate of potato infection 

(a) and increasing the pace of the elimination of the infected potato (α2). 

REFERENCES   

[1] K. Ummah and A. Purwito, “Budidaya Tanaman Kentang (Solanum tuberosum L.) dengan Aspek Khusus Pembibitan di 

Hiikmah,” IPB (Bogor Agric. Univeristy), 2009. 

[2] I. A. Astarini, D. Margareth, and I. G. R. Maya Temaja, “In Vivo Thermoterapy: Attempt to Eliminate Virus in Potato Tuber,” 

IOP Conf. Ser. Earth Environ. Sci., vol. 130, p. 012021, Mar. 2018, doi: 10.1088/1755-1315/130/1/012021. 

[3] D. Moller, “Primary and Secondary Infection of Potatoes,” Int. J., vol. 8, 2008. 

[4] J. Joel Mapinda, G. Godson Mwanga, and V. Grace Masanja, “Modelling the Transmission Dynamics of Banana Xanthomonas 

Wilt Disease with Contaminated Soil,” J. Math. Informatics, vol. 17, pp. 113–129, May 2019, doi: 10.22457/jmi.146av17a11. 

[5] Z. U. A. Zafar, Z. Shah, N. Ali, E. O. Alzahrani, and M. Shutaywi, “Mathematical and Stability Analysis of Fractional Order 

Model for Spread of Pests in Tea Plants,” Fractals, vol. 29, no. 01, p. 2150008, Feb. 2021, doi: 10.1142/S0218348X21500080. 

[6] C. Milici, G. Drăgănescu, and J. Tenreiro Machado, Introduction to Fractional Differential Equations, vol. 25. Cham: Springer 

International Publishing, 2019. doi: 10.1007/978-3-030-00895-6. 

[7] M. R. Spiegel, Transformasi Laplace Terjemahan Bahasa Indonesia. Jakarta: Erlangga, 1999. 

[8] S. L. Ross, Differential Equations, 3rd ed. New York: John Willey & Sons, 2010. 

[9] C. H. Edwards and D. E. Pennery, Elementary Differential Equations with Boundary Value Problems, 4th ed. New Jersey: 

Prentice Hall, 2002. 

[10] P. van den Driessche and J. Watmough, “Reproduction Numbers and Sub-threshold Endemic Equilibria for Compartmental 

Models of Disease Transmission,” Math. Biosci., vol. 180, no. 1–2, pp. 29–48, Nov. 2002, doi: 10.1016/S0025-5564(02)00108-

6. 

[11] J. K. Hale and H. Koçak, Dynamics and Bifurcations, vol. 3. New York, NY: Springer New York, 1991. doi: 10.1007/978-1-

4612-4426-4. 

[12] G. J. Olsder and J. W. van der. Woude, Mathematical Systems Theory. Netherlands: Delft University Press, 2004. 

[13] K. Diethelm, The Analysis of Fractional Differential Equations. New York: Springer, 2004. 

[14] H. Khalil, Nonlinear System, 3rd ed. New Jersey: Pearson Prentice Hall, 2002. 

[15] G. T. Tilahun, G. A. Wolle, and M. Tofik, “Eco-epidemiological Model and Analysis of Potato Leaf Roll Virus Using Fractional 

Differential Equation,” Arab J. Basic Appl. Sci., vol. 28, no. 1, pp. 41–50, Jan. 2021, doi: 10.1080/25765299.2020.1865621. 

[16] H. Ahmad, T. A. Khan, I. Ahmad, I, P. S. Stanimirovic, and Y. M. Chu, "A New Analyzing Technique for Nonlinear Time 

Fractional Cauchy Reaction-Diffusion Model Equations," Results in Physics, vol. 19, 103462, 2020, doi:10.1016/j. 

rinp.2020.103462. 
[17] J. Singh, “Analysis of fractional blood alcohol model with composite fractional derivative,” Chaos, Solitons & Fractals, 140, 

110127, 2020, doi : 10.1016/j.chaos.2020.110127, doi: 10.1080/25765299.2020.1865621. 
[18] Y. Ali, A. Raza, H. M. Aatif, M. Ijaz, S. Ul-Allah, S. ur Rehman, S. Y. M. Mahmoud, E. S. H. Farrag, M. A. Amer, and  M. 

Moustafa, “Regression Modeling Strategies to Predict and Manage Potato Leaf Roll Virus Disease Incidence and Its Vector ,” 

Agriculture, 12, 550, 2022, doi: 10.3390/agriculture12040550. 

[19] E. Bonyah, “A Fractional Dynamics of a Potato Disease Model,” Commun. Math. Biol. Neorosci, ID 88, 2022, doi: 

10.28919/cmbn/7599. 
 

 

  



2224 Jasmine, et. al.     A FRACTIONAL DIFFERENTIAL EQUATION MODEL FOR THE SPREAD OF… 

  


