Optimasi Deteksi Dini Masalah Kesehatan Bibit Kelapa Sawit dengan JST MLP Berbasis Citra Termal

Optimizing Oil Palm Seedling Health Detection with Thermal Image-Based MLP Neural Network

  • Wahyu K Fauziah Program Studi Mekanisasi Pertanian, Jurusan Teknologi Pertanian, Politeknik Negeri Lampung, Jl. Soekarno Hatta No.10, Rajabasa Raya, Kec. Rajabasa, Kota Bandar Lampung, Lampung 35141
  • Imam Sofi’i Program Studi Mekanisasi Pertanian, Jurusan Teknologi Pertanian, Politeknik Negeri Lampung, Jl. Soekarno Hatta No.10, Rajabasa Raya, Kec. Rajabasa, Kota Bandar Lampung, Lampung 35141
  • Melidawati Melidawati Program Studi Mekanisasi Pertanian, Jurusan Teknologi Pertanian, Politeknik Negeri Lampung, Jl. Soekarno Hatta No.10, Rajabasa Raya, Kec. Rajabasa, Kota Bandar Lampung, Lampung 35141
Keywords: ANN MLP, early detection, palm oil seedlings, plant health problems, thermal image

Abstract

Palm oil has an important role in the palm oil industry, but health problems in the seeds threaten production results. This research advocates an innovative approach by combining thermal imaging technology and artificial intelligence, especially Multilayer Perceptron Artificial Neural Networks (MLP ANN), for early detection of health problems in oil palm seedlings. The use of thermal cameras makes it easier to measure the temperature of plants and the surrounding environment. Thermal image analysis helps in evaluating thermal characteristics, especially plant temperature, which may be associated with health problems. Temperature data is classified into normal plants and plants affected by health problems, using statistical analysis to strengthen the relationship. A predictive model using MLP ANN was formulated to correlate thermal characteristics with the health condition of oil palm seedlings. The research results show that this model has high validity, with R2 of 0.933 for calibration and 0.930 for validation. In essence, this method accurately predicts the health condition of oil palm seedlings based on thermal images. This approach has the potential to provide early detection of plant health problems quickly, accurately, and efficiently. Through the application of this method, it is hoped that it can reduce losses due to health problems in oil palm seedlings, thereby making a major contribution to increasing productivity and welfare in the palm oil industry.

Downloads

Download data is not yet available.

References

Banoula, M. (2023). An Overview on Multilayer Perceptron (MLP). https://www.simplilearn.com/tutorials/deep-learning-tutorial/multilayer-perceptron. Diakses: 15 Nopember 2023.

Elfianis, R. (2023). Pengertian Penyakit Tanaman : Faktor, Jenis dan Gejalanya. https://agrotek.id/pengertian-penyakit-tanaman/

Fauziah, W. K. (2021). Evaluasi Non Destruktif Kualitas Tandan Buah Segar (TBS) Kelapa Sawit (Elaeis guineensis Jack) Berdasarkan Sifat Termal. [Tesis]. Universitas Andalas.

Fauziah, W. K., Makky, M., Santosa, & Cherie, D. (2021). Thermal vision of oil palm fruits under difference ripeness quality. IOP Conference Series: Earth and Environmental Science, 644(1). https://doi.org/10.1088/1755-1315/644/1/012044

Makky, M., & Soni, P. (2013). Development of an automatic grading machine for oil palm fresh fruits bunches (FFBs) based on machine vision. Computers and Electronics in Agriculture, 93, 129–139. https://doi.org/10.1016/j.compag.2013.02.008

Makky, M., & Soni, P. (2014). In situ quality assessment of intact oil palm fresh fruit bunches using rapid portable non-contact and non-destructive approach. Journal of Food Engineering, 120, 248–259. https://doi.org/10.1016/j.jfoodeng.2013.08.011

Mastuti, R. (2016). Modul Metabolit Sekunder dan Pertahanan Tanaman (pp. 1–18). Universitas Brawijaya.

Melidawati, Cherie, D., Fahmy, K., & Makky, M. (2021). Nondestructive evaluation quality of oil palm fresh fruit bunch (FFB) (Elaeis guineensis Jack) based on optical properties using artificial neural network (ANN). IOP Conference Series: Earth and Environmental Science, 644(1). https://doi.org/10.1088/1755-1315/644/1/012032

Mouazen, A. M., Saeys, W., Xing, J., De Baerdemaeker, J., & Ramon, H. (2005). Near infrared spectroscopy for agricultural materials: An instrument comparison. Journal of Near Infrared Spectroscopy, 13(2), 87–97. https://doi.org/10.1255/jnirs.461

Raharjo, E. (2022). Mengenal Bibit Abnormal di Pembibitan Kelapa Sawit. https://disbunnak.kalbarprov.go.id/berita/detail/mengenal-bibit-abnormal-di-pembibitan-kelapa-sawit

Sukristiyanti, & Marganingrum, D. (2009). 19-55-1-PB. Jurnal Riset Geologi Dan Pertambangan, 1, 15–24.

Published
2023-12-30
How to Cite
Fauziah, W., Sofi’i, I., & Melidawati, M. (2023). Optimasi Deteksi Dini Masalah Kesehatan Bibit Kelapa Sawit dengan JST MLP Berbasis Citra Termal. JURNAL BUDIDAYA PERTANIAN, 19(2), 111-116. https://doi.org/10.30598/jbdp.2023.19.2.111