Identification of Soil Damage Due to Biomass Production in Bekasi Regency, Indonesia

  • Dani L Hakim Agribusiness Study Program, Faculty of Business, President University, Jababeka Education Park, Jl. Ki Hajar Dewantara, RT.2/RW.4, Mekarmukti, North Cikarang, Bekasi Regency, West Java, Indonesia 17530
  • Riyanto Adji Agribusiness Study Program, Faculty of Business, President University, Jababeka Education Park, Jl. Ki Hajar Dewantara, RT.2/RW.4, Mekarmukti, North Cikarang, Bekasi Regency, West Java, Indonesia 17530
  • Rachmi Satwhikawara Agribusiness Study Program, Faculty of Business, President University, Jababeka Education Park, Jl. Ki Hajar Dewantara, RT.2/RW.4, Mekarmukti, North Cikarang, Bekasi Regency, West Java, Indonesia 17530
  • Syamsu Alam 2Soil Science Department, Faculty of Agriculture, Halu Oleo Un iversity, Kampus Hijau Bumi Tridharma, Anduonohu, Kambu, Kendary City, South East Sulawesi, Indonesia 93232
Keywords: biomass, limit factor, soil damage, soil characteristic, soil compaction

Abstract

The  primary  objective  of  this  study  was  to  determine  the  current  condition,  areas,  and  potential  of  soil  degradation  due  to  biomass  production  in  Bekasi  Regency.  This  study  used  a  survey-based  methodology  that  involved  direct  field  observation  and  collection  of soil samples from specified agricultural and forestry areas based on work maps. The laboratory analysis was conducted  on  the  collected  soil  samples.  The  initial  phase  of  soil damage  determination  involved  an  evaluation  of  the  current  soil  condition.  Soil  condition  maps  were  created  utilizing data  derived from  the determination  of  key  soil  parameters based  on  the  standard  of so il  damage  criteria.  The  result  of  the  analysis indicated  that  the  degree  of  soil  damage  in  Bekasi  Regency  due  to  biomass  production varied from slight to moderate. The primary limiting factors were identified as soil permeability (p), redox potential (r), to tal porosity  (v), electrical conductivity (e), bulk density (d), and pH level (a). The limiting factors were predominantly influenced by the constraints  associated  with  the  physical  characteristics  of  the  soil.  The  phenomenon  is  commonly  associated  with  the  high  level  of  land  exploitation, characterized by the use of chemical inputs, resulting in soil compaction. The process of compaction has a substantial  impact on soil properties, including permeability, porosity, redox potential, bulk density, and electrical conductivity. 

Downloads

Download data is not yet available.

References

Aikins, S. and Afuakwa, J. (2012). Effect of four different tillage practices on soil physical properties under cowpea. Agriculture and Biology Journal of North America, 3(1), 17-24. https://doi.org/10.5251/abjna.2012.3.1.17.24.

Allen, K., Corre, M., Tjoa, A., & Veldkamp, E. (2015). Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. Plos One, 10(7), e0133325. https://doi.org/10.1371/journal.pone.0133325.

Bawa, S., Quansah, C., Tuffour, H., Abubakari, A., & Melenya, C. (2019). Soil compaction and soil amendments on the growth and biomass yield of maize (Zea mays, L.) and soybean (glycine max l.). International Journal of Plant & Soil Science, 1-16. https://doi.org/10.9734/ijpss/2019/v27i630094.

Borggaard, O. and Gimsing, A. (2007). Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Management Science, 64(4), 441-456. https://doi.org/10.1002/ps.1512.

Cantwell, J., Liebl, R., & Slife, F. (1989). Biodegradation characteristics of imazaquin and imazethapyr. Weed Science, 37(6), 815-819. https://doi.org/10.1017/s0043174500072891.

Darma, S. and Fahrunsyah, F. (2022). Effect of soil damage on carrying capacity of biomass production: a lesson from Tanjung Selor District-Tanjung Redeb, Indonesia. Universal Journal of Agricultural Research, 10(6), 682-690. https://doi.org/10.13189/ujar.2022.100609.

Dudáková, Z., Allman, M., Merganič, J., & Merganičová, K. (2020). Machinery-induced damage to soil and remaining forest stands-case study from Slovakia. Forests, 11(12), 1289. https://doi.org/10.3390/f11121289

Escuer, O. and Vabrit, S. (2017). Effect of organic mulches on development of three ornamental annual plants, moisture and chemical properties of soil. Acta Scientiarum Polonorum Hortorum Cultus, 16(4), 127-139. https://doi.org/10.24326/asphc.2017.4.13.

Gollany, H., Titus, B., Asbjornsen, H., Resh, S., Chimner, R., Kaczmarek, D., … & Cisz, M. (2015). Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas. Environmental Management, 56(6), 1330-1355. https://doi.org/10.1007/s00267-015-0536-7.

Harliando, D., Saputri, H., Setyawan, C., Khidzir, A., Susanto, S., & Zaki, M. (2022). RUSLE CP factor optimization for soil erosion modeling in tropical watershed of Indonesia, In: A. D. Saputro et al. (Eds.): ICOSEAT 2022, ABSR 26pp. https://doi.org/10.2991/978-94-6463-086-2_35.

Hikmah, N. (2019). Local wisdom of farmers on the northern slopes of Ungaran Mountain to reduce erosion on agricultural land (case study in Persen Hamlet, Sekaran village). Atlantic Press, Springer Nature.. https://doi.org/10.2991/icorsia-18.2019.70.

Jaung, W., Wiraguna, E., Okarda, B., Artati, Y., Goh, C., Ramdhoni, S., … & Baral, H. (2018). Spatial assessment of degraded lands for biofuel production in Indonesia. Sustainability 10(2), 4595 https://doi.org/10.20944/preprints201811.0298.v1.

Karlen, D. and Rice, C. (2015). Soil degradation: will humankind ever learn? Sustainability, 7(9), 12490-12501. https://doi.org/10.3390/su70912490.

Li, Z. and Xing, D. (2010). Mitochondrial pathway leading to programmed cell death induced by aluminum phytotoxicity in arabidopsis. Plant Signaling & Behavior, 5(12), 1660-1662. https://doi.org/10.4161/psb.5.12.14014.

Matsumoto, S., Ogata, S., Shimada, H., Sasaoka, T., Kusuma, G., & Gautama, R. (2016). Application of coal ash to postmine land for prevention of soil erosion in coal mine in Indonesia: utilization of fly ash and bottom ash. Advances in Materials Science and Engineering, 2016, 1-8. https://doi.org/10.1155/2016/8386598.

Meli, S., Porta, V., Puglisi, E., Re, A., & Gennari, M. (2006). Description of chemical and biological soil characteristics of two fields subjected to different agricultural management under Mediterranean conditions. Italian Journal of Agronomy, 1(3), 379. https://doi.org/10.4081/ija.2006.379.

Min, Y., Toyota, K., Sato, E., & Takada, A. (2011). Effects of anaerobically digested slurry onmeloidogyne incognitaandpratylenchus penetransin tomato and radish production. Applied and Environmental Soil Science, 2011, 1-6. https://doi.org/10.1155/2011/528712.

Pezeshki, S., Anderson, P., & Shields, F. (1998). Effects of soil moisture regimes on growth and survival of black willow (salix nigra) posts (cuttings). Wetlands, 18(3), 460-470. https://doi.org/10.1007/bf03161538.

Picchio, R., Mederski, P., & Tavankar, F. (2020). How and how much, do harvesting activities affect forest soil, regeneration and stands?. Current Forestry Reports, 6(2), 115-128. https://doi.org/10.1007/s40725-020-00113-8.

Prasetyo, H., Setyobudi, R., Adinurani, P., Vincēviča-Gaile, Z., Pakarti, T., Tonda, R., … & Mel, M. (2022). Assessment of soil chemical properties for monitoring and maintenance of soil fertility in Probolinggo, Indonesia. Proceedings of the Pakistan Academy of Sciences B Life and Environmental Sciences, 59(4), 99-113. https://doi.org/10.53560/ppasb(59-4)811.

Rashid, M., Sajid, M., Elahi, N., Noreen, S., & Shah, K. (2021). Antioxidant defense system is a key mechanism for drought stress tolerance in wheat (Triticum aestivum, L.). Sarhad Journal of Agriculture, 37(2). https://doi.org/10.17582/journal.sja/2021/37.2.348.358.

Ren, Z., Li, M., Hui, Y., Zengwang, M., & Gu, J. (2021). Remediation effect of biomass amendment on the physical-chemical performance and sustainable utilization of sandy soil. Annales De Chimie Science Des Matériaux, 45(1), 33-42. https://doi.org/10.18280/acsm.450105.

Rofita, R., Utami, S., Maas, A., & Nurudin, M. (2021). Spatial distribution of soil morphology and physicochemical properties to assess land degradation under different ndvi and tri in North Halmahera, Indonesia. Journal of Degraded and Mining Lands Management, 9(1), 3137-3154. https://doi.org/10.15243/jdmlm.2021.091.3137.

Sheets, K. and Hendrickx, J. (1995). Noninvasive soil water content measurement using electromagnetic induction. Water Resources Research, 31(10), 2401-2409. https://doi.org/10.1029/95wr01949.

Susanti, Y., Syafrudin, S., & Helmi, M. (2019). Soil erosion modelling at watershed level in Indonesia: a review. E3S Web of Conferences, 125, 01008. https://doi.org/10.1051/e3sconf/201912501008.

Tang-yuan, N., Bin, H., Jiao, N., Tian, S., & Zengjia, L. (2009). Effects of conservation tillage on soil porosity in maize-wheat cropping system. Plant Soil and Environment, 55(8), 327-333. https://doi.org/10.17221/25/2009-pse.

Tully, K., Sullivan, C., Weil, R., & Sánchez, P. (2015). The state of soil degradation in Sub-Saharan Africa: baselines, trajectories, and solutions. Sustainability, 7(6), 6523-6552. https://doi.org/10.3390/su7066523.

Wolińska, A., Banach, A., Szafranek-Nakonieczna, A., Stępniewska, Z., & Błaszczyk, M. (2018). Easily degradable carbon – an indicator of microbial hotspots and soil degradation. International Agrophysics, 32(1), 123-131. https://doi.org/10.1515/intag-2016-0098.

Yu, B., Xie, C., Cai, S., Yan, C., Lv, Y., Mo, Z., … & Yang, Z. (2018). Effects of tree root density on soil total porosity and non-capillary porosity using a ground-penetrating tree radar unit in Shanghai, China. Sustainability, 10(12), 4640. https://doi.org/10.3390/su10124640.

Zuo, Y., Liu, X., Ma, T., Zeng, Y., Li, W., Xia, C., … & Hongping, D. (2023). Distinctive patterns of soil microbial community during forest ecosystem restoration in Southwestern China. Land Degradation and Development, 34(14), 4181-4194. https://doi.org/10.1002/ldr.4768.

Published
2024-06-12
How to Cite
Hakim, D., Adji, R., Satwhikawara, R., & Alam, S. (2024). Identification of Soil Damage Due to Biomass Production in Bekasi Regency, Indonesia. JURNAL BUDIDAYA PERTANIAN, 20(1), 1-7. https://doi.org/10.30598/jbdp.2024.20.1.1