Synthesis, Evaluation, and Molecular Docking Study of 4-Monoacyl Resorcinol Against Tyrosinase Enzyme

Ade Danova1*, Yusuf Eka Maulana1, Elvira Hermawati1, Warinthorn Chavasiri2

1Organic Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa No.10, Bandung, West Java, 40132, Indonesia
2Center of Excellence in Natural Products, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

*Corresponding Author: adedanova@itb.ac.id

Received: May 2023
Received in revised: July 2023
Accepted: August 2023
Available online: September 2023

Abstract

Tyrosinase is a crucial enzyme in melanin production to protect the skin from ultraviolet, leading to skin cancers. This study synthesized eight compounds of acyl resorcinol with long-chain carbon (1-8) and structurally elucidated by 1H and 13C NMR. The in vitro evaluation of eight synthesized compounds against tyrosinase enzyme showed that 4-heptanoyl resorcinol (6) exhibited high inhibitory activity compared with the kojic acid as standard. In addition, the molecular docking study demonstrated that 6 showed lower binding energy (-7.3 kcal/mol) than kojic acid (-6.9 kcal/mol) and possessed interaction with crucial residues in the active site.

Keywords: Tyrosinase, inhibitor, molecular docking, acyl resorcinol, 1H, 13C NMR

INTRODUCTION

Tyrosinase (EC 1.14.18.1), a metalloenzyme containing copper ion (Cu²⁺), is a crucial enzyme in regulating melanin production in melanocyte cells (Hassan, Ashraf, Abbasi, Raza, & Seo, 2018; Pillaiyar et al., 2017; Silavi, Divsalar, & Saboury, 2012). In melanin production, tyrosinase catalyzes two different rate-limiting reactions, namely the o-hydroxylation of 4-hydroxyphenylalanine (L-tyrosine) to 3,4-dihydroxyphenylalanine (L-DOPA) (monophenolase activity) and then the oxidation of L-DOPA to dopaquinone (diphenolase activity) which will polymerize to form melanin (Ashooriha et al., 2019).

Melanin is found in many living cells like animals, plants, fungi, and bacteria, which is responsible for generating natural pigments in melanocytes through the melanogenesis process (Ashooriha et al., 2019; Pillaiyar, Manickam, & Jung, 2015; Silavi et al., 2012). In mammals, melanin is produced in the eyes, skin, hair, and brain, controlled by intrinsic factors like mutation, hormones, and the immune system, and extrinsic factors like UV radiation and chemicals (Lee, Baek, & Nam, 2016). However, uncontrol melanin production leads to high melanin content in the skin, which causes dermatological disorders (freckles, vitiligo, melasma, cancer) and non-dermatological disorders (Parkinson’s disease) (Bose, Petsko, & Eliez, 2018; Deri et al., 2016; Faig et al., 2017). People who have darker skin are more vulnerable to these diseases (Chen et al., 2015). Melanogenesis is performed by enzymatic processes like tyrosinase (Mahdavi et al., 2018). Therefore, tyrosinase has been a targeted protein in evaluating drug candidates, applicable in pharmaceutical and cosmetics.

Many tyrosinase inhibitors have been reported and widely used in medicine, agriculture, and cosmetics, including kojic acid, arbutin, hydroquinone, and L-ascorbic acid in Figure 1 (Choi et al., 2010; Mann et al., 2018). Kojic acid is an available tyrosinase inhibitor in the market. However, kojic acid still has several drawbacks in cosmetics which may cause irritations in the skin due to cytotoxicity, low stability, and lipophilicity. Therefore, the development of a new tyrosinase inhibitor is still crucial to have hydrophilic and lipophilic properties to enhance dermal penetration without side effects (Karakaya, Türk, Erercan, & Aytemir, 2019). Phenolic compounds showed high
potency as tyrosinase inhibitors because the structure is similar to kojic acid, which can be a chelating agent (Noh et al., 2009). In a previous study, 3,5-dihydroxyphenyl decanoate inhibited a mushroom tyrosinase with an IC$_{50}$ value of 96.5 μM (Qiu, Chen, Wang, Huang, & Song, 2005).

Thus, our study aimed to make a hybrid between resorcinol as a hydrophilic moiety and acyl with long-chain carbon as a lipophilic moiety to form monoacyl resorcinol via Friedel-Craft acylation and evaluate their inhibitory activity against tyrosinase enzyme. Molecular docking was performed to investigate the interaction between monoacyl resorcinol and enzyme.

METHODOLOGY

Materials and Instrumentals

Chemicals were purchased from TCI, Sigma Aldrich, and Merck. Silica gel for column chromatography (CC) (0.063-0.200 mm) was a product of Merck Company. Tyrosinase from mushroom (EC 1.14.18.1) and L-tyrosine and kojic acid (positive control) were purchased from Sigma Aldrich. Tyrosinase inhibition was measured using the ALLSHENG AMR-100 microplate reader. TLC was performed on Merck TLC plates (0.23 mm thickness), with compounds visualized by UV light and vanillin sulfate in ethanol and then heated on a hot plate. The NMR spectra were determined using Bruker Avance 400 MHz. The hardware in this research uses a set of computers with processor chips AMD RyzenTM 9 5950x 16 core and two threads of processor @ 3.4 GHz, RAM 12 GB, operating system, Ubuntu 20.04.5 LTS 64-bit, and graphics processing unit (GPU) NVidia GeForce GT 610. The software in this research uses ChemOffice Professional 15.0 (Cambridge, PerkinElmer), Notepad++ (GNU General Public License), AutoDock Tools 1.5.6 (The Scripps Research Institute, USA), Autodock Vina (The Scripps Research Institute) (Trott dan Olson, 2010), BIOVIA Discovery Studio Visualizer (Dassault Systèmes), PyMol Version 2.0 (Schrödinger LLC).

General Procedure for The Synthesis of Acyl Resorcinol

Resorcinol (1.1 g, 10 mmol) was combined with anhydrous ZnCl$_2$ (3.1 g, 23.41 mmol) in long-chain carboxylic acid (5 mL) and heated at 95–100 °C for 24 h. After completion of the reaction, the mixture was cooled to room temperature and added to ice-cold 6 N HCl (10 mL). The mixture was washed with water (20 mL), extracted with ethyl acetate, and evaporated to yield the crude product, followed by purification using column chromatography (hexane:ethylacetate= 4:1) on silica gel to afford the desired products (Liu et al., 2014).

1-(2,4-dihydroxyphenyl) butan - 1 – one (1). Powder, pale orange, yield: 90.0%. 1H NMR (400 MHz, CDCl$_3$) δ 1.00 (t, 7.6 Hz, 3H), 1.75 (sext, 7.2 Hz, 2H), 2.86 (t, 7.2 Hz, 2H), 6.39 (dd, 2.0 Hz, 8.0 Hz, 2H), 7.65 (d, 8.4 Hz, 1H), 12.93 (s, OH). 13C NMR (100 MHz, CDCl$_3$) δ 205.6, 165.3, 163.1, 132.5, 113.79, 108.0, 103.6, 40.0, 18.6, 13.9.

11’-(4,6-dihydroxy-1,3-phenylene)bis (butan-1-one) (2). Powder, pale brown, yield: (2.1%). 1H NMR (400 MHz, CDCl$_3$) δ 1.04 (t, 6H), 1.81 (m, 4H), 2.93 (t, 4H), 6.41 (s, 1H), 8.26 (s, 1H), 13.04 (s, OH). 13C NMR (100 MHz, CDCl$_3$) δ 204.87, 168.98, 134.81, 113.31, 105.21, 39.69, 18.14, 13.96.

1-(2,4-dihydroxyphenyl)pentan-1-one (3). Oil, orange, yield: 56.5%. 1H NMR (400 MHz, CDCl$_3$) δ 0.94 (t, 6.8 Hz, 3H), 1.41 (sext, 7.6 Hz, 2H), 1.70 (m, 2H), 2.88 (t, 7.2 Hz, 2H), 6.39 (dd, 2.4 Hz, 9.2 Hz, 2H), 7.64 (d, 9.2 Hz, 1H), 12.92 (s, OH). 13C NMR (100 MHz, CDCl$_3$) δ 205.7, 165.3, 163.2, 132.6, 113.8, 108.1, 103.7, 37.9, 27.3, 22.6, 13.9.

1-(2,4-dihydroxyphenyl)-3-methylbutan-1-one (4). Oil, orange, yield: 67.4%. 1H NMR (400 MHz, CDCl$_3$) δ 0.99 (d, 6.4 Hz, 6H), 2.24 (m, 1H), 2.74 (d, 6.8 Hz, 2H), 6.39 (dd, 2.4 Hz, 9.6 Hz, 2H), 7.64 (d, 9.2 Hz, 2H), 13.01 (s, OH). 13C NMR (100 MHz, CDCl$_3$) δ 205.5, 165.4, 163.2, 132.8, 114.2, 108.1, 103.7, 46.9, 26.3, 22.9.

1-(2,4-dihydroxyphenyl)hexan-1-one (5). Oil, orange, yield: 90.6%. 1H NMR (400 MHz, CDCl$_3$) δ 0.90 (t, 6.0 Hz, 3H), 1.35 (m, 3H), 1.69 (m, 3H), 2.87 (t, 7.6 Hz, 2H), 3.69 (dd, 2.4 Hz, 9.2 Hz, 2H), 7.64 (dd, 9.6 Hz, 1H), 12.93 (s, OH). 13C NMR (100 MHz, CDCl$_3$) δ 205.8, 165.25, 163.1, 132.6, 113.8, 108.1, 103.7, 38.1, 34.1, 31.7, 31.3, 24.9, 24.9, 22.5, 22.6, 14.0.

1-(2,4-dihydroxyphenyl)heptan-1-one (6). Oil, orange, yield: 98.7%. 1H NMR (400 MHz, CDCl$_3$) δ 0.88 (m, 3H), 1.31 (m, 3H), 1.72 (m, 2H), 2.88 (t, 7.6 Hz, 2H), 6.40 (dd, 2.8 Hz, 8.8 Hz), 7.65 (d, 9.6 Hz, 1H), 12.91 (s, OH). 13C NMR (100 MHz, CDCl$_3$) δ 205.7, 165.3, 163.0, 132.6, 113.8, 108.1, 103.7, 38.2, 31.7, 29.2, 25.2, 22.6, 14.1.

1-(2,4-dihydroxyphenyl)octan-1-one (7). Oil, orange, yield: 90.0%. 1H NMR (400 MHz, CDCl$_3$) δ 0.87 (t, 6.8 Hz, 8H), 1.67 (m, 5H), 2.87 (t, 7.6 Hz, 2H), 6.39 (dd, 2.8 Hz, 7.6 Hz, 2H), 7.64 (d, 9.6 Hz, 1H), 12.90 (s, OH). 13C NMR (100 MHz, CDCl$_3$) δ 205.6, 165.3, 163.1, 132.5, 113.79, 108.0, 103.7, 38.2, 34.1, 29.5, 25.2, 24.8, 22.7, 14.2.

DOI: 10.30598//ijcr.2023.11-nov 136
1-(2,4-dihydroxyphenyl)nonan-1-one (8). Oil, orange, yield: 92.0%. 1H NMR (400 MHz, CDCl$_3$) δ 0.88 (s, 4H), 1.28 (s, 9H), 1.68 (m, 2H), 2.36 (s, 1H), 2.89 (s, 1H), 6.39 (s, 2H), 7.65 (s, 1H), 12.95 (s, OH). 13C NMR (100 MHz, CDCl$_3$) δ 205.3, 164.9, 162.6, 132.2, 113.5, 107.7, 103.4, 37.8, 33.8, 31.6, 29.2, 24.8, 24.5, 22.4, 13.8.

Tyrosinase inhibition assay

The tyrosinase inhibitory activity was performed using 96 well microplates with modification (Larik et al., 2017). Compounds were prepared in 10% DMSO in buffer, and two-fold dilution was done to obtain various concentrations. 50 μL of the sample solution in buffer was placed in 96 well plates, then 50 μL tyrosinase enzyme from the mushroom (250 U/mL) was added, and the mixtures were incubated for 5 minutes. 50 μL of 5 mM L-tyrosine was added later as a substrate. The mixtures were then incubated further for 30 minutes. The reaction was measured at 492 nm. Kojic acid was used as a positive control. The concentration of compounds was 200 μM. The percentage of tyrosinase inhibition was calculated from the following formula (Equation 1), and IC$_{50}$ was determined for each sample.

\[
\text{% Tyrosinase inhibition} = \frac{\Delta A_{\text{control}} - \Delta A_{\text{sample}}}{\Delta A_{\text{control}}} \times 100 \tag{1}
\]

ΔA control is the absorbance value at 492 nm without the test sample, and ΔA sample is the absorbance value with the mixture containing the sample.

Molecular Docking Study

The selected compounds were docked to the crystal structure of the Mushroom Tyrosinase (PDB ID: 2y9x), which was obtained from the Protein Data Bank (PDB) according to previous works (Abbasi et al., 2022; H. Berman, Henrick, & Nakamura, 2003; H. M. Berman et al., 2000; Chortani, Nimbarte, Horchani, Jannet, & Romdhane, 2019; Ismaya et al., 2011). The autodocktools 1.5.6 was prepared the crystal structure for docking the co-crystallized ligands, removing crystallographic water molecules, and adding the polar hydrogen atoms. The ChemOffice Professional 15.0 software was used to build 3D structures optimized using the MMF94 force field. The Autodock vina was used for docking simulation, where the center of the binding was defined in the protein crystal structure as hydroxyl oxygen of the co-crystallized tropolone molecule ($x = -9.877$, $y = -26.859$, $z = -42.174$) for the active site.

RESULTS AND DISCUSSION

Synthesis of eight acyl resorcinols (1-8) was carried out, as shown in Scheme 1. According to the previous work, resorcinol was reacted with several aliphatic acids through Friedel-Craft acylation catalyzed by zinc chloride in reflux condition for 24 hours (Liu et al., 2014).

![Scheme 1. Products of Friedel-Craft acylation](image)

Figures 2. 1H NMR spectra of compound 6 in CDCl$_3$
Figures 3. 13C NMR spectra of compound 6 in CDCl$_3$

This study determined the products using 1H and 13C NMR spectroscopy. As representatives to explain the structural elucidation, 6 was selected. In 1H NMR spectra, 6 showed a singlet proton at δ$_H$ 12.91 belonged to OH closed to the carbonyl group to form hydrogen bonding. The ABX type shown in the spectra at δ$_H$ 6.39 (dd, 2.8 Hz, 8.8 Hz, 2xCsp2-H) and 7.65 (d, 9.6 Hz, 1xCsp2-H) indicated that the three protons were on ortho, meta, and para positions. Proton signals at δ$_H$ 0.89 (m, 3H), 1.31 (m, 6H), 1.72 (m, 2H), and 2.88 (t, 7.6 Hz, 2H) belonged to long-chain carbons. In addition, the 13C NMR spectra showed a carbonyl signal at δ$_C$ 205.7. Moreover, signals of six carbons sp2 were shown at δ$_C$ 165.3, 163.0, 132.6, 113.8, 108.1, 103.7 belonged to the phenyl ring, and six carbons sp3 at δ$_C$ 38.2, 31.7, 29.2, 25.2, 22.6, 14.1 belonged to long-chain carbons.

Eight synthesized compounds were evaluated in vitro inhibitory activity against tyrosinase from mushrooms as previous method (Larik et al., 2017). As shown in Table 1, 4-monoacyl resorcinol with carbon sp3 (R= alkyl) from three to six carbons (1, 3, 5, 6) showed an increase in inhibitory activity from 37.6, 40.6, 45.4, and 79.3%, respectively. However, 4-monoacyl resorcinol 7 and 8 with seven and eight carbon sp3 declined more than 50% inhibitory activity against tyrosinase, that hydrophile-lipophile balance properties could cause. Moreover, 4-isovaleryl resorcinol (4) decreased a half of 3 inhibitory activity, and 4,6-dibutanoyl resorcinol (2) also dropped more than 6-fold inhibitory activity compared with 1 due to steric hindrance. This result suggests that 6 with six carbon sp3 (R= alkyl) is the best inhibitor in this series.

Table 1. In vitro tyrosinase inhibition of acyl resorcinols (1-8)

<table>
<thead>
<tr>
<th>No</th>
<th>% Inhibition (200 μM)a</th>
<th>±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37.655</td>
<td>1.033</td>
</tr>
<tr>
<td>2</td>
<td>6.144</td>
<td>2.152</td>
</tr>
<tr>
<td>3</td>
<td>40.586</td>
<td>2.561</td>
</tr>
<tr>
<td>4</td>
<td>20.857</td>
<td>1.015</td>
</tr>
<tr>
<td>5</td>
<td>45.434</td>
<td>1.863</td>
</tr>
<tr>
<td>6</td>
<td>79.256b</td>
<td>1.953</td>
</tr>
<tr>
<td>7</td>
<td>33.033</td>
<td>1.757</td>
</tr>
<tr>
<td>8</td>
<td>22.379</td>
<td>3.109</td>
</tr>
</tbody>
</table>

aThe experiment was conducted in triplicate. bInhibition of 6 (20 μM) = 49.380±2.303%. cIC$_{50}$ of Kojic Acid = 36.08±1.075 μM.

The molecular docking study was performed according to previous work (Abbasi et al., 2022). A
molecular docking study was conducted to address the possible interactions between compound 6 and the enzyme’s active site. The validation of docking was performed by re-docking the native ligand (tropolone) with the RMSD value lower than 2 Å as shown in Table 2 (Fitriana & Royani, 2022; Gaspersz & Sohilait, 2019; Mulyati & Panjaitan, 2021). The result of binding energy and the possible interactions is shown in Table 3. The result showed that compound 6 exhibited lower binding energy (-7.3 kcal/mol) compared with kojic acid as a positive control (-6.9 kcal/mol) and tropolone as a native ligand (-5.6 kcal/mol). This demonstrates a correlation between the inhibition value of compound 6 and kojic acid, where 6 showed almost the same interaction with the critical residue in the active site cavity of the enzyme, like a tropolone, as depicted in Tables 2 and 3. Nevertheless, 2 showed higher binding energy (-6.1 kcal/mol) than kojic acid and 6 and no interaction with copper ion in the active site due to steric hindrance, so 2 exhibited deficient inhibitory activity, as shown in Table 1. Therefore, 6 exhibited better inhibitory activity than kojic acid, as shown in Table 1.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Binding energy (kcal/mol)</th>
<th>Interactions over the tyrosinase</th>
<th>van der Waals:</th>
<th>Metal-Donor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kojic Acid</td>
<td>-6.9</td>
<td></td>
<td>His61, Glu256, His259, Asn260, Phe264, Met280, Gly281, Ser282, Phe292, His296, Cu400</td>
<td>Cu401</td>
</tr>
<tr>
<td>(Positive Control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-6.1</td>
<td></td>
<td>Van der Walls: Met257, Val248, Phe264, His61, Ala286, Met280, Ser282, Hys263, Gly281, Asn260, His259, His85, His244, Val283</td>
<td>H-bond: Asn260</td>
</tr>
</tbody>
</table>

Table 3. Docking binding energy and interactions over the tyrosinase with kojic acid, 2 and 6.

CONCLUSION

Eight compounds (1-8) had been successfully synthesized using Friedel-Craft acylation catalyzed by zinc chloride as a Lewis acid in good to excellent yield. 1H and 13C NMR determined their structures. All compounds were evaluated for their inhibitory activity against the tyrosinase enzyme, and compound 6 exhibited a high inhibitory activity compared with kojic acid. This result was supported by a molecular docking study to address the binding interaction of the best potent compound. The in vitro and computational studies showed that compound 6 disclosed good critical interaction with the tyrosinase enzyme. Therefore, it demonstrates that compound 6 (4-heptanoly resorcinol) could be a potential compound for further study to obtain better therapeutic agents.

ACKNOWLEDGMENT

The Royal Golden Jubilee supported this work for Ph.D. program (No. PHD/0017/2561), Thailand Research Fund. The authors also would like to thank Prof. Dr. Yana M. Syah for his facility in computational chemistry.

REFERENCES

DOI: 10.30598//ijcr.2023.11-nov
Indonesian Journal of Chemical Research, 6(2), 59-66.

Mulyati, B., & Panjaitan, R. S. (2021). Study of Molecular Docking of Alkaloid Derivative Compounds from Stem Karamunting...
Ade Danova et al.
