UJI CONFIRMATORY FACTOR ANALYSIS INSTRUMEN PERSEPSI CALON GURU SEKOLAH DASAR TERHADAP SUBJEK MATEMATIKA

STUDI PSIKOMETRIK

  • Mohammad Archi Maulyda
  • Baiq Yuni Wahyuningsih Universitas Mataram
Keywords: CFA, instrumen persepsi, psikometrik, validitas

Abstract

Penelitian ini bertujuan untuk mengembangkan dan menguji instrumen yang dapat mengukur persepsi calon guru terhadap matematika, dengan menggunakan pendekatan psikometrik. Fokus utama penelitian ini adalah untuk mengevaluasi validitas dan reliabilitas instrumen yang digunakan dalam mengukur persepsi calon guru terhadap matematika, serta untuk mengidentifikasi faktor-faktor yang mempengaruhi persepsi tersebut. Metode yang digunakan adalah desain penelitian psikometrik dengan analisis data menggunakan Confirmatory Factor Analysis (CFA) untuk mengukur tiga dimensi utama, yaitu sikap siswa, peran dosen, dan perspektif mahasiswa terhadap matematika. Partisipan yang terlibat dalam penelitian ini adalah 204 calon guru sekolah dasar yang sedang menjalani pendidikan di perguruan tinggi di Indonesia. Hasil penelitian menunjukkan bahwa instrumen yang digunakan memiliki validitas konvergen yang baik dengan nilai Average Variance Extracted (AVE) yang cukup tinggi pada sebagian besar dimensi, serta reliabilitas yang baik dengan koefisien omega dan alpha lebih dari 0,70. Penelitian ini memberikan kontribusi dalam pemahaman lebih dalam tentang faktor-faktor yang mempengaruhi persepsi calon guru terhadap matematika dan memberikan dasar yang kuat untuk pengembangan instrumen pengukuran persepsi dalam konteks pendidikan matematika.

Downloads

Download data is not yet available.

References

bagi pengembangan kurikulum dan pelatihan dosen untuk meningkatkan kualitas pembelajaran matematika di pendidikan tinggi.

Daftar Pustaka

Astalini, Darmaji, Kurniawan, D. A., Chen, D., Fitriani, R., Wulandari, M., Maryani, S., Simamora, N. N., & Ramadhanti, A. (2022). A study for student perception of mathematical physics e-module based on gender. Journal of Turkish Science Education, 19(3), 911–936. https://doi.org/10.36681/tused.2022.156

Carmona-Márquez, J., Sierra-Robles, Á., Sánchez-García, M., García-Rodríguez, P., Muñoz-Silva, A., Arbinaga, F., & Tornero-Quiñones, I. (2021). Anti-fat bias in secondary school teachers: Are physical education teachers more biased than mathematics teachers? European Physical Education Review, 27(1), 168–184. https://doi.org/10.1177/1356336X20932187

Chandra, A. N., & Kurniawan, Y. (2015). A Study of Factor Affecting the Software Application Development in Indonesian Creative Industry. ComTech: Computer, Mathematics and Engineering Applications, 6(2), 309. https://doi.org/10.21512/comtech.v6i2.2275

Chapman, O. (2013). Mathematical-task knowledge for teaching. Journal of Mathematics Teacher Education, 16(1), 1–6. https://doi.org/10.1007/s10857-013-9234-7

Darmawijoyo, Fathurohman, A., Akila, M., & Somakim. (2023). Learning mathematical modelling: A portrait of secondary school student’s mathematical perception in learning mathematical modelling. 020007. https://doi.org/10.1063/5.0150968

Firdaus, F. M., Yuliana, L., Prasojo, L. D., Akalili, A., Wibowo, S., & Maulyda, M. A. (2024). Enhancing Mathematics Quality of Instruction (MQI) Competency in Pre-Service Teachers through Digital Flipbooks: Digital Didactics Design. International Journal of Information and Education Technology, 14(12), 1770–1778. https://doi.org/10.18178/ijiet.2024.14.12.2208

Gopsill, J., Goudswaard, M., Jones, D., & Hicks, B. (2021). CAPTURING MATHEMATICAL AND HUMAN PERCEPTIONS OF SHAPE AND FORM THROUGH MACHINE LEARNING. Proceedings of the Design Society, 1, 591–600. https://doi.org/10.1017/pds.2021.59

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). MULTIVARIATE DATA ANALYSIS (EIGHTH EDITION). Annabel Ainscow. www.cengage.com/highered

İlhan, A. (2021). The Impact of Game-Based, Modeling, and Collaborative Learning Methods on the Achievements, Motivations, and Visual Mathematical Literacy Perceptions. Sage Open, 11(1). https://doi.org/10.1177/21582440211003567

Kasim, Z., & Muhamad Sukri, N. L. (2022). Measuring Students’ Perception on Mathematics Learning Using Fuzzy Conjoint Analysis. Journal of Computing Research and Innovation, 7(1), 79–88. https://doi.org/10.24191/jcrinn.v7i1.270

Levy, S., & Goldfarb, L. (2021). The perception of subset quantity and items in an environment with distractors in a population with mathematical learning difficulties. Trends in Neuroscience and Education, 25, 100166. https://doi.org/10.1016/j.tine.2021.100166

Maulyda, M. A., Hidayati, V. R., Rosyidah, A. N. K., & Nurmawanti, I. (2019). Problem-solving ability of primary school teachers based on Polya’s method in Mataram City. PYTHAGORAS: Jurnal Pendidikan Matematika, 14(2), 139–149. https://doi.org/https://doi.org/10.21831/pg.v14i2.28686

NCTM. (2000). Principles and standards for school mathematics. Reston, VA: The National Council of Teachers Mathematics, Inc.

Ng, K. M., Masrie, M., Nordin, M. K., Rahim, A. A. A., & Buniyamin, N. (2023). Perception Survey on the Effectiveness of Mathematical Related Course in Electrical Engineering Conducted via Open and Distance Learning. 2023 IEEE 12th International Conference on Engineering Education (ICEED), 18–22. https://doi.org/10.1109/ICEED59801.2023.10264042

Novianti, M., & Retnawati, H. (2019). Student-teacher’s perception of mathematical representation in mathematics learning. Journal of Physics: Conference Series, 1320(1), 012106. https://doi.org/10.1088/1742-6596/1320/1/012106

Portillo, M., & Fernández-baena, J. (2020). Psicología Educativa Social Self-perception in Adolescents : Accuracy and Bias in their Perceptions of Acceptance / Rejection. Psicologia Educativa, 26(1), 1–6.

Rohid, N., Suryaman, S., & Rusmawati, R. D. (2019). Students’ Mathematical Communication Skills (MCS) in Solving Mathematics Problems: A Case in Indonesian Context. Anatolian Journal of Education, 4(2), 19–30. https://doi.org/10.29333/aje.2019.423a

Ruiz, M. U., Austria, M. R. R., & Torres, R. C. (2024). Mathematical Modeling of the Post-Covid 19 Pandemic Perception of Students on the Use of E-Learning for Educational Sustainability. Proceedings of the 2024 15th International Conference on E-Education, E-Business, E-Management and E-Learning, 257–263. https://doi.org/10.1145/3670013.3670056

Sembiring, R. K., Hadi, S., & Dolk, M. (2008). Reforming mathematics learning in Indonesian classrooms through RME. ZDM - International Journal on Mathematics Education, 40(6), 927–939. https://doi.org/10.1007/s11858-008-0125-9

Siregar, R., & Daut Siagian, M. (2019). Mathematical connection ability: teacher’s perception and experience in learning. Journal of Physics: Conference Series, 1315(1), 012041. https://doi.org/10.1088/1742-6596/1315/1/012041

Slavin, R. E. (2018). Educational psychology. In Psychological Bulletin (Vol. 25, Issue 7). Pearson. https://doi.org/10.1037/h0074121

Sulisworo, D., & Permprayoon, K. (2018). What is the Better Social Media for Mathematics Learning? A Case Study at A Rural School in Yogyakarta, Indonesia. International Journal on Emerging Mathematics Education, 2(1), 39–56. https://doi.org/10.12928/ijeme.v2i1.7071

Wijayanti, A., Dwiningrum, S. I. A., Saptono, B., & Maulyda, M. A. (2025). Elementary school student digital literacy framework: A Confirmatory Factor Analysis (CFA). Ricerche Di Pedagogia e Didattica, 20(1), 29–44. https://doi.org/10.6092/issn.1970-2221/19986

Yılmaz, T. Y., & Gök, M. (2025). Understanding Pre-Service Teachers’ Perceptions of the Ideal Learning Environment for Mathematical Activities Through Drawings. Behavioral Sciences, 15(4), 517. https://doi.org/10.3390/bs15040517

Published
2025-10-30
How to Cite
Maulyda, M., & Wahyuningsih, B. (2025). UJI CONFIRMATORY FACTOR ANALYSIS INSTRUMEN PERSEPSI CALON GURU SEKOLAH DASAR TERHADAP SUBJEK MATEMATIKA. Jurnal Magister Pendidikan Matematika (JUMADIKA), 7(2), 164-173. https://doi.org/10.30598/jumadikavol7iss2year2025page164-173