Tinjauan Ekonomis Penggunaan Sistem *Airbag* Dan Sistem *Cradle* Pada Proses Pengedokan Kapal

Di PT. Dok Dan Per Kapalan Waiame (Persero) Ambon

P. S. Rumodar¹, M. F. Noya², N. L. T. Thenu³ dan G. S. Norimarna⁴

¹Program Studi Tekni Sistem Perkapalan Fakultas Teknik Universitas Pattimura, Ambon 97233
¹psrumodar@gmail.com

²Program Studi Teknik Sistem Perkapalan Universitas Pattimura Email : mesak.frits.noya@fatek.unpatti.ac.id

³ Program Studi Teknik Sistem Perkapalan Universitas Pattimura Email : novitha.thenu@fatek.unpatti.ac.id

⁴ Program Studi Teknik Sistem Perkapalan Universitas Pattimura

Emai: gsnorimarna@fatek.unpatti.ac.id

Abstrak PT. Dok dan perkapalan Waiame Ambon adalah perusahaan reparasi kapal yang memiliki dua fasilitas pengedokan dengan menggunakan sistem airbag dan cradle. Pengamatan di galangan, sistem airbag dilengkapi dengan winch, kompresor dan alat berat (excavator) pada proses docking/undocking kapal sedangkan dengan sistem cradle dilengkapi dengan winch dan operator penyelam pada proses docking kapal. Proses dan waktu docking/undocking baik dengan sistem airbag dan sistem cradle akan berbeda, dengan kondisi ini maka biaya operasional (docking/undocking kapal) perlu diperhitungkan. Biaya operasional docking/undocking kapal dengan sistem airbag sebesar Rp 25.000.000,- dan sistem cradle sebesar Rp 20.000.000,-. Perbedaan biaya operasional dari masing-masing sistem pengedokan ini dapat mempengaruhi biaya operasional docking/undocking kapal pada perusahaan. Tujuan penelitian ini adalah memperoleh nilai ekonomis yang didapat oleh perusahaan dengan menggunakan sistem airbag dan sistem cradle. Penelitian ini melakukan perhitungan meliputi biaya listrik winch, biaya listrik kompresor, biaya operasi alat berat (excavator), biaya operasional (docking/undocking kapal), biaya docking harian dan kebutuhan tenaga kerja. Dari hasil perhitungan diperoleh bahwa biaya pengeluaran untuk sistem airbag dari tahun 2017-2019 sebesar Rp 760.483.125 dan sistem cradle sebesar Rp. 519,091,188, sedangkan pendapatan yang didapat dari sistem airbag sebesar Rp. 3,593,750,000 dan sistem cradle sebesar Rp. 1.728.750.000. Dari hasil di atas pendapatan terbanyak adalah pendapatan sistem airbag di tahun 2019 yaitu 79 %. Hal ini disebabkan karena lama waktu pengedokan pada sistem airbag lebih banyak walaupun jumlah kapal hanya 14. Keuntungan yang diperoleh dengan penggunaan sistem airbag per tiga tahun yaitu tahun 2017-2019 adalah sebesar Rp. 2.833.266.875,- , lebih besar jika dibandingkan dengan keuntungan yang didapat dengan menggunakan sistem cradle sebesar Rp. 1.209.658.812,50. Terlihat jelas bahwa penggunaan sistem airbag lebih menguntungkan.

Kata kunci: airbag, cradle, docking, undocking, laba bersih

Abstract PT. Dock and Shipping Waiame Ambon is a ship repair company that has two docking facilities using an airbag and cradle system. Observations at the shipyard, the airbag system is equipped with a winch, compressor, and heavy equipment (excavator) in the ship docking/undocking process, while the cradle system is equipped with winch and diver operators in the ship docking process. The process and time of docking/undocking both with the airbag system and the cradle system will be different, with this condition operational costs (docking/undocking ships) need to be taken into account. The operational cost of docking/undocking ships with an airbag system is Rp. 25,000,000, - and the cradle system is Rp. 20,000,000. The difference in operational costs of each of these docking systems can affect the company's ship docking/undocking operational costs. The purpose of this study is to obtain the economic value obtained by the company by using the airbag system and cradle

system. This study performs calculations that include winch electricity costs, compressor electricity costs, heavy equipment (excavator) operating costs, operational costs (shipbuilding/docking), daily docking costs and labor requirements. From the calculation results, the expenditure for the airbag system from 2017-2019 was Rp.760.483.125 and the cradle system was Rp. 519,091,188, while the revenue from the airbag system is Rp. 3,593,750,000 and the cradle system is Rp. 1,728,750,000. From the results above, the largest revenue was airbag system revenue in 2019, which was 79%. This is because the docking time on the airbag system is more even though the number of ships is only 14. The profit obtained by using the airbag system per three years, namely 2017-2019 is Rp. 2,833,266,875, - greater than the profit obtained by using the cradle system of Rp. 1,209,658,812.50. The use of an airbag system is more profitable.

Keywords: airbag, cradle, docking, undocking, net profit

1. PENDAHULUAN

PT. Dok dan Perkapalan Waiame (Persero) Ambon adalah perusahaan reparasi kapal yang mempunyai dua fasilitas pengedokan kapal dengan menggunakan sistem *airbag* dan sistem *cradle*. Teknologi menaikkan dan menurunkan kapal menggunakan fasilitas sistem airbag sudah banyak dipergunakan oleh galangan kapal di Indonesia, namun tidak sedikit juga galangan yang masih menggunakan fasilitas sistem *cradle* untuk menaikkan dan menurunkan kapal.

Penggunaan kedua fasilitas pengedokan ini berhubungan dengan biaya operasional docking/undocking kapal dengan sistem airbag sebesar Rp 25.000.000,- dan sistem cradle sebesar Rp 20.000.000,-. Perbedaan biaya operasional dari masing-masing sistem pengedokan ini dapat mempengaruhibiaya operasional docking/undocking kapal di perusahaan. Perbedaan biaya operasional ini juga mengarah kepada bagaimana memilih metode untuk investasi yang optimum pada perusahaan perkapalan (Engstrom, Crispe). docking sistem airbag membutuhkan landasan dan airbag sedang jenis docking dengan sistem cradle menggunakan landasan dan rel (Cornick, Leong, Karogal, Lamb dan Mackie).

Berdasarkan pengamatan di galangan metode sistem airbag dilengkapi dengan winch, compressor dan alat berat (excavator) pada proses docking/undocking kapal sedangkan dengan metode sistem cradle dilengkapi dengan winch dan operator penyelam pada proses docking kapal. Proses dan waktu docking/undocking baik dengan metode sistem airbag dan sistem cradle akan berbeda, dengan kondisi ini maka biaya operasional (docking/undocking kapal) perlu diperhitungkan juga. Dari penjelasan ini maka diperlukan tinjauan ekonomis biaya operasional sistem airbag dan sistem cradle. Oleh karena itu penelitian ini akan mengulas tentang

biaya operasional fasilitas pengedokan menggunakan sistem *airbag* dan sistem *cradle* pada PT. Dok dan Perkapalan Waiame (Persero) Ambon. Perhitungan ini meliputi biaya listrik *winch*, biaya listrik *compressor*, biaya operasi alat berat (*excavator*), biaya operasional (*docking/undocking* kapal), biaya *docking* harian dan kebutuhan tenaga kerja dari kedua metode tersebut.

2. BAHAN DAN METODE

2.1. Biaya Pengedokan Untuk Docking/Undocking Kapal Selama Periode Tahun 2017, 2018 dan 2019 Pada PT. Dok dan Perkapalan Waiame Ambon.

Sebelum perhitungan dilakukan diperlukan data *docking* kapal yang diambil dalam periode tahun 2017-2019 sebagai acuan untuk perhitungan, data yang diambil adalah terdiri dari:

- Data docking kapal pada PT. Dok dan Perkapalan Waiame Ambon Periode tahun 2017, 2018 dan 2019 untuk sistem airbag dan sistem cradle
- Waktu pengedokan kapal
- Jumlah pengedokan dengan sistem airbag dan sistem cradle
- Lama waktu pengedokan

Untuk mengetahui perbandingan biaya operasional dan pendapatan antara sistem *airbag* dan sistem *cradle* maka diperlukan perhitungan sebagai berikut:

1. Biaya docking kapal

Biaya docking kapal terdiri dari :

 a. Biaya tidak tetap
 Biaya yang berubah secara proposional dengan aktivitas bisnis. Biaya tidak tetap adalah jumlah biaya marjinal terhadap semua unit yang diproduksi, biaya tidak tetap berkaitan dengan volume (dan dibayar per barang atau jasa yang diproduksi)

b. Biaya Tetap

Pengeluaran bisnis yang tidak tergantung pada tingkat barang atau jasa yang dihasilkan oleh bisnis tersebut. Pengeluaran ini berkaitan dengan waktu seperti gaji, atau beban usaha yang harus dibayar setiap bulan dan sering disebut sebagai pengeluaran tambahan.

2. Pendapatan docking kapal terdiri dari:

- a. Pendapatan docking (docking/undocking)
- b. Pendapatan docking harian

2.2. Biaya Docking/Undocking Kapal untuk Sistem airbag

1. Biaya Tidak Tetap untuk Sistem airbag

a. Perhitungan jumlah Sistem Airbag

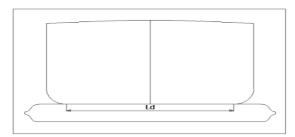
Untuk kapal-kapal konvensional, jumlah sistem *airbag* dihitung dengan menggunakan persamaan sebagai berikut (ISO, 2013):

$$N = K_1 \frac{Q.g}{C_B.R.L_d} \tag{1}$$

dimana:

N = Jumlah Sistem airbag (pcs)

 K_1 = Nilai konstanta 1,2 -1,3


Q = Berat kapal yang akan dinaikkan (ton)

g = Percepatan gravitasi; (m/s²)

CB = Koefesien blok kapal

R = Garansi kekuaatan bantalan *Sistem airbag* per satuan meter panjang dari *Sistem airbag* ; KN/m (nilai dapat dilihat pada Tabel 2.1)

Ld = Panjang kontak antara *Sistem airbag* dengan alas lambung kapal pada *parallel uniddle body* (m) seperti ditunjukkan pada Gambar

Gambar 1. Jarak antara sistem airbag dan alas kapal (Ld) (Sitepu,2012): Panjang kontak

Jarak sumbu antara sistem *airbag* diperhitungkan untuk mendapatkan kekuatan memanjang kapal dan untuk menghindari *overlapping* dari putaran sistem *airbag*. Berikut ini adalah tabel klasifikasi berdasarkan diameter sistem airbag seperti ditunjukkan pada (Tabel 2.1).

Tabel 1. Klasifikasi berdasarkan diameter Sistem *airbag (ISO 2013)*.

Diameter Kerja pressure		Tinggi kerja	Dijamin daya	dukung persat	uan panjang
			Kn/m	T/m	Lb/ft
		0,7 m (2.296 ft)	133,61	13,62	9154
		0,6 m (1,968 ft)	160,30	16,34	10983
		0,5 m (1,640 ft)	187,08	19,07	12818
D = 1.2 m (D= 1.394ft)	0,17Mpa (24,66 ft)	0,4 m (1,312 ft)	213,76	21,79	14646
(D-1,55411)	(24,00 11)	0,3 m (0,984ft)	240,44	24,51	16474
		0,2 m (0,656 ft)	267,22	27,24	18309
		0,9 m (2,952 ft)	122,63	12,50	8402
		0,8 m (2,624 ft)	143,03	14,58	9800
		0,7 m (2,296 ft)	163,43	16,66	11198
		0,6 m (1,968 ft)	183,94	18,75	12602
D=1,5 m	0,13Mpa	0,5 m (1,640 ft)	204,34	20,83	14000
(D = 4,92ft)	(18,85psi)	0,4 m (1,312 ft)	224,75	22,91	15398
		0,3 m (0,984 ft)	245,15	24,99	16797
		0,2 m (0,656 ft)	267,81	27,30	18349
		1,1 m (3,608ft)	120,96	12,33	8287
		1,0 m (3,280ft)	138,22	14,09	9470
		0,9 m (2,952ft)	155,59	15,86	10660
		0,8 m (2,624ft)	172,85	17,62	11843
		0,7 m (2,296ft)	190,22	19,39	13033
D = 1.8 m	0,11Mpa	0,6 m (1,968ft)	207,48	21,15	14216
(D= 5,90ft)	(15,95Psi)	0,5 m (1,640ft)	224,75	22,91	15398
		0,4 m (1,312ft)	242,01	24,67	16581
		0,3 m (0,984ft)	259,38	26,44	17771
		0,2 m (0,656ft)	276,64	28,20	18954

b. Lama waktu operasional untuk *docking* kapal pada sistem *airbag*.

Lama waktu operasional *docking* kapal *airbag* terdiri dari:

- Waktu pengisian untuk satu airbag
- Lama waktu tarik
- Lama waktu turun.
- c. Perhitungan biaya listrik untuk *docking* kapal pada sistem *airbag*

Biaya operasional listrik untuk *docking* satu kapal dengan sistem *airbag*, meliputi :

i. Biaya listrik winch sistem airbag, B Winch

$$B_{Winch} = T.W.c (2)$$

dimana:

T = Lama waktu tarik (docking/undocking)

w = Daya listrik *Winch*

c = Tarif listrik per kwh

ii. Biaya listrik untuk operasional kompresor

Biaya listrik untuk satu sistem *airbag*, B (sistem airbag)

$$B = T.w.c (3)$$

Jumlah biaya listrik, Bn

$$Bn = B . N$$
 (4)

dimana:

T = Waktu pengisian sistem airbag

w = Daya compresorc = Tarif listrik per kwhN = Jumlah sistem airbag

d. Perhitungan biaya operasional alat berat

Perhitungan biaya operasi alat berat (excavator) digunakan persamaan berikut:

Biaya Alat Berat
$$=$$
 jumlah unit Alat Berat \times Biaya operasi (5)

e. Asisten operator airbag

Perhitungan asisten operator *airbag* menggunakan persamaan berikut:

Upah asisten airbag = Upah per kapal
$$\times$$
 jumlah tenaga kerja \times jumlah kapal (6)

2. Biaya Tetap Pada Proses Docking/Undocking Kapal Untuk Sistem Airbag

Perhitungan upah tenaga kerja yang dihitung per bulan sebagai berikut:

a. Upah tenaga kerja untuk operasional sistem airbag per bulan terdiri dari (Heger, 2005):

Upah dok master =

Upah per bulan x jumlah tenaga kerja (7)

Upah operator winch =

Upah per bulan x jumlah tenaga kerja (8)

Upah operator airbag =

Upah per bulan x jumlah tenaga kerja (9)

b. Upah tenaga kerja untuk operasional sistem airbag per pahun.

Perhitungan biaya tetap untuk sistem airbag per tahun terdiri dari :

- a. Upah dok master
- b. Upah operator winch

- c. Upah operator sistem airbag
- d. Asisten operator winch

2.3. Pendapatan *Docking/Undocking* dan Harian Untuk Sistem *Airbag*

1. Pendapatan Per Tahun dari *Docking/ Undocking* Kapal

Perhitungan pendapatan *docking/undocking* kapal per tahun menggunakan persamaan berikut :

Pendapatan per tahun =
$$biaya \ docking/$$

 $undocking \times jumlah \ kapal$ (10)

2. Pendapatan Per Tahun dari Biaya *Docking* Harian

Perhitungan pendapatan *docking* harian per tahun menggunakan persamaan berikut:

2.4. Perhitungan Laba Rugi Sistem Airbag Tahun 2017-2019

Perhitungan laba rugi bersih untuk biaya operasioanal rata-rata sistem airbag. Untuk perhitungan laba rugi bersih pada biaya operasional dapat digunakan persamaan berikut (Fitriana, 2014):

- Pendapatan kotor rata-rata, N_P

$$NP = \frac{A+B+C}{3}$$
(12)

— Jumlah beban usaha rata-rata, N_B

$$NB = \frac{A+B+C}{3}$$
(13)

- Laba rugi/bersih rata-rata, N_L

$$NL = NP - NB \dots (14)$$

dimana:

N = Jumlah laba rugi bersih rata-rata

- A = Pendapatan kotor/Jumlah beban usaha/laba bersih tahun pertama 2017
- B = Pendapatan kotor/Jumlah beban usaha/laba bersih tahun kedua 2018
- C = Pendapatan kotor/Jumlah beban usaha/laba bersih tahun ketiga 2019

2.5. Biaya *Docking/Undocking* Kapal Untuk Sistem *Cradle*

1. Biaya Tidak Tetap Untuk Sistem Cradle

a. Lama waktu operasional untuk *docking* kapal pada sistem *cradle*.

Lama waktu operasional *docking* kapal sistem cradle terdiri dari:

- Lama waktu tarik
- Lama waktu turun.
- b. Perhitungan biaya listrik untuk d*ocking* kapal pada sistem cradle.

Biaya operasional listrik untuk *docking* satu kapal dengan sistem *cradle* meliputi : Biaya listrik *winch* sistem cradle, B *Winch*

 $B \ winch = T \cdot w \cdot c$ (15)

T = Lama waktu tarik (docking/undocking

w = Daya listrik *Winch*

c = Tarif listrik per kwh

c. Perhitungan upah penyelam

 $Upah penyelam = Upah per kapal \times jumlah tenaga kerja \times jumlah kapal...(16)$

d. Asisten operator cradle

Upah asisten cradle Upah per kapal \times jumlah tenaga kerja \times jumlah kapal(17)

Dari besar upah yang ditetapkan untuk upah penyelam, operator alat berat, asisten operator *cradle* dan asisten operator airbag per kapal maka dapat dihitung upah per tahun.

2. Biaya Tetap Pada Proses *Docking* Kapal Untuk Sistem *Cradle*

Perhitungan upah tenaga kerja yang dihitung per bulan sebagai berikut:

a. Upah tenaga kerja untuk operasional sistem *cradle* per bulan terdiri dari:

Upah dok master = Upah per bulan ×
jumlah tenaga kerja.....(18)

Upah operator winch = Upah per bulan ×
jumlah tenaga kerja.....(19)

Upah operator sistem cradle =
Upah per bulan × jumlah tenaga kerja
.....(20)

b. Upah tenaga kerja untuk operasional sistem *cradle* per tahun

Perhitungan biaya tetap untuk sistem cradle per tahun terdiri dari :

- Upah dok master
- Upah operator winch
- Upah operator sistem cradle
- Asisten operator winch

2.6. Perhitungan Pendapatan *Docking* Kapal Untuk Sistem Cradle

1. Pendapatan Per Tahun dari *Docking* /*Undocking* Kapal

Perhitungan pendapatan *docking/undocking* kapal per tahun digunakan persamaan berikut (Mallick, :

Pendapatan per tahun = biaya docking/ undocking × jumlah kapal(21)

2. Pendapatan Per Tahun dari Biaya *Docking* Harian

Perhitungan pendapatan *docking* harian per tahun digunakan persamaan berikut:

Pendapatan per tahun =
Biaya docking per hari × Lama waktu docking
.....(22)

2.7. Perhitungan Laba Rugi Sistem Cradle Tahun 2017-2019

Perhitungan laba rugi bersih untuk biaya operasioanal rata-rata sistem *cradle*. Untuk perhitungan laba rugi bersih pada biaya operasional dapat digunakan persamaan berikut:

- Pendapatan kotor rata-rata, N_P

$$NP = \frac{A+B+C}{3} \qquad \dots (23)$$

— Jumlah beban usaha rata-rata, N_B

$$NB = \frac{A+B+C}{3}$$
(24)

- Laba rugi/bersih rata-rata, N_L

$$NL = NP - NB$$
(25)

dimana:

N = Jumlah laba rugi bersih rata-rata

- A = Pendapatan kotor/Jumlah beban usaha/laba bersih tahun pertama 2017
- B = Pendapatan kotor/Jumlah beban usaha/laba bersih tahun kedua 2018
- C = Pendapatan kotor/Jumlah beban usaha/laba bersih tahun ketiga 2019

3. HASIL DAN PEMBAHASAN

Besarnya biaya yang dibutuhkan untuk operasional sistem airbag dan sistem cradle, dibutuhkan data *docking* kapal untuk menghitung biaya operasional sistem airbag dan sistem cradle. Data yang diambil pada penelitian ini adalah tiga tahun dihitung dari Tahun 2017-2019.

3.1. Biaya *Docking/undocking* Kapal Dengan Sistem Airbag Sebuah Kapal.

Biaya dan pendapatan untuk *docking* kapal dilakukan untuk mengetahui besarnya biaya yang dibutuhkan untuk operasional sistem airbag. Komponen – komponen biaya yang diperhitungkan adalah biaya tidak tetap dan biaya tetap seperti yang ditunjukkan pada Tabel 2 dan 3.

Biaya tidak tetap yang dibutuhkan oleh sebuah kapal dapat dilihat pada Tabel 2 berikut ini:

Tabel 2. Biaya Tidak Tetap untuk Docking/Undocking Sistem Airbag.

Biay	ya Tidak Tetap	Satuan	Jumlah
a.	Jumlah airbag sistem per kapal	pcs	12
b.	Lama waktu operasional airbag sistem		
i.	Lama waktu docking/undocking Kapal	jam	3
ii.	Lama waktu pengisian udara	menit/air bag	10
c.	Biaya listrik untuk operasional airbag		
i.	Biaya listrik operasional winch	Per Kapal	Rp 250.875
ii.	Biaya listrik operasional compressor	Per Kapal	Rp 167.250
d.	Biaya operasional alat berat	Per Kapal	Rp 1.000.000
e.	Biaya pekerja		
i.	Operator Alat Berat	Per Kapal	Rp 750.000
ii.	Asisten Operator Airbag	Per Kapal	Rp 1.400.000

Biaya tetap yang dibutuhkan oleh sebuah kapal ditunjukkan pada Tabel 3 berikut ini :

Table 3. Biaya Tetap untuk Docking/Undocking Sebuah Kapal.

No	Jenis Pekerjaan	Kapasitas		Upah/ Bulan	Jumlah Upah /
	Гекегјаан	Jumlah	Satuan	(Rp)	tahun (Rp)
1	Dok Master	1	Org	4.000.000	4.000.000

2	Operator winch	1	Org	3.000.000	36.000.000
3	Asisten Operator Sistenm Cradle	2	Org	2.800.000	67.200.000
4	Operator Airbag	1	Org	3.000.000	36.000.000
		5	Org		187.200.000

3.2. Biaya *Docking/Undocking* Kapal Sistem Airbag Tahun 2017

Biaya docking/undocking kapal Sistem Airbag Tahun 2017 ditunjukkan pada Tabel 4.

Tabel 4. Biaya *Docking/Undocking* Sistem Airbag Tahun 2017.

No	Parameter	Jumlah Kapal	Biaya / Satuan (Rp)	Biaya Per tahun (Rp)	
A. Bi	aya Tetap				
1	Dok master		4.000.000	48.000.000	
2	Operator winch		3.000.000	36.000.000	
3	Asisten operator winch		2.800.000	67.200.000	
4	Operato airbag		3.000.000	36.000.000	
B. Bi	aya Tidak Teta	p	•		
1	Biaya listrik operasional winch	23	250.875	5.770.125	
2	Biaya listrik operasional compressor	23	167.250	3.846.750	
3	Biaya operasional alat berat	23	1.000.000	23.000.000	
4	Operator Alat Berat	23	750.000	17.250.000	
5	Asisten operator airbag	23	1.400.000	32.200.000	
Jumlah 269.20					

3.3. Biaya *Docking/Undocking* Kapal Sistem Airbag Tahun 2018

Biaya docking/undocking kapal sistem airbag tahun 2018 ditunjukkan pada Tabel 5.

Tabel 5. Biaya *Docking/Undocking* Sistem Airbag Tahun 2018.

No	Parameter	Jumlah Kapal	Biaya / Satuan (Rp)	Biaya Per Tahun (Rp)			
A. Bi	A. Biaya Tetap						
1	Dok Master		4.000.000	48.000.000			
2	Operator winch		3.000.000	36.000.000			
3	Asisten Operator Winch		2.800.000	67.200.000			
4	Operator Airbag		3.000.000	36.000.000			
B. Bi	B. Biaya Tidak Tetap						
1	Biaya Listrik operasional winch	20	250.875	5.017.500			
2	Biaya Listrik operasional kompresor	20	167.250	3.345.000			
3	Biaya Operasional alat berat	20	1.000.000	20.000.000			
4	Operator Alat Berat	20	750.000	15.000.000			
5	Asisten Operator Airbag	20	1.400.000	28.000.000			
	Juml	258.562.500					

3.4. Biaya *Docking/Undocking* Kapal Sistem Airbag Tahun 2019

Biaya docking/undocking kapal sistem airbag Tahun 2019 ditunjukkan pada Tabel 6.

Tabel 6. Biaya *Docking/Undocking* Sistem Airbag Tahun 2019.

No	Parameter	Jumlah Kapal	Biaya / Satuan (Rp)	Biaya Per Tahun (Rp)		
A. Bi	A. Biaya Tetap					
1	Dok master		4.000.000	48.000.000		
2	Operator winch		3.000.000	36.000.000		
3	Asisten operator winch		2.800.000	67.200.000		
4	Operato airbag		3.000.000	36.000.000		
B. Bi	aya Tidak Tetap					
1	Biaya listrik operasional winch	14	250.875	3.512.250		
2	Biaya listrik operasional compressor	14	167.250	2.341.500		

3	Biaya operasional alat berat	14	1.000.0	14.000.000
4	Operator Alat Berat	14	750.000	10.500.000
5	Asisten operator airbag	14	1.400.0 00	19.600.000
	Jumlah			

3.5. Pendapatan *Docking/Undocking* dan Harian Dengan Sistem Airbag Periode 2017-2019.

Pendapatan Docking/Undocking kapal diperoleh dari jumlah biaya yang dikenakan untuk satu kapal sebesar Rp.25.000.000.- dan biaya yang dikenakan untuk docking kapal per hari sebesar Rp. 1.250.000,-Pendapatan periode 2017-2019 ditunjukkan pada Tabel 7.

Tabel 7. Pendapatan docking/undocking dan docking pada periode tahun 2017-2019.

	No	Tahun	Parameter	Jumlah (Rp)
ĺ	1	2017	Docking/undocking Kapal	575.000.000
	1	2017	Docking harian	1.045.000.000
ſ	2	2018	Docking/undocking Kapal	475.000.000
	2	2018	Docking harian	726.250.000
ĺ	3	2019	Docking/undocking Kapal	350.000.000
	3	2019	Docking harian	422,500,000
	Jumlah			3.593.750.000

3.6. Perhitungan Laba Rugi Sistem Airbag per Tiga Tahun Dalam Periode 2017-2019

Tabel 8. Perhitungan Laba Rugi Sistem Airbag Tahun 2017-2019

Perhitungan Laba Rugi						
Sist	Sistem Airbag 2017 - 2019					
Pendapatan						
Docking/undocking kap	al	Rp 1.400.000.000				
Docking harian		Rp 2.193.750.000				
Jumlah Pendaptan		Rp 3.593.750.000				
Beban usaha						
Dok master	Rp 144.000.000					
Operator winch	Rp 108.000.000					
Ass operator winch	Rp 201.600.000					
Operator airbag	Rp 108.000.000					
Ass operator airbag	Rp 79.800.000					
Operator alat berat	Rp 38.250.000					
Alat berat	Rp 57.000.000					
Compressor	Rp 9.533.250					

Winch airbag	Rp	14.299.875		
Jumlah beban usaha			Rp	760.483.125
Laba Bersih			Rp	2.833.266.875

Perhitungan laba bersih untuk biaya operasional sistem airbag per tahun dalam periode tahun 2017-2019 dapat dihitung dengan menentukan pendapatan kotor rata – rata dan jumlah beban usaha selama tiga tahun adalah sebagai berikut :

Pendapatan kotor rata-rata selama tiga tahun, N_{P.}

$$N_P = Rp \ 1.620.000.000 + Rp \ 1.201.250.000 + 772.500.000 = Rp \ 1.197.916.666,67$$

Jumlah beban usaha rata-rata selama tiga tahun, $N_{B.}$

$$N_B = Rp \ 269.266.875 + Rp \ 254.062.500 + Rp \ 237.153.750 = Rp \ 253.494.375$$

Laba bersih rata-rata selama tiga tahun , $N_{\rm L}$:

$$N_L = N_P - N_B$$

$$N_L = Rp. 1.197.916.666,67 - Rp. 253.494.375$$

3.7. Biaya *Docking/undocking* Kapal Dengan Sistem Cradle Sebuah Kapal.

Biaya dan pendapatan untuk *docking* kapal dilakukan untuk mengetahui besarnya biaya yang dibutuhkan untuk operasional sistem airbag. Komponen – komponen biaya yang diperhitungkan adalah biaya tidak tetap dan biaya tetap seperti yang ditunjukkan pada Tabel 9 dan 10.

Tabel 9. Biaya Tidak Tetap Pada Proses *Docking/Undocking* Kapal Untuk Sistem Cradle.

	Biaya Tidak Tetap	Satuan	Jumlah
a.	Lama waktu operasional sistem cradle		
	Lama waktu naik dan turun kapal	jam	1.5
b.	Biaya listrik untuk operasional cradle		
	Biaya listrik operasional winch		Rp 125.438
e.	Biaya pekerja		
i	Penyelam	Per kapal	Rp 1.000.000
ii.	Asisten operator cradle	Per kapal	Rp 450.000

Tabel 10. Biaya Tetap Pada Proses *Docking/Undocking* Kapal Untuk Sistem Cradle.

No	Jenis Pekerjaan	Kapasitas		Upah/ Bulan	Jumlah Upah per tahun
		Jumlah	Satuan	(Rp)	(Rp)
1	Dok master	1	org	4.000.000	48.000.000
2	Operator winch	1	org	3.000.000	36.000.000
3	Asisten operator winch	1	org	2.800.000	33.600.000
4	Upah operator cradle	1	org	3.000.000	36.000.000
	Jumlah	4	org		151.200.000

3.8. Perhitungan biaya docking/undocking kapal periode tahun 2017, 2018, 2019 dengan menggunakan sistem cradle.

Biaya pengeluaran untuk sistem cradle selama Tahun 2017 - 2019, ditunjukkan pada Tabel 11 ; 12 dan 13.

Tabel 11. Pengeluaran *docking/ undocking* sistem cradle ditahun 2017.

No	Parameter	Jumlah Kapal	Biaya/Satuan (Rp)	Biaya Per Tahun (Rp)	
A. B	A. Biaya Tetap				
1	Dok master		4.000.000	48.000.000	
2	Operator winch		3.000.000	36.000.000	
3	Asisten operator winch		2.800.000	33.600.000	
4	Upah operator cradle		3.000.000	36.000.000	
B. Bi	B. Biaya Tidak Tetap				
1	Biaya listrik operasional winch	16	125.438	2.007.000	
2	Penyelam	16	1.000.000	16.000.000	
3	Asisten operator cradle	16	450.000	7.200.000	
Juml	Jumlah			18.807.000	

Tabel 12. Pengeluaran *docking/ undocking* sistem cradle ditahun 2018.

No	Parameter	Jumlah Kapal	Biaya/Satuan (Rp)	Biaya Per Tahun (Rp)
A. Biaya Tetap				
1	Dok master		4.000.000	48.000.000
2	Operator winch		3.000.000	36.000.000

3	Asisten operator winch		2.800.000	33.600.000	
4	Upah operator cradle		3.000.000	36.000.000	
B. Bia	B. Biaya Tidak Tetap				
1	Biaya listrik operasional winch	12	125.438	1.505.250	
2	Penyelam	12	1.000.000	12.000.000	
3	Asisten operator cradle	12	450.000	5.400.000	
Jumlah			172.505.250		

Tabel 13. Pengeluaran *docking/undocking* sistem cradle ditahun 2019.

No	Parameter	Jumlah Kapal	Biaya/ Satuan (Rp)	Biaya Per Tahun (Rp)	
A. Bi	aya Tetap				
1	Dok master		4.000.000	48.000.000	
2	Operator winch		3.000.000	36.000.000	
3	Asisten operator winch		2.800.000	33.600.000	
4	Upah operator cradle		3.000.000	36.000.000	
B. Bia	B. Biaya Tidak Tetap				
1	Biaya listrik operasional winch	9	125.438	1.128.938	
2	Penyelam	9	1.000.000	9.000.000	
3	Asisten operator cradle	9	450.000	4.050.000	
Jumlah				167.778.938	

3.9. Perhitungan Pendapatan **Docking/Undocking** dan Harian Untuk Sistem Cradle 2017 - 2019

Tabel 14. Pendapatan *docking/undocking* dan *docking* dengan sistem cradle pada periode tahun 2017-2019

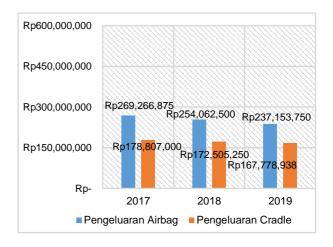
Tahun	Parameter	Jumlah (Rp)
2017	Dockin/undocking kapal	320.000.000
2017	Docking harian	600.000.000
2010	Dockin/undocking kapal	240.000.000
2018	Docking harian	260.000.000
2019	Dockin/undocking kapal	180.000.000
2019	Docking harian	128.750.000
Jumlah		1.728.750.000

3.10. Perhitungan Laba Rugi Untuk Operasional *Docking* Kapal Dengan Sistem Cradle Pada Tahun 2017-2019

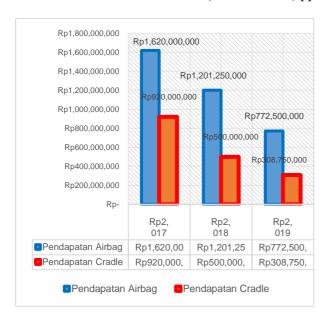
Tabel 15. Perhitungan Laba Rugi Sistem Cradle Tahun 2017-2019

Perhitungan Laba Rugi				
Sistem Cradle 2017 - 2019				
Pendapatan				
Docking/Undocking kapal		Rp. 740.000.000,00		
Docking harian		Rp. 988.750.000,00		
Jumlah Pendapatan		Rp. 1.728.750.000,00		
Beban usaha				
Dok master	Rp. 144.000.000,00			
Operator winch	Rp. 108.000.000,00			
Ass operator winch	Rp. 100.800.000,00			
Operator cradle	Rp. 108.000.000,00			
Ass operator cradle	Rp. 16.650.000,00			
Penyelam	Rp. 37.000.000,00			
Winch cradle	Rp. 4.641.187,50			
Jumlah beban usaha		Rp 519.091.187,50		
Laba Bersih		Rp 1.209.658.812,50		

Laba bersih rata-rata selama tiga tahun


 $N_L = N_P - N_B$

 $N_L = Rp. 576,250,000.00 - Rp. 576,250,000.00$


= Rp. 403,219,604.17

3.11. Selisih Ekonomis Dari Sistem Airbag dan Sistem Cradle Selama Tiga Tahun Terakhir (Periode 2017-2019).

Berikut ini adalah selisih ekonomis pengeluaran sistem airbag dan sistem cradle (Mahamid, 2011).

Gambar 2. Perbandingan pengeluaran sistem airbag dan sistem cradle pada tahun 2017-2019

Gambar 3. Perbandigan pendapatan sistem airbag dan sistem cradle pada tahun 2017-2019

Gambar 4. Pendapatan laba bersih sistem airbag dan sistem cradle pada tahun 2017-2019

Berdasarkan hasil perhitungan maka dapat dilihat besar laba bersih yang dihasilkan oleh satu kapal dengan menggunakan sistem *airbag* dan sistem *cradle* semakin jelas.

Dari hasil perhitungan biaya pengeluaran untuk sistem *airbag* dari tahun 2017-2019 sebesar Rp 760.483.125 dan sistem *cradle* sebesar Rp. 519,091,188, sedangkan pendapatan yang didapat dari sistem *airbag* sebesar Rp. 3,593,750,000 dan sistem *cradle* sebesar Rp. 1.728.750.000. Dari hasil di atas pendapatan terbanyak adalah pendapatan sistem *airbag* di tahun 2019 yaitu 79 %. Hal ini disebabkan karena lama waktu pengedokan pada sistem *airbag* lebih banyak walaupun jumlah kapal hanya 14.

3.12. Pembahasan

Dari hasil perhitungan laba rugi diperoleh bahwa dengan sistem airbag keuntungan laba bersih yang tahun didapat per satu dari pendapatan docking/undocking kapal, docking harian, pada tahun 2017 adalah sebesar Rp. 1.350.733.125,-. Perhitungan laba rugi pada tahun 2018 keuntungan laba bersih yang didapat sebesar Rp. 947.187.500,dan pada tahun 2019 keuntungan laba bersih yang didapat sebesar Rp. 535.346.250,- sedangkan keuntungan yang didapat sistem airbag per tiga tahun dalam periode tahun 2017-2019 adalah sebesar Rp. 2.833.266.875,-

Hasil perhitungan laba rugi dengan sistem cradle keuntungan yang didapat per satu tahun dari : pendapatan docking/undocking kapal, docking harian, pada tahun 2017 laba bersih yang didapat adalah sebesar Rp. 741.193.000. Perhitungan laba rugi tahun 2018 dengan sistem cradle keuntungan laba bersih yang didapat adalah sebesar Rp. 327.494.750,- dan perhitungan laba rugi pada tahun 2019 laba bersih yang didapat sistem cradle sebesar Rp. 140.971.062,50, sedangkan keuntungan laba bersih yang didapat per tiga tahun dalam periode tahun 2017-2019 adalah sebesar 1.209.658.812,50. Dari hasil perhitungan, tampak jelas bahwa untuk operasional pengedokan kapal di PT. Dok dan Perkapalan Waiame Ambon lebih menguntungkan dengan menggunakan sistem airbag dimana keuntungan dari sistem airbag per tiga tahun sebesar Rp. 2.833.266.875,- sehingga keuntungan yang didapat dari perusahaan dengan sistem airbag adalah sebesar Rp. 1.623.608.062,50. Penggunaan sistem airbag di Dok Waiame lebih menguntungkan.

KESIMPULAN

Dari hasil perhitungan biaya operasional dan pendapatan dari *docking* kapal untuk *docking/undocking* dan lama waktu di atas *dock* diperoleh hasil sebagai berikut: keuntungan yang didapat dari *docking* kapal dengan sistem airbag sebesar Rp. 2.833.266.875,- dan keuntungan yang didapat sistem cradle sebesar Rp. 1.209.658.812,50.

Terlihat jelas bahwa untuk operasional pengedokan kapal di PT. Dok dan Perkapalan Waiame Ambon lebih menguntungkan dengan menggunakan sistem airbag

DAFTAR PUSTAKA

 Engstrom, J. E. dan I.O. Engvall, (2010) Method For Selection Of An Optimum Fishing Vessel For Infestment Purpose, FAO, Rome Italy., H.E.Rossels, Principle Of Naval Architecture, Sname

- 2. Crispe, Jonathan (2005). Dry Docking and Repair: Bernhard Schulte Ship management (IOM) Ltd
- 3. Cornick, Henry F,. (1958). Dock and Harbour Engineering. London: Charles Griffin and Company Limited.
- 4. Leong, The analysis and design of a Sistem cradle system Forrepair And maintenance of boat or small ships. UniversityTechnology Malaysia. 1991,
- 5. Karogal, Madhav (2015) Vessel Maintenance and Dry Docking; Technical Super intendend Ishima Pte Ltd.
- 6. Lamb, T. (2004) Ship Design and Construction Volume II. Jersey City: The Society of Naval Architects and Marine Engineers.
- 7. R. F. D. Mackie, Issue in Dry Docking Economics, Ship lifts, Sistem cradle and Keel Blocks.Consulting Coastal & Habour Engineer Cape Town, S.Africa. 2006
- 8. Fitriana, nur dian (2014). Buku praktis menyusun laporan laba rugi. Laskar aksara
- 9. Gading Sitepu. Hamza dan La Ode Abdul Rahma Firu (2012). Kajian JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN_ (Print) G-22
- 10. Heger, Robert (2005). Dock Master Training Manual: Heger Dry Dock,Inc
- Mahamid, I. Early Cost Estimating for Roads Construction Projects Using Multiple Regression Technique. Hail University, Saudi Arabia. 2011
- 12. B. Mallick, (1998), Variable Selection for Regression Models. The Indian Journal of Statistics, Series B PP 65-81.