ANALISIS EFEKTIVITAS PENGERING KONVEKTIF RUMPUT LAUT TERINTEGRASI DENGAN PENUKAR KALOR TUBE BANK BARE IN-LINE PADA MASUKAN PANAS BERBEDA

  • Ridolf Richard Kermite Universitas Pattimura
  • Jandri Louhenapessy Universitas Pattimura
  • Jainal Ulath Universitas Pattimura
Keywords: Efektivitas, Masukan panas, Pemulihan limbah panas, Pengering konvektif, Penukar kalor tube bank bare in-line

Abstract

Fokus utama penelitian ini yakni penerapan penukar kalor tube bank bare in-line sebagai pemulihan limbah panas guna memanfaatkan limbah panas dari pengering konvektif. Penelitian ini bertujuan untuk mendapatkan masukan panas yang efektif, dimana efektivitas maksimal guna mempersingkat waktu pengeringan dan menghemat pemakaian daya listrik. Metode penelitian secara eksperimen dilakukan dengan memvariasikan nilai masukan panas dari 300 hingga 700 W pada kecepatan udara 2 m/s, temperatur media pengering 50 C dan kelembaban relatif 40% konstan pada kondisi operasi sebelum dan sesudah penerapan pemulihan limbah panas. Pengambilan data berupa temperatur, kecepatan udara, kelembaban relatif dan masukan panas setelah tercapai keadaan tunak. Hasil percobaan menunjukkan bahwa efektivitas menurun seiring meningkatnya masukan panas, dimana efektivitas maksimal pada masukan panas 300 W sebesar 93.94% dan 93.68% untuk kondisi operasi sebelum dan sesudah penerapan pemulihan limbah panas. Waktu pengeringan rumput laut minimal pada masukan panas 700 W untuk kondisi sebelum dan sesudah menerapkan pemulihan limbah panas masing-masing sebesar 660 dan 570 menit. Penghematan daya listrik maksimal pada masukan panas 300 W sebesar 7497.1 W atau 87.90% dan minimal pada masukan panas 700 W sebesar 5436.6 atay 85.96%. Disimpulkan bahwa pengering konvektif dengan pemulihan limbah panas dapat digunakan untuk pengeringan rumput laut pada kondisi operasi masukan panas 500 W, efektivtas 91.00%, waktu pengeringan 780 menit dan menghemat daya listrik sebesar 86.24%.

Downloads

Download data is not yet available.

References

S. Gupta and N. Abu-Ghannam, “Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods,” Innov. Food Sci. Emerg. Technol., vol. 12, no. 4, pp. 600–609, 2011, doi: 10.1016/j.ifset.2011.07.004.

A. S. Mujumdar, Ed., Handbook of Industrial Drying, Fourth Edi. Boca Raton: CRC Press, 2015.

C. Anandharamakrishnan, Handbook of Drying for Dairy Products. 2017.

I. Dincer and M. A. Rosen, “Exergy and Industrial Ecology,” in Exergy, Elsevier, 2013, pp. 475–481. doi: 10.1016/b978-0-08-097089-9.00023-1.

C. Tello-Ireland, R. Lemus-Mondaca, A. Vega-Gálvez, J. López, and K. Di Scala, “Influence of hot-air temperature on drying kinetics, functional properties, colour, phycobiliproteins, antioxidant capacity, texture and agar yield of alga Gracilaria chilensis,” LWT, vol. 44, no. 10, pp. 2112–2118, 2011, doi: 10.1016/j.lwt.2011.06.008.

İ. Doymaz, “Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices,” Heat Mass Transf. und Stoffuebertragung, vol. 53, no. 1, pp. 25–35, Jan. 2017, doi: 10.1007/s00231-016-1791-8.

W. Senadeera, G. Adiletta, B. Önal, M. Di Matteo, and P. Russo, “Influence of different hot air drying temperatures on drying kinetics, shrinkage, and colour of persimmon slices,” Foods, vol. 9, no. 1, 2020, doi: 10.3390/foods9010101.

D. Fithriani, L. Assadad, and Z. Arifin, “Karakteristik dan Model Matematika Kurva Pengeringan Rumput Laut Eucheuma cottonii,” J. Pascapanen dan Bioteknol. Kelaut. dan Perikan., vol. 11, no. 2, p. 159, Mar. 2017, doi: 10.15578/jpbkp.v11i2.290.

BSN, “SNI 2690:2015,” 2015. [Online]. Available: www.bsn.go.id

S. Gupta, S. Cox, and N. Abu-Ghannam, “Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed,” LWT, vol. 44, no. 5, pp. 1266–1272, 2011, doi: 10.1016/j.lwt.2010.12.022.

M. H. Masud, A. A. Ananno, N. Ahmed, P. Dabnichki, and K. N. Salehin, “Experimental investigation of a novel waste heat based food drying system,” J. Food Eng., vol. 281, Sep. 2020, doi: 10.1016/j.jfoodeng.2020.110002.

Z. Erbay and A. Hepbasli, “Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method,” Energy, vol. 127, pp. 502–515, 2017, doi: 10.1016/j.energy.2017.03.148.

M. Mohanraj, “Performance of a solar-ambient hybrid source heat pump drier for copra drying under hot-humid weather conditions,” Energy Sustain. Dev., vol. 23, pp. 165–169, 2014, doi: 10.1016/j.esd.2014.09.001.

R. Saidur, “Energy consumption, energy savings, and emission analysis in Malaysian office buildings,” Energy Policy, vol. 37, no. 10, pp. 4104–4113, 2009, doi: 10.1016/j.enpol.2009.04.052.

M. Hasanuzzaman, A. B. M. A. Malek, M. M. Islam, A. K. Pandey, and N. A. Rahim, “Global advancement of cooling technologies for PV systems: A review,” Sol. Energy, vol. 137, pp. 25–45, 2016, doi: 10.1016/j.solener.2016.07.010.

M. Hatami, M. Jafaryar, J. Zhou, and D. Jing, “Investigation of engines radiator heat recovery using different shapes of nanoparticles in H2O/(CH2OH)2 based nanofluids,” Int. J. Hydrogen Energy, vol. 42, no. 16, pp. 10891–10900, Apr. 2017, doi: 10.1016/j.ijhydene.2017.01.196.

B. El Fil and S. Garimella, “Waste heat recovery in commercial gas-fired tumble dryers,” Energy, vol. 218, Mar. 2021, doi: 10.1016/j.energy.2020.119407.

N. Titahelu and C. S. E. Tupamahu, “Analisis Pengaruh Masukan Panas Pada Oven Pengering Bunga cengkeh Terhadap Karakteristik Perpindahan Panas Konveksi Paksa,” in ALE Proceeding, 2019, pp. 108–114. doi: 10.30598/ale.2.2019.108-114.

N. Titahelu, “Eksperimen pengaruh beban panas terhadap karakteristik perpindahan panas oven pengering cengkeh,” J. Teknol., vol. 7, no. 1, pp. 744–750, 2002.

S. K. Chin, E. S. Siew, and W. L. Soon, “Drying characteristics and quality evaluation of kiwi slices under hot air natural convective drying method,” Int. Food Res. J., vol. 22, no. 6, pp. 2188–2195, 2015.

A. Agrawal, R. S. Rana, and P. K. Srivastava, “Heat transfer coefficients and productivity of a single slope single basin solar still in Indian climatic condition: Experimental and theoretical comparison,” Resour. Technol., vol. 3, no. 4, pp. 466–482, Dec. 2017, doi: 10.1016/j.reffit.2017.05.003.

G. B. Pradana, K. B. Prabowo, R. P. Hastuti, M. Djaeni, and A. Prasetyaningrum, “Seaweed drying process using tray dryer with dehumidified air system to increase efficiency of energy and quality product,” IOP Conf. Ser. Earth Environ. Sci., vol. 292, no. 1, 2019, doi: 10.1088/1755-1315/292/1/012070.

M. Khan, S. Md Yasir, J. Sulaiman, M. Ruslan, M. Khan Majahar Ali, and M. Hafidz Ruslan, “The Effectiveness of Sauna Technique on the Drying Period And Kinetics of Seaweed Kappaphycus Alvarezii Using Solar Drier,” J. Agric. Food, Environ. Sci., no. May 2017, 2015.

E. Uribe, A. Vega-Gálvez, V. Heredia, A. Pastén, and K. Di Scala, “An edible red seaweed (Pyropia orbicularis): influence of vacuum drying on physicochemical composition, bioactive compounds, antioxidant capacity, and pigments,” J. Appl. Phycol., vol. 30, no. 1, pp. 673–683, Feb. 2018, doi: 10.1007/s10811-017-1240-1.

F. Chenlo, S. Arufe, D. Díaz, M. D. Torres, J. Sineiro, and R. Moreira, “Air-drying and rehydration characteristics of the brown seaweeds, Ascophylum nodosum and Undaria pinnatifida,” J. Appl. Phycol., vol. 30, no. 2, pp. 1259–1270, Apr. 2018, doi: 10.1007/s10811-017-1300-6.

L. López-Hortas, M. Gely, E. Falqué, H. Domínguez, and M. D. Torres, “Alternative environmental friendly process for dehydration of edible Undaria pinnatifida brown seaweed by microwave hydrodiffusion and gravity,” J. Food Eng., vol. 261, pp. 15–25, Nov. 2019, doi: 10.1016/j.jfoodeng.2019.05.001.

A. Fudholi, R. Yogaswara, D. A. Mardani, A. Ridho, S. Hidayati, and Z. H. Zen, “Modified Page Model for Solar Drying of Seaweed,” Int. J. Adv. Sci. Technol., vol. 29, no. 5, pp. 7407–7413, 2020.

N. Titahelu and S. J. Litiloly, “Analisis laju kondensasi akibat pengaruh kecepatan udara terhadap karakteristik perpindahan pana oven pengering pati sagu,” Semin. Nas. "Archipelago Eng., no. April, pp. 108–114, 2018.

E. Z. Rosario and W. Mateo, “Hot Water Blanching Pre-Treatments: Enhancing Drying of Seaweeds (Kappaphycus alvarezii S.),” 2019.

K. Kurniawan and N. Bintoro, “Engineering analysis in manufacturing process of Nori made from mixture of Ulva lactuca and Gracillaria sp,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Nov. 2019. doi: 10.1088/1755-1315/355/1/012036.

H. Dysjaland, I. Sone, E. Noriega Fernández, M. Sivertsvik, and N. Sharmin, “Mechanical, Barrier, Antioxidant and Antimicrobial Properties of Alginate Films: Effect of Seaweed Powder and Plasma-Activated Water,” Molecules, vol. 27, no. 23, Dec. 2022, doi: 10.3390/molecules27238356.

Y. Qin, H. Fu, J. Wang, M. Liu, and J. Yan, “Waste heat and water recovery characteristics of heat exchangers for dryer exhaust,” Dry. Technol., vol. 36, no. 6, pp. 709–722, Apr. 2018, doi: 10.1080/07373937.2017.1351451.

E. Tian, Y. L. He, and W. Q. Tao, “Research on a new type waste heat recovery gravity heat pipe exchanger,” Appl. Energy, vol. 188, pp. 586–594, 2017, doi: 10.1016/j.apenergy.2016.12.029.

M. H. Masud, T. Islam, M. U. H. Joardder, A. A. Ananno, and P. Dabnichki, “CFD analysis of a tube-in-tube heat exchanger to recover waste heat for food drying,” International Journal of Energy and Water Resources, vol. 3, no. 3. pp. 169–186, 2019. doi: 10.1007/s42108-019-00032-w.

B. K. Roomi, “Experimental and theoretical study of waste heat recovery from a refrigeration system using a finned helical coil heat exchanger,” no. February, 2020, doi: 10.1002/htj.21788.

Z. Cheng, Z. Tan, Z. Guo, J. Yang, and Q. Wang, “Technologies and fundamentals of waste heat recovery from high-temperature solid granular materials,” Applied Thermal Engineering, vol. 179. Elsevier Ltd, Oct. 01, 2020. doi: 10.1016/j.applthermaleng.2020.115703.

H. Gürbüz and D. Ateş, “A numerical Study on Processes of Charge and Discharge of Latent Heat Energy Storage System Using RT27 Paraffin Wax for Exhaust Waste Heat Recovery in a SI Engine,” Int. J. Automot. Sci. Technol., vol. 4, pp. 314–327, 2020, doi: 10.30939/ijastech..800856.

A. Baroutaji et al., “Advancements and prospects of thermal management and waste heat recovery of PEMFC,” Int. J. Thermofluids, vol. 9, p. 100064, 2021, doi: 10.1016/j.ijft.2021.100064.

A. Culaba, A. H. Atienza, A. Ubando, A. Mayol, and J. Cuello, “Seaweed drying characterization via serial statistical criteria analysis,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1109, no. 1, p. 012051, Mar. 2021, doi: 10.1088/1757-899x/1109/1/012051.

R. Moreira, F. Chenlo, J. Sineiro, M. Sánchez, and S. Arufe, “Water sorption isotherms and air drying kinetics modelling of the brown seaweed Bifurcaria bifurcata,” J. Appl. Phycol., vol. 28, no. 1, pp. 609–618, Feb. 2016, doi: 10.1007/s10811-015-0553-1.

S. Arufe, G. Della Valle, H. Chiron, F. Chenlo, J. Sineiro, and R. Moreira, “Effect of brown seaweed powder on physical and textural properties of wheat bread,” Eur. Food Res. Technol., vol. 244, no. 1, pp. 1–10, Jan. 2018, doi: 10.1007/s00217-017-2929-8.

N. Titahelu, “Perpindahan kalor konveksi natural dari silinder horisontal isothermal set dalam saluran vertikal,” J. Tek. Mesin, Elektro, Inform. Kelaut. dan Sains, vol. 1, no. 1, pp. 30–38, 2021, doi: 10.30598/metiks.2021.1.1.30-38.

M. S. SADEGHIPOUR and M. ASHEGHI, “Free convection heat transfer from arrays of vertically separated horizontal cylinders at low Rayleigh numbers,” Internatonal J. Heat Mass Transf., vol. 37, pp. 103–109, 1994.

S. A. Nada, W. G. El Shaer, and A. S. Huzayyin, “Performance of multi tubes in tube helically coiled as a compact heat exchanger,” Heat Mass Transf. und Stoffuebertragung, vol. 51, no. 7, pp. 973–982, Jul. 2015, doi: 10.1007/s00231-014-1469-z.

N. S. F. Syatauw, A. Simanjuntak, and N. Titahelu, “Analisis kinerja panel surya akibat pendinginan aktif,” Isometri, vol. 2, no. 1, 2023.

S. Zakeralhoseini, B. Sajadi, M. A. Akhavan Behabadi, S. Azarhazin, and H. Fazelnia, “Experimental investigation of the heat transfer coefficient and pressure drop of R1234yf during flow condensation in helically coiled tubes,” Int. J. Therm. Sci., vol. 157, Nov. 2020, doi: 10.1016/j.ijthermalsci.2020.106516.

Y. A. F. El-Samadony and A. E. Kabeel, “Theoretical estimation of the optimum glass cover water film cooling parameters combinations of a stepped solar still,” Energy, vol. 68, pp. 744–750, Apr. 2014, doi: 10.1016/j.energy.2014.01.080.

T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, vol. 21, no. 1. 2011. [Online]. Available: http://journal.um-surabaya.ac.id/index.php/JKM/article/view/2203

A. Fouda, S. A. Nada, H. F. Elattar, H. A. Refaey, and A. S. Bin-Mahfouz, “Thermal performance modeling of turbulent flow in multi tube in tube helically coiled heat exchangers,” Int. J. Mech. Sci., vol. 135, pp. 621–638, Jan. 2018, doi: 10.1016/j.ijmecsci.2017.12.015.

R. Jadar, K. S. Shashishekar, and S. R. Manohara, “Performance Evaluation of Al-MWCNT based Automobile Radiator,” in Materials today: Proceedings, 2019, pp. 380–388. [Online]. Available: www.sciencedirect.com

C. K. Mangrulkar, A. S. Dhoble, J. D. Abraham, and S. Chamoli, “Experimental and numerical investigations for effect of longitudinal splitter plate configuration for thermal-hydraulic performance of staggered tube bank,” Int. J. Heat Mass Transf., vol. 161, Nov. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120280.

F. Alnaimat and M. Ziauddin, “Experimental investigation of heat transfer in pin-fins heat sinks for cooling applications,” Heat Mass Transf. und Stoffuebertragung, vol. 57, no. 1, pp. 125–131, Jan. 2021, doi: 10.1007/s00231-020-02947-1.

A. Hatumessen, N. Titahelu, and C. S. Tupamahu, “Analisis efektivitas penukar kalor pipa helikal destilasi minyak atsiri kayu putih,” in Archepelago Engineering, N. Titahelu, Ed., Amon: Fakultas Teknik Universitas Pattimura, 2021, pp. 127–132.

P. Bhandari and Y. K. Prajapati, “Thermal performance of open microchannel heat sink with variable pin fin height,” Int. J. Therm. Sci., vol. 159, Jan. 2021, doi: 10.1016/j.ijthermalsci.2020.106609.

S. M. Huang, Z. Zhong, and M. Yang, “Conjugate heat and mass transfer in an internally-cooled membrane-based liquid desiccant dehumidifier (IMLDD),” J. Memb. Sci., vol. 508, pp. 73–83, Jun. 2016, doi: 10.1016/j.memsci.2016.02.026.

A. M. González, M. Vaz, and P. S. B. Zdanski, “A hybrid numerical-experimental analysis of heat transfer by forced convection in plate-finned heat exchangers,” Appl. Therm. Eng., vol. 148, pp. 363–370, Feb. 2019, doi: 10.1016/j.applthermaleng.2018.11.068.

P. Promvonge, P. Promthaisong, and S. Skullong, “Experimental and numerical heat transfer study of turbulent tube flow through discrete V-winglets,” Int. J. Heat Mass Transf., vol. 151, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119351.

N. Titahelu, “Analisis pengaruh diameter pada susunan setengah tube heat exchanger dalam enclosure terhadap karakteristik perpindahan panas,” Teknologi, vol. 8, no. 1, pp. 889–894, 2011.

A. S. Rao, S. Sujeesh, A. Sanyal, P. K. Tewari, and L. M. Gantayet, “Effect of agitation speed and fluid velocity on heat transfer performance in agitated Bunsen reactor of iodine-sulphur thermo-chemical cycle,” Int. J. Nucl. Hydrog. Prod. Appl., vol. 3, no. 1, p. 65, 2016, doi: 10.1504/ijnhpa.2016.078425.

N. Titahelu, J. Latuny, C. S. E. Tupamahu, and S. J. E. Sarwuna, “Pitch ratio effect on the effectiveness of condenser for essential oil distillation,” J. Energy, Mech. Mater. Manuf. Eng., vol. 6, no. 2, pp. 145–154, 2021.

D. Kumar, P. Mahanta, and P. Kalita, “Energy and exergy analysis of a natural convection dryer with and without sensible heat storage medium,” J. Energy Storage, vol. 29, Jun. 2020, doi: 10.1016/j.est.2020.101481.

T. Kogawa, J. Okajima, A. Komiya, and S. Maruyama, “Effect of gas radiation-depended natural convection on the transition of spatially developing boundary layers,” Int. J. Heat Mass Transf., vol. 177, Oct. 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121580.

N. Titahelu, D. S. Pelupessy, and A. F. Rumagutawan, “Meningkatkan efektivitas kondensor vertikal pipa helikal koil untuk destilasi minyak atsiri sereh,” J. Rekayasa Mesin, vol. 14, no. 1, pp. 235–249, 2023, doi: 10.21776/jrm.v14i1.1219.

H. K. Jobair, “Improving of Photovoltaic Cell Performance by Cooling using Two different Types of Fins,” Int. J. Comput. Appl., vol. 157, no. 5, pp. 6–15, 2017, doi: 10.5120/ijca2017912691.

F. Moukalled and S. Acharya, “Natural convection in the annulus between concentric horizontal circular and square cylinders,” J. Thermophys. Heat Transf., vol. 10, no. 3, pp. 524–531, 1996, doi: 10.2514/3.820.

K. Pietrak and T. S. Wiśniewski, “A review of models for effective thermal conductivity of composite materials,” J. Power Technol., vol. 95, no. 1, pp. 14–24, 2015.

A. Ahmed, K. K. Esmaeil, M. A. Irfan, and F. A. Al-Mufadi, “Design methodology of heat recovery steam generator in electric utility for waste heat recovery,” Int. J. Low-Carbon Technol., vol. 13, no. 4, pp. 369–379, Dec. 2018, doi: 10.1093/ijlct/cty045.

C. P. Kothandaraman, Fundamentals of Heat and Mass Transfer, Kothandara., vol. 13, no. 1. New Delhi: New Age International (P) Limited, Publishers, 2006.

H. Deshpande, S. Taji, and V. Raibhole, “Assessment of heat transfer performance from modified horizontal rectangular heat sink under forced convection dominating mode of mixed convection,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 5618–5628. doi: 10.1016/j.matpr.2021.03.607.

S. Şevik, M. Aktaş, E. C. Dolgun, E. Arslan, and A. D. Tuncer, “Performance analysis of solar and solar-infrared dryer of mint and apple slices using energy-exergy methodology,” Sol. Energy, vol. 180, pp. 537–549, Mar. 2019, doi: 10.1016/j.solener.2019.01.049.

S. Zohrabi, S. S. Seiiedlou, M. Aghbashlo, H. Scaar, and J. Mellmann, “Enhancing the exergetic performance of a pilot-scale convective dryer by exhaust air recirculation,” Dry. Technol., vol. 38, no. 4, pp. 518–533, Mar. 2020, doi: 10.1080/07373937.2019.1587617.

Published
2023-10-11