ANALISIS KINERJA TERMAL PENUKAR KALOR TUBE BANK BARE IN-LINE ALIRAN SILANG SEBAGAI PEMULIHAN LIMBAH PANAS PENGERING KONVEKTIF RUMPUT LAUT

  • Nicolas - Titahelu Universitas Pattimura
  • Benjamin G Tentua Universitas Pattimura
  • Saputra Abdul Latif Payapo Universitas Pattimura
Keywords: Penukar kalor, tube bank, tata letak bare in-line, kinerja termal sisi udara, pemulihan limbah panas

Abstract

Studi eksperimental telah dilakukan untuk menyelidiki kinerja termal sisi udara dari penukar panas tube bank sebagai pemulihan limbah panas dari pengering konvektif rumput laut. Penukar panas menggunakan diameter tube (0,0254 m), dengan tata letak tube bare in-line dan beroperasi pada suhu fluida panas 50 °C, jarak pitch melintang dan memanjang konstan. Penelitian yang dilakukan untuk kecepatan udara bebas 0,5 hingga 2,5 m/s menghasilkan bilangan Reynolds maksimum antara 157,03 hingga 788,59. Mencatat data terukur berupa kecepatan udara bebas, serta suhu fluida dingin dan panas pada kondisi pengoperasian tunak. Hasil penelitian menunjukkan bahwa semakin besar kecepatan udara bebas maka total perpindahan panas dan koefisien konveksi meningkat masing-masing sebesar 46,62% dan 36,26% pada kecepatan udara bebas maksimum.

Downloads

Download data is not yet available.

References

A. Mahmoudi, M. Fazli, and M. R. Morad, “A recent review of waste heat recovery by Organic Rankine Cycle,” Appl. Therm. Eng., vol. 143, no. July, pp. 660–675, 2018, doi: 10.1016/j.applthermaleng.2018.07.136.

S. Chu and A. Majumdar, “Opportunities and challenges for a sustainable energy future,” Nature, vol. 488, no. 7411, pp. 294–303, 2012, doi: 10.1038/nature11475.

C. Yue, L. Tong, and S. Zhang, “Thermal and economic analysis on vehicle energy supplying system based on waste heat recovery organic Rankine cycle,” Appl. Energy, vol. 248, no. April, pp. 241–255, 2019, doi: 10.1016/j.apenergy.2019.04.081.

D. Roy, S. Samanta, and S. Ghosh, “Techno-economic and environmental analyses of a biomass based system employing solid oxide fuel cell, externally fired gas turbine and organic Rankine cycle,” J. Clean. Prod., vol. 225, pp. 36–57, 2019, doi: 10.1016/j.jclepro.2019.03.261.

G. B. de Campos, C. Bringhenti, A. Traverso, and J. T. Tomita, “Thermoeconomic optimization of organic Rankine bottoming cycles for micro gas turbines,” Appl. Therm. Eng., vol. 164, p. 114477, 2020, doi: 10.1016/j.applthermaleng.2019.114477.

Y. W. Huang, M. Q. Chen, and L. Jia, “Assessment on thermal behavior of municipal sewage sludge thin-layer during hot air forced convective drying,” Appl. Therm. Eng., vol. 96, pp. 209–216, Mar. 2016, doi: 10.1016/j.applthermaleng.2015.11.090.

R. Moreira, F. Chenlo, J. Sineiro, S. Arufe, and S. Sexto, “Water Sorption Isotherms and Air Drying Kinetics of Fucus vesiculosus Brown Seaweed,” J. Food Process. Preserv., vol. 41, no. 4, Aug. 2017, doi: 10.1111/jfpp.12997.

M. Stramarkou, S. Papadaki, K. Kyriakopoulou, and M. Krokida, “Effect of drying and extraction conditions on the recovery of bioactive compounds from Chlorella vulgaris,” J. Appl. Phycol., vol. 29, no. 6, pp. 2947–2960, 2017, doi: 10.1007/s10811-017-1181-8.

S. Kazemi, M. I. M. Nor, and W. H. Teoh, “Thermodynamic and economic investigation of an ionic liquid as a new proposed geothermal fluid in different organic Rankine cycles for energy production,” Energy, vol. 193, p. 116722, 2020, doi: 10.1016/j.energy.2019.116722.

M. H. Masud, A. A. Ananno, A. M. E. Arefin, R. Ahamed, P. Das, and M. U. H. Joardder, “Perspective of biomass energy conversion in Bangladesh,” Clean Technologies and Environmental Policy, vol. 21, no. 4. Springer Verlag, pp. 719–731, May 15, 2019. doi: 10.1007/s10098-019-01668-2.

Z. Su et al., “Green and efficient configuration of integrated waste heat and cold energy recovery for marine natural gas/diesel dual-fuel engine,” Energy Convers. Manag., vol. 209, no. March, 2020, doi: 10.1016/j.enconman.2020.112650.

E. Blanco-Davis and P. Zhou, “Life Cycle Assessment as a complementary utility to regulatory measures of shipping energy efficiency,” Ocean Eng., vol. 128, no. September 2015, pp. 94–104, 2016, doi: 10.1016/j.oceaneng.2016.10.015.

Z. Mat Nawi, S. K. Kamarudin, S. R. Sheikh Abdullah, and S. S. Lam, “The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle,” Energy, vol. 166, pp. 17–31, 2019, doi: 10.1016/j.energy.2018.10.064.

M. C. Rajagopal et al., “Materials-to-device design of hybrid metal-polymer heat exchanger tubes for low temperature waste heat recovery,” Int. J. Heat Mass Transf., vol. 143, Nov. 2019, doi: 10.1016/j.ijheatmasstransfer.2019.118497.

X. Han, H. Zou, J. Wu, C. Tian, M. Tang, and G. Huang, “Investigation on the heating performance of the heat pump with waste heat recovery for the electric bus,” Renew. Energy, vol. 152, pp. 835–848, Jun. 2020, doi: 10.1016/j.renene.2020.01.075.

A. Singh, J. Sarkar, and R. R. Sahoo, “Experiment on waste heat recovery-assisted heat pump drying of food chips: Performance, economic, and exergoeconomic analyses,” J. Food Process. Preserv., vol. 44, no. 9, Sep. 2020, doi: 10.1111/jfpp.14699.

G. V. Ochoa, J. P. Rojas, and J. D. Forero, “Advance Exergo-economic analysis of a waste heat recovery system using ORC for a bottoming natural gas engine,” Energies, vol. 13, no. 1, 2020, doi: 10.3390/en13010267.

Z. Cheng, Z. Tan, Z. Guo, J. Yang, and Q. Wang, “Technologies and fundamentals of waste heat recovery from high-temperature solid granular materials,” Applied Thermal Engineering, vol. 179. Elsevier Ltd, Oct. 01, 2020. doi: 10.1016/j.applthermaleng.2020.115703.

O. Chibuike, D. N. Olisaemeka Chukwudozie, D. N. Nnaemeka Reginald, D. O. Chukwunenye Anthony, D. I. Onyechege Johnson, and P. E. Enyioma Anyanwu, “ENERGY CONSUMPTION OF YAM SLICE DRYING IN AN EXHAUST GAS WASTE HEAT RECOVERY HOT AIR TRAY DRYER,” Sci. Res. J., vol. 9, no. 8, pp. 1–7, Aug. 2021, doi: 10.31364/scirj/v9.i08.2021.p0821872.

Z. Su et al., “Opportunities and strategies for multigrade waste heat utilization in various industries: A recent review,” Energy Convers. Manag., vol. 229, no. January, p. 113769, 2021, doi: 10.1016/j.enconman.2020.113769.

S. M. Shalaby, M. A. Bek, and A. E. Kabeel, “Design Recommendations for Humidification-dehumidification Solar Water Desalination Systems,” in Energy Procedia, Elsevier Ltd, Feb. 2017, pp. 270–274. doi: 10.1016/j.egypro.2016.12.148.

A. E. Kabeel, M. Abdelgaied, and A. Eisa, “Enhancing the performance of single basin solar still using high thermal conductivity sensible storage materials,” J. Clean. Prod., vol. 183, pp. 20–25, May 2018, doi: 10.1016/j.jclepro.2018.02.144.

N. Titahelu, C. S. E. Tupamahu, and S. J. E. Sarwuna, “Evaluasi Kinerja Pelat Kolektor Datar Dengan Berbagai Model Tube Kolektor Sebagai Pemanas Air Surya Aktif,” ALE Proceeding, vol. 5, pp. 53–58, 2022, doi: 10.30598/ale.5.2022.53-58.

N. S. F. Syatauw, A. Simanjuntak, and N. Titahelu, “Analisis kinerja panel surya akibat pendinginan aktif,” Isometri, vol. 2, no. 1, 2023.

M. Yahya, A. Fudholi, and K. Sopian, “Energy and exergy analyses of solar-assisted fluidized bed drying integrated with biomass furnace,” Renew. Energy, vol. 105, pp. 22–29, 2017, doi: 10.1016/j.renene.2016.12.049.

Hamdani, T. A. Rizal, and Z. Muhammad, “Fabrication and testing of hybrid solar-biomass dryer for drying fish,” Case Stud. Therm. Eng., vol. 12, pp. 489–496, Sep. 2018, doi: 10.1016/j.csite.2018.06.008.

M. C. Ndukwu, M. Simo-Tagne, F. I. Abam, O. S. Onwuka, S. Prince, and L. Bennamoun, “Exergetic sustainability and economic analysis of hybrid solar-biomass dryer integrated with copper tubing as heat exchanger,” Heliyon, vol. 6, no. 2, Feb. 2020, doi: 10.1016/j.heliyon.2020.e03401.

I. B. Alit, I. G. B. Susana, and I. M. Mara, “Utilization of rice husk biomass in the conventional corn dryer based on the heat exchanger pipes diameter,” Case Stud. Therm. Eng., vol. 22, Dec. 2020, doi: 10.1016/j.csite.2020.100764.

N. Badshah, K. A. Al-attab, and Z. A. Zainal, “Design optimization and experimental analysis of externally fired gas turbine system fuelled by biomass,” Energy, vol. 198, 2020, doi: 10.1016/j.energy.2020.117340.

W. M. Rumaherang, B. Laconawa, N. Titahelu, and J. Louhenapessy, “Kajian Perbandingan Performance Energi Turbin Angin Model Ducted Dengan Un-Ducted,” J. Tek. Mesin, Elektro, Inform. Kelaut. dan Sains, vol. 2, no. 1, pp. 56–64, 2022, doi: 10.30598/metiks.2022.2.1.56-64.

N. Jamshidi and A. Mosaffa, “Investigating the effects of geometric parameters on finned conical helical geothermal heat exchanger and its energy extraction capability,” Geothermics, vol. 76, pp. 177–189, Nov. 2018, doi: 10.1016/j.geothermics.2018.07.007.

A. Keshvarparast, S. S. M. Ajarostaghi, and M. A. Delavar, “Thermodynamic analysis the performance of hybrid solar-geothermal power plant equipped with air-cooled condenser,” Appl. Therm. Eng., vol. 172, May 2020, doi: 10.1016/j.applthermaleng.2020.115160.

F. Esmaeilion, “Hybrid renewable energy systems for desalination,” Appl. Water Sci., vol. 10, no. 3, Mar. 2020, doi: 10.1007/s13201-020-1168-5.

W. M. Rumaherang and J. Latuny, “Fluid Flow Study in Various Shapes and Sizes of Horizontal Axis Sea Current Turbine,” Sinergi, vol. 25, no. 3, p. 289, 2021, doi: 10.22441/sinergi.2021.3.006.

M. W. Kareem, S. I. Gilani, K. Habib, K. Irshad, and B. B. Saha, “Performance analysis of a multi-pass solar thermal collector system under transient state assisted by porous media,” Sol. Energy, vol. 158, pp. 782–791, Dec. 2017, doi: 10.1016/j.solener.2017.10.016.

J. Li, Z. Yang, S. Hu, F. Yang, and Y. Duan, “Effects of shell-and-tube heat exchanger arranged forms on the thermo-economic performance of organic Rankine cycle systems using hydrocarbons,” Energy Convers. Manag., vol. 203, Jan. 2020, doi: 10.1016/j.enconman.2019.112248.

S. A. Nada, R. Khater, and M. A. Mahmoud, “Thermal characteristics enhancement of helical cooling-dehumidifying coils using strips fins,” Therm. Sci. Eng. Prog., vol. 16, May 2020, doi: 10.1016/j.tsep.2020.100482.

S. Lion, C. N. Michos, I. Vlaskos, C. Rouaud, and R. Taccani, “A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications,” Renew. Sustain. Energy Rev., vol. 79, no. May, pp. 691–708, 2017, doi: 10.1016/j.rser.2017.05.082.

M. Masud et al., “Feasibility of utilizing waste heat in drying of plant-based food materials Renewable Energy View project Intermittent Microwave convective drying View project Feasibility of utilizing waste heat in drying of plant-based food materials,” Int. Conf. Mech. Ind. Mater. Eng., vol. 2017, 2017, [Online]. Available: https://www.researchgate.net/publication/325321933

J. D. Abraham, A. S. Dhoble, and C. K. Mangrulkar, “Numerical analysis for thermo-hydraulic performance of staggered cross flow tube bank with longitudinal tapered fins,” Int. Commun. Heat Mass Transf., vol. 118, Nov. 2020, doi: 10.1016/j.icheatmasstransfer.2020.104905.

A. T. Hoang, “Waste heat recovery from diesel engines based on Organic Rankine Cycle,” Appl. Energy, vol. 231, no. March, pp. 138–166, 2018, doi: 10.1016/j.apenergy.2018.09.022.

X. Wang, M. Jin, W. Feng, G. Shu, H. Tian, and Y. Liang, “Cascade energy optimization for waste heat recovery in distributed energy systems,” Appl. Energy, vol. 230, no. June, pp. 679–695, 2018, doi: 10.1016/j.apenergy.2018.08.124.

M. U. H. Joardder and M. H. Masud, “Feasibility of Advance Technologies,” in Food Preservation in Developing Countries: Challenges and Solutions, Springer International Publishing, 2019, pp. 219–236. doi: 10.1007/978-3-030-11530-2_9.

A. E. Quintero and M. Vera, “Laminar counterflow parallel-plate heat exchangers: An exact solution including axial and transverse wall conduction effects,” Int. J. Heat Mass Transf., vol. 104, pp. 1229–1245, Jan. 2017, doi: 10.1016/j.ijheatmasstransfer.2016.09.025.

H. Sun et al., “A general distributed-parameter model for thermal performance of cold box with parallel plate-fin heat exchangers based on graph theory,” Appl. Therm. Eng., vol. 148, pp. 478–490, Feb. 2019, doi: 10.1016/j.applthermaleng.2018.11.054.

Y. A. Al-Turki, H. Moria, A. Shawabkeh, S. Pourhedayat, M. Hashemian, and H. S. Dizaji, “Thermal, frictional and exergetic analysis of non-parallel configurations for plate heat exchangers,” Chem. Eng. Process. - Process Intensif., vol. 161, Apr. 2021, doi: 10.1016/j.cep.2021.108319.

R. Eldeeb, V. Aute, and R. Radermacher, “Pillow plate heat exchanger weld shape optimization using approximation and parallel parameterized CFD and non-uniform rational B-splines,” Int. J. Refrig., vol. 110, pp. 121–131, Feb. 2020, doi: 10.1016/j.ijrefrig.2019.10.024.

B. O. Kwon, H. Kim, J. Noh, S. Y. Lee, J. Nam, and J. S. Khim, “Spatiotemporal variability in microphytobenthic primary production across bare intertidal flat, saltmarsh, and mangrove forest of Asia and Australia,” Mar. Pollut. Bull., vol. 151, Feb. 2020, doi: 10.1016/j.marpolbul.2019.110707.

A. M. N. Elmekawy, A. A. Ibrahim, A. M. Shahin, S. Al-Ali, and G. E. Hassan, “Performance enhancement for tube bank staggered configuration heat exchanger – CFD Study,” Chem. Eng. Process. - Process Intensif., vol. 164, Jul. 2021, doi: 10.1016/j.cep.2021.108392.

X. Song, M. Liu, X. Hu, X. Wang, T. Liao, and J. Sun, “Numerical analysis of flow across brush elements based on a 2-D staggered tube banks model,” Aerospace, vol. 8, no. 1, pp. 1–16, Jan. 2021, doi: 10.3390/aerospace8010019.

N. Alvandifar et al., “Experimental study of partially metal foam wrapped tube bundles,” Int. J. Therm. Sci., vol. 162, Apr. 2021, doi: 10.1016/j.ijthermalsci.2020.106798.

A. Hashem-ol-Hosseini, M. Akbarpour Ghazani, A. Shahsavari, and M. Soltani, “Experimental investigation of thermal-hydraulic characteristics of finned oval tube bundles in cross-flow arrangements,” Int. J. Heat Mass Transf., vol. 180, Dec. 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121759.

A. S. Baqir, H. B. Mahood, and A. R. Kareem, “Optimisation and evaluation of NTU and effectiveness of a helical coil tube heat exchanger with air injection,” Therm. Sci. Eng. Prog., vol. 14, Dec. 2019, doi: 10.1016/j.tsep.2019.100420.

Y. Han, X. sheng Wang, Z. Zhang, and H. nan Zhang, “Multi-objective optimization of geometric parameters for the helically coiled tube using Markowitz optimization theory,” Energy, vol. 192, Feb. 2020, doi: 10.1016/j.energy.2019.116567.

A. Hatumessen, N. Titahelu, and C. S. Tupamahu, “Analisis efektivitas penukar kalor pipa helikal destilasi minyak atsiri kayu putih,” in Archepelago Engineering, N. Titahelu, Ed., Amon: Fakultas Teknik Universitas Pattimura, 2021, pp. 127–132.

G. Kumar, Gagandeep, A. Kumar, N. A. Ansari, and M. Zunaid, “Comparative numerical study of flow characteristics in shell & helical coil heat exchangers with hybrid models,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 10831–10836. doi: 10.1016/j.matpr.2021.01.775.

M. Farnam, M. Khoshvaght-Aliabadi, and M. J. Asadollahzadeh, “Intensified single-phase forced convective heat transfer with helical-twisted tube in coil heat exchangers,” Ann. Nucl. Energy, vol. 154, May 2021, doi: 10.1016/j.anucene.2020.108108.

N. Titahelu, J. Latuny, C. S. E. Tupamahu, and S. J. E. Sarwuna, “Pitch ratio effect on the effectiveness of condenser for essential oil distillation,” J. Energy, Mech. Mater. Manuf. Eng., vol. 6, no. 2, pp. 145–154, 2021.

Y. Yao, Q. Zhu, and Z. Li, “Performance of helically coiled gas heaters in supercritical CO2 Rankine cycles: A detailed assessment under convective boundary condition,” Energy, vol. 195, Mar. 2020, doi: 10.1016/j.energy.2020.117002.

N. Titahelu, D. S. Pelupessy, and A. F. Rumagutawan, “Meningkatkan efektivitas kondensor vertikal pipa helikal koil untuk destilasi minyak atsiri sereh,” J. Rekayasa Mesin, vol. 14, no. 1, pp. 235–249, 2023, doi: 10.21776/jrm.v14i1.1219.

Z. Said, S. M. A. Rahman, M. El Haj Assad, and A. H. Alami, “Heat transfer enhancement and life cycle analysis of a Shell-and-Tube Heat Exchanger using stable CuO/water nanofluid,” Sustain. Energy Technol. Assessments, vol. 31, pp. 306–317, Feb. 2019, doi: 10.1016/j.seta.2018.12.020.

X. Yang, J. Yu, T. Xiao, Z. Hu, and Y. L. He, “Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam,” Appl. Energy, vol. 261, no. December 2019, p. 114385, 2020, doi: 10.1016/j.apenergy.2019.114385.

M. Fares, M. AL-Mayyahi, and M. AL-Saad, “Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids,” Case Stud. Therm. Eng., vol. 18, p. 100584, 2020, doi: 10.1016/j.csite.2020.100584.

R. Said, N. Titahelu, and R. Ufie, “Analisis laju aliran massa fluida dingin terhadap efektivitas penukar kalor shell and tube destilasi minyak atsiri cengkeh (Syzygium aromaticum ),” in Archipelago Engineering (ALE), 2021, pp. 140–145.

E. M. S. El-Said and M. M. A. Alsood, “Experimental investigation of air injection effect on the performance of horizontal shell and multi-tube heat exchanger with baffles,” Appl. Therm. Eng., vol. 134, pp. 238–247, Apr. 2018, doi: 10.1016/j.applthermaleng.2018.02.001.

G. Yu, L. Xiong, C. Du, and H. Chen, “Simplified model and performance analysis for top insulated metal ceiling radiant cooling panels with serpentine tube arrangement,” Case Stud. Therm. Eng., vol. 11, pp. 35–42, Mar. 2018, doi: 10.1016/j.csite.2017.12.006.

J. Bai, J. Pan, G. Wu, and L. Tang, “Numerical analysis on heat transfer of supercritical pressure LNG in serpentine tube,” Cryogenics (Guildf)., vol. 101, no. June, pp. 101–110, 2019, doi: 10.1016/j.cryogenics.2019.06.010.

H. Gürbüz and D. Ateş, “A numerical Study on Processes of Charge and Discharge of Latent Heat Energy Storage System Using RT27 Paraffin Wax for Exhaust Waste Heat Recovery in a SI Engine,” Int. J. Automot. Sci. Technol., vol. 4, pp. 314–327, 2020, doi: 10.30939/ijastech..800856.

S. Chakrabarty and U. S. Wankhede, “Flow and heat transfer behaviour across circular,” Int. J. Mod. Eng. Res., vol. 2, no. 4, pp. 1529–1533, 2012.

J. M. Gorman, E. M. Sparrow, and J. Ahn, “In-line tube-bank heat exchangers: Arrays with various numbers of thermally participating tubes,” Int. J. Heat Mass Transf., vol. 132, pp. 837–847, Apr. 2019, doi: 10.1016/j.ijheatmasstransfer.2018.11.167.

S. Kotšmíd and Z. Brodnianská, “Determination of the reference temperature for a convective heat transfer coefficient in a heated tube bank,” Appl. Sci., vol. 11, no. 22, 2021, doi: 10.3390/app112210564.

C. K. Mangrulkar, A. S. Dhoble, S. Chamoli, A. Gupta, and V. B. Gawande, “Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers,” Renewable and Sustainable Energy Reviews, vol. 113. Elsevier Ltd, Oct. 01, 2019. doi: 10.1016/j.rser.2019.06.027.

T. A. Tahseen, M. Ishak, and M. M. Rahman, “An overview on thermal and fluid flow characteristics in a plain plate finned and un-finned tube banks heat exchanger,” Renew. Sustain. Energy Rev., vol. 43, pp. 363–380, 2015, doi: 10.1016/j.rser.2014.10.070.

T. Kim, “Effect of longitudinal pitch on convective heat transfer in crossflow over in-line tube banks,” Ann. Nucl. Energy, vol. 57, pp. 209–215, 2013, doi: 10.1016/j.anucene.2013.01.060.

A. M. González, M. Vaz, and P. S. B. Zdanski, “A hybrid numerical-experimental analysis of heat transfer by forced convection in plate-finned heat exchangers,” Appl. Therm. Eng., vol. 148, pp. 363–370, Feb. 2019, doi: 10.1016/j.applthermaleng.2018.11.068.

C. K. Mangrulkar, A. S. Dhoble, J. D. Abraham, and S. Chamoli, “Experimental and numerical investigations for effect of longitudinal splitter plate configuration for thermal-hydraulic performance of staggered tube bank,” Int. J. Heat Mass Transf., vol. 161, Nov. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120280.

N. Abed and I. Afgan, “A CFD study of flow quantities and heat transfer by changing a vertical to diameter ratio and horizontal to diameter ratio in inline tube banks using URANS turbulence models,” Int. Commun. Heat Mass Transf., vol. 89, pp. 18–30, Dec. 2017, doi: 10.1016/j.icheatmasstransfer.2017.09.015.

N. Hasbullah, F. Al Zahrah Mohd Saat, F. S. Anuar, M. F. Sukri, M. Z. Akop, and Z. A. Manan, “Experimental Study on The Performance of One-Directional and Bi-Directional Flow Conditions Across In-Line Tube banks Heat Exchanger,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 96, no. 2, pp. 74–87, 2022, doi: 10.37934/arfmts.96.2.7487.

I. Ikpotokin and C. O. Osueke, “Heat transfer and fluid flow characteristics study for in-line tube bank in cross-flow,” Int. J. Mech. Mechatronics Eng., vol. 14, no. 3, pp. 93–105, 2014.

P. Amatachaya and B. Krittacom, “Combustion Mechanism of Gas Porous Burner Installed an In-Line Tube-Bank Heat Exchanger,” in Energy Procedia, Elsevier Ltd, 2017, pp. 50–55. doi: 10.1016/j.egypro.2017.10.045.

H. Ghasemkhani, A. Keyhani, M. Aghbashlo, S. Rafiee, and A. S. Mujumdar, “Improving exergetic performance parameters of a rotating-tray air dryer via a simple heat exchanger,” Appl. Therm. Eng., vol. 94, pp. 13–23, Feb. 2016, doi: 10.1016/j.applthermaleng.2015.10.114.

A. A. Ananno, M. H. Masud, P. Dabnichki, and A. Ahmed, “Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries,” Sol. Energy, vol. 196, no. April 2019, pp. 270–286, 2020, doi: 10.1016/j.solener.2019.11.069.

Z. Erbay and A. Hepbasli, “Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method,” Energy, vol. 127, pp. 502–515, 2017, doi: 10.1016/j.energy.2017.03.148.

M. Mohanraj, “Performance of a solar-ambient hybrid source heat pump drier for copra drying under hot-humid weather conditions,” Energy Sustain. Dev., vol. 23, pp. 165–169, 2014, doi: 10.1016/j.esd.2014.09.001.

R. Saidur, “Energy consumption, energy savings, and emission analysis in Malaysian office buildings,” Energy Policy, vol. 37, no. 10, pp. 4104–4113, 2009, doi: 10.1016/j.enpol.2009.04.052.

B. El Fil and S. Garimella, “The state of the art in energy saving techniques for garment/textile drying,” Dry. Technol., vol. 40, no. 11, pp. 2235–2250, 2022, doi: 10.1080/07373937.2021.1938599.

R. T. Oǧulata, “Utilization of waste-heat recovery in textile drying,” Appl. Energy, vol. 79, no. 1, pp. 41–49, 2004, doi: 10.1016/j.apenergy.2003.12.002.

M. Nasif Kuru, M. T. Erdinc, and A. Yilmaz, “Optimization of Heat Transfer and Pressure Drop in Axially Finned Staggered Tube banks,” Heat Transf. Eng., pp. 1–18, 2020, doi: 10.1080/01457632.2020.1785696.

G. TÜRKAKAR, “Design and Optimization of Pcm-Air Cold Energy Storage Device To Be Used for Peak Electricity Shaving,” Isı Bilim. ve Tek. Derg., vol. 41, no. 1, pp. 23–36, 2021, doi: 10.47480/isibted.979300.

L. Gu, J. Min, X. Wu, and L. Yang, “Airside heat transfer and pressure loss characteristics of bare and finned tube heat exchangers used for aero engine cooling considering variable air properties,” Int. J. Heat Mass Transf., vol. 108, pp. 1839–1849, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.01.047.

W. A. Khan, J. R. Culham, and M. M. Yovanovich, “Convection heat transfer from tube banks in crossflow: Analytical approach,” Int. J. Heat Mass Transf., vol. 49, no. 25–26, pp. 4831–4838, Dec. 2006, doi: 10.1016/j.ijheatmasstransfer.2006.05.042.

T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, vol. 21, no. 1. 2011. [Online]. Available: http://journal.um-surabaya.ac.id/index.php/JKM/article/view/2203

A. Banasode, S. Valmiki, and V. S. Desai, “Design and Analysis of Bagasse Dryer to Recover Energy of Water Tube Boiler in a Sugar Factory,” Int. J. Innov. Technol. Res., vol. 5, no. 4, pp. 6645–6652, 2017.

B. Lotfi and B. Sundén, “Development of new finned tube heat exchanger: Innovative tube-bank design and thermohydraulic performance,” Heat Transf. Eng., vol. 41, no. 14, pp. 1209–1231, Aug. 2020, doi: 10.1080/01457632.2019.1637112.

D. Mondal, M. O. Ikram, M. F. Rabbi, and M. N. A. Moral, “Experimental Investigation and Comparison of Bend Tube Parallel & Counter Flow and Cross Flow Water to Air Heat Exchanger,” Int. J. Sci. Eng. Res., vol. 5, no. 7, pp. 686–695, 2014.

S. Sahamifar, F. Kowsary, and M. H. Mazlaghani, “Generalized optimization of cross-flow staggered tube banks using a subscale model,” Int. Commun. Heat Mass Transf., vol. 105, pp. 46–57, Jun. 2019, doi: 10.1016/j.icheatmasstransfer.2019.03.004

Published
2023-10-11